Уравнение шредингера для свободно движущихся частиц

4.5. Уравнение Шредингера для простейших систем

Свободная частица, движущаяся вдоль оси х

Потенциальная энергия равна нулю: Уравнение шредингера для свободно движущихся частиц, и производные по y и z в операторе Лапласа исчезают. Уравнение (4.19) принимает вид

Уравнение шредингера для свободно движущихся частиц

Введем волновой вектор Уравнение шредингера для свободно движущихся частиц, обозначив

Уравнение шредингера для свободно движущихся частиц

и перепишем уравнение в виде

Уравнение шредингера для свободно движущихся частиц

Существуют, как известно, два линейно независимых решения уравнения (4.22), так что общее решение есть суперпозиция двух волн — или стоячих:

Уравнение шредингера для свободно движущихся частиц

или бегущих:

Уравнение шредингера для свободно движущихся частиц

(первый член — волна бежит направо, второй — налево; постоянные Уравнение шредингера для свободно движущихся частици Уравнение шредингера для свободно движущихся частицпроизвольны). Аналогия: такие же решения описывают колебания свободной струны. Поскольку возможны волны с произвольным значением волнового числа Уравнение шредингера для свободно движущихся частиц, энергия частицы (Уравнение шредингера для свободно движущихся частиц) также может принимать любые значения, то есть, в данном случае свободного инфинитного движения — не квантуется. Для частицы, движущейся в произвольном направлении вдоль произвольно направленного волнового вектора Уравнение шредингера для свободно движущихся частиц, справедливы те же решения при замене

Уравнение шредингера для свободно движущихся частиц

При решении большинства задач квантовой механики следует обратить внимание на то, что волновая функция всегда должна быть непрерывной — вероятность пребывания частицы не может меняться скачком от точки к точке. Кроме того, если потенциальная энергия непрерывна или имеет скачки, но только первого рода (конечные скачки) и не имеет бесконечных скачков (скачков второго рода), то из уравнения Шредингера следует, что и первая производная волновой функции также непрерывна.

Частица в бесконечно глубокой потенциальной яме

Потенциальная энергия в этой задаче имеет вид

Уравнение шредингера для свободно движущихся частиц

Такая система соответствует частице, движущейся вдоль прямой линии и отскакивающей от абсолютно отражающих препятствий в точках Уравнение шредингера для свободно движущихся частици Уравнение шредингера для свободно движущихся частиц. В область бесконечного потенциала частица проникнуть не может, следовательно, Уравнение шредингера для свободно движущихся частицза пределами отрезка Уравнение шредингера для свободно движущихся частиц. Внутри ямы Уравнение шредингера для свободно движущихся частиц, и стационарное уравнение Шредингера имеет тот же вид, как для свободной частицы. Получатся те же решения в виде суперпозиции стоячих (или бегущих) волн, но в отличие от предыдущего случая добавятся граничные условия. Именно, в точках Уравнение шредингера для свободно движущихся частици Уравнение шредингера для свободно движущихся частицволновая функция должна обращаться в нуль (поскольку она непрерывна и равна нулю вне ямы). В классической механике точно такие граничные условия имеет уравнение для струны с закрепленными концами.

Общее решение имеет вид

Уравнение шредингера для свободно движущихся частиц

Используем сначала первое граничное условие

Уравнение шредингера для свободно движущихся частиц

Мы получили, что решение уравнения Шредингера должно иметь вид

Уравнение шредингера для свободно движущихся частиц

Если продолжить нашу аналогию, то можно сказать, что на струне, закрепленной в одной точке, бегущих волн не бывает: отражение от неподвижной точки обязательно порождает стоячую волну. Однако на длину волны никаких ограничений не накладывается.

Теперь наложим второе из граничных условий:

Уравнение шредингера для свободно движущихся частиц

Здесь есть два типа решений. При Уравнение шредингера для свободно движущихся частицполучаем

Уравнение шредингера для свободно движущихся частиц

что означает отсутствие частицы в яме (вероятность найти ее всюду равна нулю). Поэтому нас интересует второе – нетривиальное – решение, когда

Уравнение шредингера для свободно движущихся частиц

Это возможно лишь при некоторых значениях волнового вектора:

Уравнение шредингера для свободно движущихся частиц

Так как энергия частицы связана с волновым вектором, то

Уравнение шредингера для свободно движущихся частиц

Мы получили квантование энергии, то есть наша «струна», закрепленная с обеих сторон, зазвучала, так как появились выделенные частоты.

Подставляя найденные разрешенные значения волнового вектора в выражение для волновой функции, получаем ее в виде

Уравнение шредингера для свободно движущихся частиц

Смысл квантового числа: оно на единицу больше числа нулей волновой функции. Значение постоянной

Уравнение шредингера для свободно движущихся частиц

определяется из условия нормировки.

Уравнение шредингера для свободно движущихся частиц

Рис. 4.8. Уровни энергии, волновые функции и распределение плотности вероятностей по координате x

Отметим, что значения Уравнение шредингера для свободно движущихся частиц, при которых граничное условие в точке Уравнение шредингера для свободно движущихся частицтакже будет выполнено, новых состояний не дают. Это видно и из выражения для энергии (4.24), в которое n входит в квадрате, и из выражения для волновой функции (4.25): изменение знака n приведет лишь к изменению знака волновой функции Уравнение шредингера для свободно движущихся частиц, что оставит неизменным распределение вероятностей Уравнение шредингера для свободно движущихся частиц.

Откуда же берется дискретность уровней энергии, характерная и для атома? Сравним со свободной частицей: уравнения те же, но с иными граничными условиями! Здесь возможны две постановки задачи. В первом случае исследуется состояние, которому в классической механике соответствовало бы инфинитное движение (задача рассеяния). Обычно в таких случаях решения возможны при любых значениях энергии (как говорят, спектр непрерывен). Во втором случае исследуется состояние, которому в классике соответствует финитное движение в ограниченной области пространства (задача на связанные состояния). Требование конечности волновой функции во всем пространстве ведет к квантованию энергии. Подчеркнем: в этом случае стационарное уравнение имеет физически приемлемые решения не всегда, а лишь при некоторых значениях энергии Уравнение шредингера для свободно движущихся частиц. Как следствие возникает дискретный спектр энергии системы.

Пример. Определим разность соседних уровней энергии Уравнение шредингера для свободно движущихся частицдля частицы в бесконечно глубокой потенциальной яме при больших значениях n. Полученный результат используем для оценки разности энергий соседних уровней энергии поступательного движения молекул азота при комнатной температуре Уравнение шредингера для свободно движущихся частицв сосуде. Примем массу молекулы Уравнение шредингера для свободно движущихся частиц, а линейный размер сосуда Уравнение шредингера для свободно движущихся частиц. Сравним полученный результат с кинетической энергией поступательного движения молекул азота.

Используя выражение (4.24) для уровней энергии частицы в потенциальной яме, находим разность энергий соседних уровней

Уравнение шредингера для свободно движущихся частиц

при больших значениях Уравнение шредингера для свободно движущихся частиц. Средняя кинетическая энергия поступательного движения молекул азота равна

Уравнение шредингера для свободно движущихся частиц

Приравнивая Уравнение шредингера для свободно движущихся частицвыражению (4.24) для энергии уровней частицы в яме, находим, что такая энергия соответствует квантовым числам порядка

Уравнение шредингера для свободно движущихся частиц

Уже само по себе это число говорит о том, что в области крайне высоких возбуждений работают классические формулы. Разность энергий соседних уровней получается, подстановкой в формулу для Уравнение шредингера для свободно движущихся частицнайденного выражения для квантового числа:

Уравнение шредингера для свободно движущихся частиц

В электрон-вольтах те же характеристики имеют значения

Уравнение шредингера для свободно движущихся частиц

Относительная разность энергий соседних уровней ничтожно мала:

Уравнение шредингера для свободно движущихся частиц

и потому в классическом пределе квантовой дискретностью пренебрегают.

Частица в трехмерной потенциальной яме

Это обобщение предыдущей задачи. Частица может двигаться в кубическом объеме с длиной ребра Уравнение шредингера для свободно движущихся частиц. Нетрудно убедиться, что общее решение для волновой функции представимо в виде произведения одномерных волновых функций, полученных в предыдущей задаче:

Уравнение шредингера для свободно движущихся частиц

Такая волновая функция соответствует очевидному факту, что движения вдоль трех осей не зависят друг от друга, и каждое описывается прежними одномерными волновыми функциями. Энергия, как легко догадаться, будет равна сумме энергий движения по осям x, y, z:

Уравнение шредингера для свободно движущихся частиц

Уравнение шредингера для свободно движущихся частиц

Рис. 4.9. Трёхмерная потенциальная яма

Состояние системы теперь определяется тремя квантовыми числами Уравнение шредингера для свободно движущихся частиц1, Уравнение шредингера для свободно движущихся частиц2 и Уравнение шредингера для свободно движущихся частиц3, принимающими, как и прежде; целые значения. Здесь мы впервые сталкиваемся с важным понятием вырождения энергетических уровней, то есть с ситуацией, когда разные состояния системы имеют одинаковую энергию. В самом деле, минимальная энергия системы достигается при минимальных значениях всех квантовых чисел, то есть при Уравнение шредингера для свободно движущихся частиц1, Уравнение шредингера для свободно движущихся частиц2, Уравнение шредингера для свободно движущихся частиц3. Эта энергия равна

Уравнение шредингера для свободно движущихся частиц

и ей соответствует одна волновая функция Уравнение шредингера для свободно движущихся частиц. Говорят, что основное состояние не вырождено (невырожденность состояния с минимальной энергией — общее правило). Первое возбужденное состояние получается, когда одно из квантовых чисел равно 2, а остальные по-прежнему равны единице; энергия его

Уравнение шредингера для свободно движущихся частиц

Но такую энергию имеют теперь три состояния с волновыми функциями Уравнение шредингера для свободно движущихся частиц, Уравнение шредингера для свободно движущихся частиц, и Уравнение шредингера для свободно движущихся частиц(квантовое число 2 можно выбрать тремя способами), поэтому говорят, что кратность вырождения первого возбужденного уровня равна трем (g = 3). Естественно, в другой системе может быть совершенно иная кратность вырождения (или отсутствие такового). Последующие состояния частицы в трехмерной потенциальной яме с бесконечными стенками также вырождены. Ясно, что вырождение уровней связано с симметрией системы, с равноправием всех осей. Если бы размеры ямы были разными Уравнение шредингера для свободно движущихся частиц1, Уравнение шредингера для свободно движущихся частиц2, Уравнение шредингера для свободно движущихся частиц3 то всем трем направлениям, то для энергии мы бы получили вместо (4.27) выражение

Уравнение шредингера для свободно движущихся частиц

и вырождение могло бы иметь место лишь при определенных соотношениях между длиной, шириной и высотой потенциального ящика.

Одномерный осциллятор

В классической физике пружинный маятник (одномерный осциллятор) представляет собой точечное тело массой m, прикрепленное к пружине и колеблющееся с круговой частотой Уравнение шредингера для свободно движущихся частиц. Потенциальная энергия такой системы описывается выражением

Уравнение шредингера для свободно движущихся частиц

так что уравнение Шредингера записывается в виде

Уравнение шредингера для свободно движущихся частиц

Отсюда можно найти решение для волновой функции основного состояния

Уравнение шредингера для свободно движущихся частиц

Подставляя это выражение в уравнение Шредингера, легко убедиться, что энергия основного состояния равна

Уравнение шредингера для свободно движущихся частиц

Мы не выписываем волновые функции возбужденных состояний осциллятора, но выражение для разрешенных значений энергии имеет вид ( Уравнение шредингера для свободно движущихся частиц— колебательное квантовое число)

Уравнение шредингера для свободно движущихся частиц

Здесь воспроизводится формула Планка и нулевые колебания

Уравнение шредингера для свободно движущихся частиц,

полученные ранее из соотношения неопределенностей (см. разд. 3.3).

Уравнение шредингера для свободно движущихся частиц

Рис. 4.10. Уровни энергии и распределения плотности вероятностей по координате x для разных значений колебательного квантового числа. График потенциальной энергии осциллятора показан синей линией

Уравнение шредингера для свободно движущихся частиц

Рис. 4.11. Распределения вероятностей для классического (пунктир) и квантового (сплошная линия) осцилляторов.
a) n = 1; б) большие значения n

Трехмерный осциллятор

Эта задача является обобщением предыдущей. Как и для трехмерной потенциальной ямы с бесконечно высокими стенками, волновая функция представляется в виде произведения волновых функций одномерных осцилляторов, колеблющихся независимо вдоль осей Уравнение шредингера для свободно движущихся частиц,Уравнение шредингера для свободно движущихся частиц,Уравнение шредингера для свободно движущихся частиц. Так, волновая функция основного состояния имеет вид

Уравнение шредингера для свободно движущихся частиц

а уровни энергии трехмерного осциллятора описываются формулой

Уравнение шредингера для свободно движущихся частиц

В отличие от одномерного осциллятора состояние определяется значениями трех квантовых чисел Уравнение шредингера для свободно движущихся частиц1, Уравнение шредингера для свободно движущихся частиц2, Уравнение шредингера для свободно движущихся частиц3. Легко понять, что все возбужденные состояния должны быть вырожденными.

Видео:Консультация по квантовой механике. Часть 5. "Волновая функция. Уравнение Шредингера"Скачать

Консультация по квантовой механике. Часть 5. "Волновая функция. Уравнение Шредингера"

Уравнение Шрёдингера

Дуальная корпускулярно-волновая природа квантовых частиц описывается дифференциальным уравнением.

Согласно фольклору, столь распространенному среди физиков, случилось это так: в 1926 году физик-теоретик по имени Эрвин Шрёдингер выступал на научном семинаре в Цюрихском университете. Он рассказывал о странных новых идеях, витающих в воздухе, о том, что объекты микромира часто ведут себя скорее как волны, нежели как частицы. Тут слова попросил пожилой преподаватель и сказал: «Шрёдингер, вы что, не видите, что всё это чушь? Или мы тут все не знаем, что волны — они на то и волны, чтобы описываться волновыми уравнениями?» Шрёдингер воспринял это как личную обиду и задался целью разработать волновое уравнение для описания частиц в рамках квантовой механики — и с блеском справился с этой задачей.

Тут необходимо сделать пояснение. В нашем обыденном мире энергия переносится двумя способами: материей при движении с места на место (например, едущим локомотивом или ветром) — в такой передаче энергии участвуют частицы — или волнами (например, радиоволнами, которые передаются мощными передатчиками и ловятся антеннами наших телевизоров). То есть в макромире, где живём мы с вами, все носители энергии строго подразделяются на два типа — корпускулярные (состоящие из материальных частиц) или волновые. При этом любая волна описывается особым типом уравнений — волновыми уравнениями. Все без исключения волны — волны океана, сейсмические волны горных пород, радиоволны из далеких галактик — описываются однотипными волновыми уравнениями. Это пояснение нужно для того, чтобы было понятно, что если мы хотим представить явления субатомного мира в терминах волн распределения вероятности (см. Квантовая механика), эти волны также должны описываться соответствующим волновым уравнением.

Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение, носящее его имя. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица. Хотя уравнение Шрёдингера относится к области высшей математики, оно настолько важно для понимания современной физики, что я его все-таки здесь приведу — в самой простой форме (так называемое «одномерное стационарное уравнение Шрёдингера»). Вышеупомянутая волновая функция распределения вероятности, обозначаемая греческой буквой ψ («пси»), является решением следующего дифференциального уравнения (ничего страшного, если оно вам не понятно; главное — примите на веру, что это уравнение свидетельствует о том, что вероятность ведёт себя как волна):

Уравнение шредингера для свободно движущихся частиц

где x — расстояние, h — постоянная Планка, а m, E и U — соответственно масса, полная энергия и потенциальная энергия частицы.

Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.

Когда Шрёдингер впервые опубликовал свои результаты, в мире теоретической физики разразилась буря в стакане воды. Дело в том, что практически в то же время появилась работа современника Шрёдингера — Вернера Гейзенберга (см. Принцип неопределенности Гейзенберга), в которой автор выдвинул концепцию «матричной механики», где те же задачи квантовой механики решались в другой, более сложной с математической точки зрения матричной форме. Переполох был вызван тем, что ученые попросту испугались, не противоречат ли друг другу два в равной мере убедительных подхода к описанию микромира. Волнения были напрасны. Сам Шрёдингер в том же году доказал полную эквивалентность двух теорий — то есть из волнового уравнения следует матричное, и наоборот; результаты же получаются идентичными. Сегодня используется в основном версия Шрёдингера (иногда его теорию называют «волновой механикой»), так как его уравнение менее громоздкое и его легче преподавать.

Однако представить себе и принять, что нечто вроде электрона ведёт себя как волна, не так-то просто. В повседневной жизни мы сталкиваемся либо с частицей, либо с волной. Мяч — это частица, звук — это волна, и всё тут. В мире квантовой механики всё не так однозначно. На самом деле — и эксперименты это вскоре показали — в квантовом мире сущности отличаются от привычных нам объектов и обладают другими свойствами. Свет, который мы привыкли считать волной, иногда ведёт себя как частица (которая называется фотон), а частицы вроде электрона и протона могут вести себя как волны (см. Принцип дополнительности).

Эту проблему обычно называют двойственной или дуальной корпускулярно-волновой природой квантовых частиц, причем свойственна она, судя по всему, всем объектам субатомного мира (см. Теорема Белла). Мы должны понять, что в микромире наши обыденные интуитивные представления о том, какие формы может принимать материя и как она себя может вести, просто неприменимы. Сам факт, что мы используем волновое уравнение для описания движения того, что привыкли считать частицами, — яркое тому доказательство. Как уже отмечалось во Введении, в этом нет особого противоречия. Ведь у нас нет никаких веских оснований полагать, будто то, что мы наблюдаем в макромире, должно с точностью воспроизводиться на уровне микромира. И тем не менее дуальная природа элементарных частиц остается одним из самых непонятных и тревожащих аспектов квантовой механики для многих людей, и не будет преувеличением сказать, что все беды начались с Эрвина Шрёдингера.

Видео:Урок 455. Уравнение ШрёдингераСкачать

Урок 455. Уравнение Шрёдингера

Уравнение шредингера для свободно движущихся частиц

Аналог классического волнового уравнения был предложен Э. Шредингером в 1925 г. Как и классическое уравнение, уравнение Шредингера связывает производные волновой функции по времени и координате. Уравнение Шредингера описывает поведение любых нерелятивистских систем. На примерах частицы, находящейся в бесконечно глубокой яме, и гармонического осциллятора рассмотрены простейшие квантовые системы, получены дискретные спектры состояний. Возможности описания динамики данных систем ограничены набором квантовых чисел, отражающих универсальные и внутренние симметрии квантовых систем.

4.1. Уравнение Шредингера

В квантовой физике изменение состояния частицы описывается уравнением Шредингера

Уравнение шредингера для свободно движущихся частиц(4.1)

где Уравнение шредингера для свободно движущихся частиц– оператор Гамильтона – аналог классической функции Гамильтона

Уравнение шредингера для свободно движущихся частиц

в которой Уравнение шредингера для свободно движущихся частици Уравнение шредингера для свободно движущихся частицзаменены операторами импульса Уравнение шредингера для свободно движущихся частицx, Уравнение шредингера для свободно движущихся частицy, Уравнение шредингера для свободно движущихся частицz и координаты Уравнение шредингера для свободно движущихся частиц, Уравнение шредингера для свободно движущихся частиц, Уравнение шредингера для свободно движущихся частиц:

Уравнение шредингера для свободно движущихся частиц

х → Уравнение шредингера для свободно движущихся частиц= х, y → Уравнение шредингера для свободно движущихся частиц= y, z → Уравнение шредингера для свободно движущихся частиц= z,

Уравнение шредингера для свободно движущихся частиц(4.2)

Уравнение Шредингера

Зависящее от времени уравнение Шредингера:

Уравнение шредингера для свободно движущихся частиц

где Уравнение шредингера для свободно движущихся частиц– гамильтониан системы.

Разделение переменных. Запишем Ψ(Уравнение шредингера для свободно движущихся частиц,t) = ψ(Уравнение шредингера для свободно движущихся частиц)θ(t), где ψ является функцией координат, а θ – функция времени. Если Уравнение шредингера для свободно движущихся частицне зависит от времени, тогда уравнение Уравнение шредингера для свободно движущихся частицψ = iћψ принимает вид θУравнение шредингера для свободно движущихся частицψ = iћψθ или

Уравнение шредингера для свободно движущихся частиц

Левая часть является функцией только координат, а правая не зависит от переменной x. Поэтому обе части последнего уравнения должны быть равны одной и той же постоянной, которую обозначим E

Уравнение шредингера для свободно движущихся частиц

θ(t) = exp(−iEt/ћ), Уравнение шредингера для свободно движущихся частицψ(Уравнение шредингера для свободно движущихся частиц) = Eψ(Уравнение шредингера для свободно движущихся частиц) и Ψ(Уравнение шредингера для свободно движущихся частиц,t) = ψ(Уравнение шредингера для свободно движущихся частиц)exp(−iEt/ћ).

Уравнение Уравнение шредингера для свободно движущихся частицψ(Уравнение шредингера для свободно движущихся частиц) = Eψ(Уравнение шредингера для свободно движущихся частиц) называют стационарным уравнением Шредингера. Для одномерной системы с массой m в поле с потенциалом U(x) оно принимает вид:

Уравнение шредингера для свободно движущихся частицили Уравнение шредингера для свободно движущихся частиц

Для трехмерной системы с массой m в поле с потенциалом U(Уравнение шредингера для свободно движущихся частиц):

−(ћ 2 /2m)Δψ(Уравнение шредингера для свободно движущихся частиц) + U(Уравнение шредингера для свободно движущихся частиц)ψ(Уравнение шредингера для свободно движущихся частиц) = Eψ(Уравнение шредингера для свободно движущихся частиц),

где Δ – лапласиан.

Так как уравнение Шредингера является линейным уравнением первого порядка по времени, то с его помощью по заданному значению волновой функции Ψ(x, y, z, 0) в момент времени t = 0 можно найти её значение в произвольный момент времени t − Ψ(x, y, z, t).

Уравнение Шредингера для стационарного состояния, когда потенциальная энергия частицы не зависит от времени, имеет вид

Уравнение шредингера для свободно движущихся частицψ(Уравнение шредингера для свободно движущихся частиц) = Eψ(Уравнение шредингера для свободно движущихся частиц).(4.3)

Это уравнение называют стационарным уравнением Шредингера.

Так как в стационарном состоянии

Ψ(Уравнение шредингера для свободно движущихся частиц,t) = ψ(Уравнение шредингера для свободно движущихся частиц)exp(−iEt/ћ)(4.4)

и вероятность найти частицу в момент t в точке x, y, z пропорциональна |Ψ(Уравнение шредингера для свободно движущихся частиц,t)|, то она

|ψ(x,y,z)| 2 , т.е. не зависит от времени. Аналогично, вероятность обнаружить значение физической величины, характеризующей систему, также не изменяется со временем, поскольку выражается через квадрат модуля волновой функции.

4.2. Частица в одномерной прямоугольной яме с бесконечными стенками

Потенциальная энергия U(x) в прямоугольной яме удовлетворяет следующим условиям:

Уравнение шредингера для свободно движущихся частиц(4.5)

Уравнение шредингера для свободно движущихся частиц
Рис.4.1. Прямоугольная яма с бесконечными стенками

Частица находится в области 0 ≤ x ≤ L. Вне этой области ψ(x) = 0. Уравнение Шредингера для частицы, находящейся в области 0 ≤ x ≤ L

Уравнение шредингера для свободно движущихся частиц(4.6)

Волновая функция, являющаяся решением уравнения (4.9), имеет вид

ψ(x)= Аsin kx + Bcos kx,(4.7)

где k = (2mE/ћ 2 ) 1/2 . Из граничных условий ψ(0) = 0, ψ(L) = 0 и условий непрерывности волновой функции следует

Аsin kL = 0.(4.8)

kL = nπ, n = 1, 2, 3, … , то есть внутри потенциальной ямы с бесконечно высокими стенками устанавливаются стоячие волны, а энергия состояния частиц имеет дискретный спектр значений En

Уравнение шредингера для свободно движущихся частицn = 1, 2, 3, …(4.9)

Частица может находиться в каком-то одном из множества дискретных состояний, доступных для неё.
Каждому значению энергии En соответствует волновая функция ψn(x), которая с учетом условия нормировки

Уравнение шредингера для свободно движущихся частиц

Уравнение шредингера для свободно движущихся частиц(4.10)

В отличие от классической, квантовая частица в прямоугольной яме не может иметь энергию
E 2 π 2 /(2mL 2 ). Состояния частицы ψn в одномерном поле бесконечной потенциальной ямы полнос­тью описывается с помощью одного квантового числа n. Спектр энергий дискретный.

Уравнение шредингера для свободно движущихся частиц

Рис. 4.2. Уровни энергии и волновые функции частицы Ψ в бесконечной прямоугольной яме. Квадрат модуля волновой функции |Ψ| 2 определяет вероятность нахождения частицы в различных точках потенциальной ямы.

4.3. Гармонический осциллятор

Положение уровней частицы в потенциальной яме зависит от вида потенциальной ямы. В одномерной потенциальной яме гармонического осциллятора потенциальная энергия имеет вид

Уравнение шредингера для свободно движущихся частиц(4.11)

В этом случае одномерное уравнение Шредингера имеет вид

Уравнение шредингера для свободно движущихся частиц(4.12)

Допустимые значения полной энергии определяются формулой

En = ћω0(n + 1/2), n = 0, 1, 2,(4.13)

В отличие от бесконечной прямоугольной ямы, спектр уровней гармонического осциллятора эквидистантный.
С увеличением массы частицы или размеров области ее локализации квантовое описание частицы переходит в классическое.

Частица в одномерной потенциальной яме

Одномерная прямоугольная яма шириной L:

Уравнение шредингера для свободно движущихся частиц Уравнение шредингера для свободно движущихся частицn = 1, 2, …
Уравнение шредингера для свободно движущихся частиц

Одномерный гармонический осциллятор:

Уравнение шредингера для свободно движущихся частицEn = ћω0(n + 1/2), n = 0, 1, 2,

4.4. Частица в поле с центральной симметрией

В сферических координатах стационарное уравнение Шредингера для частицы в центральном потенциале U(r) имеет вид

Уравнение шредингера для свободно движущихся частиц(4.14)

Решение уравнения (4.14) записываются в виде произведения радиальной и угловой функций

ψ(r,θ,φ) = Rnl(r)Ylm(θ,φ),(4.15)

где радиальная функция Rnl(r) и угловая функция Ylm(θ,φ), называемая сферической, удовлетворяют уравнениям

Уравнение шредингера для свободно движущихся частиц2 Ylm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ)(4.16)
Уравнение шредингера для свободно движущихся частицYlm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ)
Уравнение шредингера для свободно движущихся частиц
(4.17)

Уравнение (4.16) определяет возможные собственные значения l и собственные функции Ylm(θ,φ) оператора квадрата момента Уравнение шредингера для свободно движущихся частиц2 . Уравнение (4.17) определяет собственные значения энергии Е и радиальные собственные функции Rnl(r), от которых зависит энергия системы (рис. 4.3).
Схема уровней (последовательность и абсолютные значения энергий) зависит от радиальной функции Rnl(r), которая в свою очередь определяется потенциалом U(r), в котором находится частица.

Уравнение шредингера для свободно движущихся частиц

Рис. 4.3. Радиальное распределение вероятности нахождения электрона в кулоновском поле протона (атом водорода). Расстояния даны в боровских радиусах
r0 = ћ 2 /mee 2 ≈ 0.529·10 8 cм.

Решения уравнения

Уравнение шредингера для свободно движущихся частиц

существуют лишь при определенных значениях квантовых чисел n (радиальное квантовое число), l (орбитальное квантовое число) и m (магнитное квантовое число).
Возможные энергетические состояния системы (уровни энергии) определяются числами n и l и в случае сферически симметричных состояний не зависят от квантового числа m. Число n может быть только целым:
n = 1, 2, …, ∞. Число l может принимать значения 0, 1, 2, …, ∞.

4.5. Орбитальный момент количества движения

Собственные значения L 2 и Lz являются решением уравнений

Уравнение шредингера для свободно движущихся частиц2 Ylm(θ,φ) = L 2 Ylm(θ,φ) и Уравнение шредингера для свободно движущихся частицzYlm(θ,φ) = LzYlm(θ,φ).

Они имеют следующие дискретные значения

L 2 = ћ 2 l(l + 1), где l = 0, 1, 2, 3, …,
Lz = ћm, где m = 0, ± 1, ± 2, ± 3,…, ± l.

Для характеристики состояний с различными значениями орбитального момента l обычно используют следующие обозначения:

Спектроскопические названия орбитальных моментов l

l = 0s-состояние
l = 1p-состояние
l = 2d-состояние
l = 3f-состояние
l = 4g-состояние
l = 5h-состояние
и. т. д.

Состоянию с l = 0 отвечает сферически симметричная волновая функция. В тех случаях, когда l ≠ 0 волновая функция не имеет сферической симметрии. Симметрия волновой функции определяется симметрией сферических функций Ylm(θ,φ). Имеет место интересное квантовое явление, когда решение сферически симметричной задачи (потенциал описывает сферически симметричную систему) приводит к состояниям, не обладающим сферической симметрией. Таким образом, симметрия уравнений не обязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности этих решений.
Для частицы, находящейся в сферически симметричном потенциале, величина орбитального момента количества движения L:

Уравнение шредингера для свободно движущихся частиц(4.18)

Обычно, для упрощения, когда говорят о величине орбитального момента количества движения, называют этой величиной квантовое число l, имея в виду, что между l и L имеется однозначная связь (4.18).

Уравнение шредингера для свободно движущихся частиц

Рис. 4.4 Возможные ориентации вектора Уравнение шредингера для свободно движущихся частицпри квантовом числе l = 2.

Так как величина l может принимать только целочисленные значения 0, 1, 2, 3,…, то и орбитальный момент количества движения L квантуется. Например, для частицы с l = 2 момент количества движения

Уравнение шредингера для свободно движущихся частиц=
= 6.58·10 -22 √6 МэВ·сек ≈ 2.6·10 — 34 Дж·сек.

Пространственное квантование. Орбитальный момент количества движения является векторной величиной. Так как величина орбитального момента количества движения квантуется, то и направление Уравнение шредингера для свободно движущихся частицпо отношению к выделенному направлению z, например, к внешнему магнитному полю, также квантуется и принимает дискретные значения Lz = ћm, где m изменяется от +l до –l, т. е. имеет 2l + 1 значений. Например, при l = 2 величина m принимает значения +2, +1, 0, -1, -2 (см. рис. 4.4). Вместе с тем энергия системы не зависит от m, т. е. от направления вектора Уравнение шредингера для свободно движущихся частиц, что является очевидным следствием сферической симметрии системы.
Состояние частицы, находящейся в сферически симметричном поле, полностью описывается тремя квантовыми числами: n, l и m.
Появление квантовых чисел связано со свойствами симметрии системы. Характер этой симметрии определяет возможные значения квантовых чисел. Очевидно, что система, описываемая функцией e im φ , примет прежнее значение только тогда, когда азимутальный угол φ в результате поворота вокруг оси z примет прежнее значение φ. Этому условию функция e im φ удовлетворяет только в случае, когда величина mφ кратна 2π. Т.е. величина m должна иметь целые значения. Так как необходимо учитывать вращение в двух противоположных направлениях и отсутствие вращения, единственно возможными значениями оказываются m = 0, ±1, ±2, … .

4.6. Спин

Спин − собственный момент количества движения частицы. Между значением вектора спина Уравнение шредингера для свободно движущихся частици квантовым числом спина s выполняется такое же соотношение, как между величиной значением вектора орбитального момента Уравнение шредингера для свободно движущихся частици орбитальным квантовым числом l:

Уравнение шредингера для свободно движущихся частиц2 = ћ 2 s(s + 1)(4.19)

В отличие от орбитального квантового числа l, которое может быть лишь целым числом или нулем, спиновое квантовое число s (в дальнейшем просто спин) может быть как целым (включая нуль), так и полуцелым, т. е. s = 0, 1/2, 1, 3/2, 2, 5/2, … , но при этом для каждой элементарной частицы спин может принимать единственное присущее этому типу частиц значение. Так, спины π-мезонов и К-мезонов равны 0. Спины электрона, протона, нейтрино, кварков и их античастиц равны 1/2. Спин фотона равен 1. Бозоны составляют класс частиц с целым значением спина, спин фермионов имеет полуцелое значение. Спин частицы невозможно изменить, также как её заряд или массу. Это её неизменная квантовая характеристика.
Как и в случае других квантовых векторов, проекция вектора спина Уравнение шредингера для свободно движущихся частицна любое фиксированное направление в пространстве (например, на ось z) может принимать 2s + 1 значение:

szћ = ±sћ, ±(s − 1)ћ, ±(s − 2)ћ. ±1/2ћ или 0.

Число sz − это квантовое число проекции спина. Максимальная величина sz совпадает с s. Так как спин электрона равен 1/2, то проекция этого спина может принимать лишь два значения sz = ±1/2. Если проекция +1/2, то говорят, что спин направлен вверх, если проекция -1/2, то говорят, что спин направлен вниз.

4.7. Полный момент количества движения

Полный момент количества движения частицы или системы частиц Уравнение шредингера для свободно движущихся частицявляется векторной суммой орбитального Уравнение шредингера для свободно движущихся частици спинового Уравнение шредингера для свободно движущихся частицмоментов количества движения.

Уравнение шредингера для свободно движущихся частиц= Уравнение шредингера для свободно движущихся частиц+ Уравнение шредингера для свободно движущихся частиц.

Квадрат полного момента имеет значение:

Уравнение шредингера для свободно движущихся частиц2 = ћ 2 j(j + 1).

Квантовое число полного момента j, соответствующее сумме двух векторов Уравнение шредингера для свободно движущихся частици Уравнение шредингера для свободно движущихся частиц, может принимать ряд дискретных значений, отличающихся на 1:

j = l + s, l + s −1. |l − s|

Проекция Уравнение шредингера для свободно движущихся частицна выделенную ось Jz также принимает дискретные значения:

Число значений проекции Jz равно 2j + 1. Если для Уравнение шредингера для свободно движущихся частици Уравнение шредингера для свободно движущихся частицопределены единственные значения проекций на ось z lz и sz, то jz также определена однозначно: jz = lz + sz.

4.8. Квантовые числа

Квантовые числа – это целые или дробные числа, которые определяют все возможные значения физической величины, характеризующей различные квантовые системы – атомы, атомные ядра, кварки и другие частицы.

Таблица квантовых чисел

nРадиальное квантовое число. Определяет число узлов волновой функции и энергию системы. n = 1, 2, …, ∞.
J, jПолный угловой момент J и его квантовое число j. Последнее никогда не бывает отрицательным и может быть целым или полуцелым в зависимости от свойств рассматриваемой системы. Уравнение шредингера для свободно движущихся частиц2 = ћ 2 j(j + 1).
L, lОрбитальный угловой момент L и его квантовое число l. Интерпретация l такая же, как j, но l может принимать только целые значения, включая нуль: l = 0, 1, 2,…. L 2 = ћ 2 l(l + 1).
mМагнитное квантовое число. Проекция полного или орбитального углового момента на выделенную ось (обычно ось z) равна mћ. Для полного момента m = ±j, ±(j-1), …, ±1/2 или 0. Для орбитального m = ± l, ± (l-1), …, ±1, 0.
S, sСпиновый угловой момент S и его квантовое число s. Оно может быть либо положительным целым (включая нуль), либо полуцелым. s – неизменная характеристика частицы опреде­лен­ного типа. S 2 = ћ 2 s(s + 1).
szКвантовое число проекции спинового момента частицы на выделенную ось. Эта проекция может принимать значения szћ, где sz = ± s, ± (s -1), …, ±1/2 или 0.
P или πПространственная четность. Характеризует поведение системы при пространственной инверсии Уравнение шредингера для свободно движущихся частиц→ — Уравнение шредингера для свободно движущихся частиц(зеркальном отражении). Полная четность частицы Р = π(-1) l , где π – её внутренняя четность, а (-1) l – её орбитальная четность. Внутренние четности кварков положительные, антикварков — отрицательные.
IИзоспин. Характеризует свойство зарядовой инвариантности сильных взаимодействий

Для обозначения спинового момента часто используют букву J.

Все состояния, в которых может находиться квантовая система, описываются с помощью полного набора квантовых чисел. Так в случае протона в ядре состояние протона описывается с помощью четырех квантовых чисел, соответствующих четырем степеням свободы – трем пространственным координатам и спину. Это

  • Радиальное квантовое число n ( 1, 2, …, ∞),
  • Орбитальное квантовое число l (0, 1, 2, …),
  • Проекция орбитального момента m (± l, ± (l-1), …, ±1, 0),
  • Спин протона s =1/2.

Для описания сферически-симметричных систем в квантовой физике используются различные сферически симметричные потенциалы с различной радиальной зависимостью:

  • Кулоновский потенциал U = Q/r,
  • Прямоугольная потенциальная яма Уравнение шредингера для свободно движущихся частиц
  • Потенциал типа гармонического осциллятора U = kr 2 ,
  • Потенциал Вудса-Саксона (с его помощью описываются внутриядерные взаимодействия):

Уравнение шредингера для свободно движущихся частиц

где U0, а и R – положительные константы (R – радиус ядра). Во всех случаях сферически симметричные системы можно описать с помощью набора квантовых чисел n, l, j, jz, однако, в зависимости от радиального вида потенциала энергетический спектр состояний системы будет различным.
Существование сохраняющихся во времени физических величин тесно связано со свойствами симметрии гамильтониана системы. Например, в случае, если квантовая система обладает центральной симметрией U = U(r), то этой системе соответствует сохранение орбитального момента количества движения l и одной из его проекций m. При этом из-за сферической симметрии задачи энергия состояний не будет зависеть от величины m, т. е. состояния будут вырожденными по m.
Наряду с пространственными симметриями, связанными с непрерывными преобразованиями, в квантовой физике существуют и другие симметрии – дискретные. Одной из них является зеркальная симметрия волновой функции относительно инверсии координат (Уравнение шредингера для свободно движущихся частиц→ —Уравнение шредингера для свободно движущихся частиц). Оператору инверсии соответствует квантовое число четность, которое может принимать два значения +1 и -1 в зависимости от того, сохраняется ли знак волновой функции при инверсии или меняется на противоположный.
Система тождественных частиц характеризуется еще одной симметрией – симметрией относительно перестановок тождественных частиц. Эта симметрия определяется свойствами частиц, образующих систему. Системы частиц с целым спином (бозонов) описываются симметричными волновыми функциями, системы частиц с полуцелым спином (фермионов) − антисимметричными волновыми функциями.

Задачи

4.1. Вычислите допустимые уровни энергии электрона, находящегося в одномерной прямоугольной потенциальной яме шириной 10 -8 см, протона, находящегося в потенциальной яме 5 Фм, и шарика массой 1 г, находящегося в потенциальной яме 1 см.

Уравнение шредингера для свободно движущихся частиц

4.2. Рассчитать энергию перехода между состояниями 1s и 2s в атоме водорода.

Уравнение шредингера для свободно движущихся частиц

4.3. Найти значение полного момента j для протона в d-состоянии. Каким будет результат измерения полного момента протона в состоянии 1d5/2?

Уравнение шредингера для свободно движущихся частиц

4.4. Найти полный момент (квантовое число j) системы двух нуклонов в s‑состоянии (l = 0).

Уравнение шредингера для свободно движущихся частиц

4.5. Какие значения может иметь полный момент системы j, если
А. Нейтрон и протон находятся в состояниях с |l,s:j>n = |1, 1 /2: 3 /2>, |l,s:j>p = |1, 1 /2: 3 /2>?
Б. Два нейтрона находятся в состояниях с |l,s:j>1 = |1, 1 /2: 3 /2> и |l,s:j>2 = |1, 1 /2: 3 /2>?

Уравнение шредингера для свободно движущихся частиц

4.6. А) Нейтрон находится в p-состоянии. Найти значения полного момента j и возможные значения проекции момента jz. Каким будет результат измерения орбитального момента частицы в этом состоянии? Б) Рассмотрите задачу А) для протона в d-состоянии.
Ответ: А) j = 3/2, 1/2; jz = ±3/2, ±1/2; L = ћ√ l(l +1) = √ 2 ћ;
Б) j = 5/2, 3/2; jz = ±5/2, ±3/2, ±1/2; L = ћ√ l(l +1) = √ 6 ћ

4.7. А) Частица с собственным моментом s = 3/2 находится в состоянии с орбитальным моментом
l = 2. Найти полный момент частицы j.
Б) Частица с собственным моментом s = 1/2 находится в состоянии с орбитальным моментом
l = 3. Определите полный момент частицы j
Ответ: А) j = 7/2 ÷ 1/2; Б) j = 7/2, 5/2

4.8. Протон и нейтрон находятся в состоянии с относительным орбитальным моментом L = 1. Найти полный момент системы J.
Ответ: J = 0, 1, 2

4.9. На оболочке с квантовым числом n = 1, l = 2 находятся протон и нейтрон. Определить их суммарный полный момент J и его проекцию Jz. Изменится ли результат, если на оболочке n = 1,
l = 2 будут находиться два нейтрона?

4.10. Почему возникают вырожденные состояния?

4.11. Написать оператор Гамильтона Уравнение шредингера для свободно движущихся частицэлектронов в атоме He.

4.12. Напишите стационарное уравнение Шредингера в сферической системе координат.

4.13. Какие квантовые числа характеризуют частицу в центрально-симметричной потенциальной яме?

4.14. Покажите, что волновые функции ψ = Aexp(kx −ωt) и ψ = Asin(kx −ωt) не удовлетворяют зависящему от времени уравнению Шредингера.

4.15. Покажите, что волновые функции ψ = Ae i(kx −ωt) и ψ = A(cos(kx −ωt) − sin(kx −ωt))удовлетворяют зависящему от времени уравнению Шредингера.

4.16. Частица находится в низшем состоянии n = 1 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L.
А) Рассчитайте вероятность обнаружить частицу в интервале Δx = 0.001L при x = 1 /2L, x = 2 /3L, x = L.
Б) Рассмотрите случай, когда частица находится в состоянии n = 2 при тех же значениях x.
Ответ: А) P(L/2) = 0.002; P(2L/3) = 0.0015; P(L) = 0; Б) P(L/2) = 0; P(2L/3) = 0.0015; P(L) = 0

4.17. Частица находится в состоянии n = 2 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить частицу в интервале ( 1 /3L, 2 /3L).
Ответ: P(L/3, 2L/3) = 0.2

4.18. Электрон находится всостонии n = 5 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить электрон в области x от 0.2L до 0.5L.
Ответ: P(0.2L, 0.5L) = 0.3

4.19. Электрон находится в бесконечно глубокой одномерной потенциальной яме. Рассчитайте ширину потенциальной ямы, если энергия состояния n = 1 равна 0.1 эВ.
Ответ: L = 1.9 нм

4.20. Рассчитайте средние значения и 2 > для состояний n = 1, 2, 3 в бесконечно глубокой прямоугольной потенциальной яме.

4.21. Что общего и в чем различие в описании атома водорода в теории Шредингера и в модели Бора?

4.22. Почему энергии атома водорода в теории Шредингера не зависят от орбитального квантового числа l?

4.23. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?
Ответ: Lz = -3ћ, -2ћ. 3ћ; L 2 = 12ћ 2

4.24. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?

🔥 Видео

Волновая функция (видео 5) | Квантовая физика | ФизикаСкачать

Волновая функция (видео 5) | Квантовая физика | Физика

В чем парадокс ЭФФЕКТА НАБЛЮДАТЕЛЯ? | Кот Шрёдингера и параллельные мирыСкачать

В чем парадокс ЭФФЕКТА НАБЛЮДАТЕЛЯ? | Кот Шрёдингера и параллельные миры

96. Уравнение ШредингераСкачать

96. Уравнение Шредингера

Квантовая механика 41 - Уравнение Шредингера. Гамильтониан.Скачать

Квантовая механика 41 - Уравнение Шредингера. Гамильтониан.

Урок 456. Движение микрообъекта в одномерной бесконечно глубокой потенциальной ямеСкачать

Урок 456. Движение микрообъекта в одномерной бесконечно глубокой потенциальной яме

Структура материи 6: уравнение Шрёдингера. Зачем нужна квантовая механика – Виталий Бейлин | НаучпопСкачать

Структура материи 6: уравнение Шрёдингера. Зачем нужна квантовая механика – Виталий Бейлин | Научпоп

Квантовая механика 47 - Стационарное уравнение Шредингера. Гармонический осциллятор.Скачать

Квантовая механика 47 - Стационарное уравнение Шредингера. Гармонический осциллятор.

Классические уравнения | уравнение Шрёдингера (координатное представление) | простейший выводСкачать

Классические уравнения | уравнение Шрёдингера (координатное представление) | простейший вывод

97. Микрочастица в потенциальной ямеСкачать

97. Микрочастица в потенциальной яме

Лекция №4 "Волновая функция. Уравнение Шредингера" (Гавриков А.В.)Скачать

Лекция №4 "Волновая функция. Уравнение Шредингера" (Гавриков А.В.)

Урок 454. Понятие о волновой функцииСкачать

Урок 454. Понятие о волновой функции

Квантовая механика 49 - Реальна ли волновая функция?Скачать

Квантовая механика 49 - Реальна ли волновая функция?

Теория Бора. Гипотеза де Бройля. Принцип неопределенности. Уравнение Шрёдингера.Скачать

Теория Бора. Гипотеза де Бройля. Принцип неопределенности. Уравнение Шрёдингера.

Корректный вывод уравнения Шрёдингера и его физический смысл: Липовка А.А. - Глобальная волнаСкачать

Корректный вывод уравнения Шрёдингера и его физический смысл: Липовка А.А. - Глобальная волна

Что такое волновая функция? Душкин объяснитСкачать

Что такое волновая функция? Душкин объяснит

Волна де Бройля (видео 4) | Квантовая физика | ФизикаСкачать

Волна де Бройля (видео 4) | Квантовая физика | Физика

Уравнение ШрёдингераСкачать

Уравнение Шрёдингера

Ацюковский: Уравнения Шрёдингера - уравнение колебаний материальной точкиСкачать

Ацюковский: Уравнения Шрёдингера - уравнение колебаний материальной точки
Поделиться или сохранить к себе: