Известно, что около всякого тетраэдра можно описать сферу, её центр O лежит на перпендикулярах к граням тетраэдра, восстановленных в центрах окружностей, описанных около граней.
Медианы тетраэдра.
Отрезок, соединяющий вершину тетраэдра с центроидом противоположной грани, называется медианой тетраэдра. Свойства медиан тетраэдра аналогичны свойствам медиан треугольника.
Теорема 4. Четыре медианы тетраэдра ABCD пересекаются в одной точке G, которая делит каждую из них в отношении 3:1, считая от вершины тетраэдра, причем
где P – любая точка пространства.
Доказательство. Возьмем на медиане DG’тетраэдра ABCD точку G, определяемую соотношением DG : GG’ = 3 : 1 ( рис 5). Согласно формуле (1),
Учитывая, что центроид G’ треугольника ABC удовлетворяет соотношению 3PG = PA + PB + PC, получим
Вычисляя вектор PG’’ с концом в точке G’’, делящей любую из трех других медиан тетраэдра в отношении 3 : 1 (считая от вершины), получим то же самое выражение. А это означает, что все четыре медианы тетраэдра пересекаются в одной точке G, удовлетворяющей соотношению (4). Точка G, называется
центром тяжести (или центроидом) тетраэдра.
Высоты тетраэдра.
Высоты треугольника всегда пересекаются в одной точке. По аналогии можно предположить, что высоты любого тетраэдра также пересекаются в одной точке. Однако это не так.
Для примера рассмотрим тетраэдр ABCD с прямым двугранным углом при ребре AB, в котором AC = BC, но AD = BD (рис. 6). Высоты CE и DF тетраэдра лежат соответственно в гранях ABC и ABD, но точка E – середина AB, а F – нет. Если бы длины ребер DA и DB были равны, то основания E и F совпадали бы, но две другие высоты тетраэдра не могут проходить через точку E.
Таким образом, даже две высоты тетраэдра могут не иметь общей точки.
Тем не менее существуют и тетраэдры, все четыре высоты которых пересекаются в одной точке. Таким будет, например, тетраэдр ABCD с прямыми плоскими углами при вершине D. Ребра DA, DB и DC являются его высотами, а вершина D – ортоцентром(точкой пересечения всех четырех высот).
Попробуем найти все тетраэдры, у которых высоты пересекаются в одной точке.
Пусть высоты тетраэдра ABCD, проведенные из вершин C и D, пересекаются в точке H
( рис. 7). Тогда CH’__AB и DH’’__AB, т.е. прямая AB перпендикулярна к двум пересекающимся прямым лежащим в плоскости CDH, следовательно, AB__BC. Аналогично доказывается, что если две другие высоты тетраэдра ABCD проходят через ту же точку H, то AC__BD и AD__BC. Итак, если все высоты тетраэдра пересекаются в одной точке, то противоположные ребра тетраэдра взаимно перпендикулярны. Такой тетраэдр называется ортоцентрическим.
Теорема 5. Четыре высоты ортоцентрического тетраэдра ABCD пересекается в одной точке H, причем если O – центр сферы, описанной около тетраэдра, то
Доказательство. Пусть ABCD – ортоцентрический тетраэдр, DG’ – его медиана, DH’ – его высота (рис.8). Тогда G’ центроид, а H’- ортоцентр треугольника ABC, причем точки O’( центр окружности, описанной около треугольника ABC), G’ и H’ лежат на одной прямой. Заметим, что центр O сферы, описанной около тетраэдра ABCD, лежит на перпендикуляре к плоскости треугольника ABC, восстановленном в точке O’.
Будем доказывать теорему тем же способом, что и теорему 2 для треугольника: строить разными способами точку H, удовлетворяющую соотношению (5).
Вначале сложим векторы OA, OB и OC:
или G’M = 2OG’. Точки O’,G’,H’, лежат на прямой Эйлера треугольника ABC, причем H’G’ = 2G’O’. Следовательно,
Отсюда вытекает, что прямые H’M и OO’ параллельны, а так как прямая OO’ перпендикулярна к плоскости ABC, то и прямая H’M перпендикулярна к этой плоскости. Следовательно, точка M’ лежит на прямой DH’ ( если точки O и O’ совпадают, то точки M и H’ тоже совпадают).
Из левого равенства следует, что точка H является серединой отрезка DM, т.е. точка H лежит на DH’ тетраэдра.
Аналогично строится точка N: ON=OA+OB+OD и та же точка H: OH= —(ON+OC) и доказывается, что точка H лежит на высоте тетраэдра, проведенной из вершины C, и т.д.
Следовательно, высоты ортоцентрического тетраэдра пересекаются в одной точке H, определяемой соотношением (5).
Прямая Эйлера тетраэдра.
Теорема 6. Центр О описанной сферы, центроид G и ортоцентр Н ортоцентрического тетраэдра ABCD лежат на одной прямой, причем точки О и Н симметричны относительно точки G.
Доказательство. По формулам (4) и (5)
откуда OH=2OG. Полученное равенство означает, что точки O, G, H лежат на одной прямой, причем точки О и Н симметричны относительно точки G.
Прямую, на которой лежат точки O, G, H, можно назвать прямой Эйлера ортоцентрического тетраэдра.
В данном реферате собран материал необходимый для выявления прямой Эйлера и прямой Эйлера тетраэдра.
Использованные источники информации:
Видео:11 класс, 20 урок, Уравнение сферыСкачать
Радиус описанной сферы тетраэдра
Видео:Как достроить равногранный тетраэдр и найти радиус описанной сферыСкачать
Свойства
Зная радиус сферы, описанной около тетраэдра, нужно, во-первых, найти ребро тетраэдра, а также можно узнать сразу радиус сферы, вписанной в тетраэдр, так как он ровно в три раза меньше радиуса описанной окружности. a=(2√6 R_1)/3 r_1=R_1/3
Затем, зная ребро тетраэдра через радиус сферы, описанной около тетраэдра, можно найти его периметр, который представляет собой длину всех ребер тетраэдра, площадь одной грани и площадь полной поверхности тетраэдра, состоящей из четырех граней. P=4√6 R_1 S_1=2√3 〖R_1〗^2 S_(п.п.)=4S_1=8√3 〖R_1〗^2
Помимо радиусов вписанной и описанной около тетраэдра сфер, тетраэдр также обладает радиусами вписанной и описанной окружностей около основания, являющимся одной из граней, которые можно вычислить через радиус описанной сферы. r=(√2 R_1)/3 R=(2√2 R_1)/3
Чтобы найти высоту тетраэдра, нужно умножить радиус описанной вокруг него сферы на четыре и разделить на три, а чтобы вычислить апофему тетраэдра через радиус описанной сферы, необходимо умножить его на корень из двух. h=(4R_1)/3 l=√2 R_1
Объем тетраэдра, зная радиус сферы, описанной около него, равен радиусу в кубе, умноженному на коэффициент восемь корней из трех, деленный на три.. V=(8√3 〖R_1〗^3)/3
Видео:№577. Напишите уравнение сферы с центром А, проходящей через точку N, если: а) А ( — 2; 2; 0)Скачать
Координаты центра описанной вокруг тетраэдра сферы.
Радиус описанной вокруг тетраэдра сферы.
Пусть A(xa, ya, za), B(xb, yb, zb), C(xc, yc, zc), S(xs, ys, zs) – вершины тетраэдра,
bgColor=»#F0E68C» O(xo, yo, zo) – центр описанной вокруг тетраэдра SABC сферы радиуса R
Из второго, третьего и четвёртого уравнения вычистаем первое:
По формулам Крамера:
В знаменателе стоит отличное от нуля смешанное произведение векторов AS, BS, CS, равное по модулю утроенному объёму данного тетраэдра SABC. Поэтому у данной системы сущестует единственное решение.
Центр описанной вокруг тетраэдра сферы имеет координаты:
💥 Видео
Пирамиды, в которых высота проходит через центр описанной около основания окружностиСкачать
№576. Найдите уравнение сферы радиуса R с центром А, если: а) А (2; -4; 7), R = 3; б) А (0; 0; 0),Скачать
№579. Докажите, что каждое из следующих уравнений является уравнением сферы. Найдите координатыСкачать
Сфера и шар. Сечение сферы. Вписанная и описанная сфераСкачать
Быстро находим радиус описанной сферыСкачать
10 класс, 12 урок, ТетраэдрСкачать
Как строить сечения тетраэдра и пирамидыСкачать
ДВИ математика. КАРКАСНЫЙ ТЕТРАЭДР!Скачать
10 класс, 14 урок, Задачи на построение сеченийСкачать
Геометрия. 10 класс. Уравнение сферы /16.03.2021/Скачать
Вычисление радиуса сферы, описанной около правильной треугольной пирамидыСкачать
ЕГЭ Задание 14 Пирамида вписана в сферуСкачать
ШАР и СФЕРА егэ по геометрии 12 задание 11 классСкачать
11 класс. Геометрия. Объём пирамиды. 28.04.2020.Скачать
Геометрия 11 класс: Сфера и шар. Уравнение сферы. Площадь сферыСкачать
Найти радиус описанной сферы около пирамиды Д213Скачать
Геометрия 10 класс (Урок№7 - Тетраэдр и параллелепипед.)Скачать