Уравнение сферы описанной около тетраэдра

Сфера, описанная около тетраэдра.

Известно, что около всякого тетраэдра можно описать сферу, её центр O лежит на перпендикулярах к граням тетраэдра, восстановленных в центрах окружностей, описанных около граней.

Медианы тетраэдра.

Отрезок, соединяющий вершину тетраэдра с центроидом противоположной грани, называется медианой тетраэдра. Свойства медиан тетраэдра аналогичны свойствам медиан треугольника.

Теорема 4. Четыре медианы тетраэдра ABCD пересекаются в одной точке G, которая делит каждую из них в отношении 3:1, считая от вершины тетраэдра, причем

где P – любая точка пространства.

Уравнение сферы описанной около тетраэдра

Доказательство. Возьмем на медиане DG’тетраэдра ABCD точку G, определяемую соотношением DG : GG’ = 3 : 1 ( рис 5). Согласно формуле (1),

Учитывая, что центроид G’ треугольника ABC удовлетворяет соотношению 3PG = PA + PB + PC, получим

Вычисляя вектор PG’’ с концом в точке G’’, делящей любую из трех других медиан тетраэдра в отношении 3 : 1 (считая от вершины), получим то же самое выражение. А это означает, что все четыре медианы тетраэдра пересекаются в одной точке G, удовлетворяющей соотношению (4). Точка G, называется

центром тяжести (или центроидом) тетраэдра.

Высоты тетраэдра.

Высоты треугольника всегда пересекаются в одной точке. По аналогии можно предположить, что высоты любого тетраэдра также пересекаются в одной точке. Однако это не так.

Уравнение сферы описанной около тетраэдраДля примера рассмотрим тетраэдр ABCD с прямым двугранным углом при ребре AB, в котором AC = BC, но AD = BD (рис. 6). Высоты CE и DF тетраэдра лежат соответственно в гранях ABC и ABD, но точка E – середина AB, а F – нет. Если бы длины ребер DA и DB были равны, то основания E и F совпадали бы, но две другие высоты тетраэдра не могут проходить через точку E.

Таким образом, даже две высоты тетраэдра могут не иметь общей точки.

Тем не менее существуют и тетраэдры, все четыре высоты которых пересекаются в одной точке. Таким будет, например, тетраэдр ABCD с прямыми плоскими углами при вершине D. Ребра DA, DB и DC являются его высотами, а вершина D – ортоцентром(точкой пересечения всех четырех высот).

Попробуем найти все тетраэдры, у которых высоты пересекаются в одной точке.

Уравнение сферы описанной около тетраэдраПусть высоты тетраэдра ABCD, проведенные из вершин C и D, пересекаются в точке H

( рис. 7). Тогда CH’__AB и DH’’__AB, т.е. прямая AB перпендикулярна к двум пересекающимся прямым лежащим в плоскости CDH, следовательно, AB__BC. Аналогично доказывается, что если две другие высоты тетраэдра ABCD проходят через ту же точку H, то AC__BD и AD__BC. Итак, если все высоты тетраэдра пересекаются в одной точке, то противоположные ребра тетраэдра взаимно перпендикулярны. Такой тетраэдр называется ортоцентрическим.

Теорема 5. Четыре высоты ортоцентрического тетраэдра ABCD пересекается в одной точке H, причем если O – центр сферы, описанной около тетраэдра, то

Уравнение сферы описанной около тетраэдра

Доказательство. Пусть ABCD – ортоцентрический тетраэдр, DG’ – его медиана, DH’ – его высота (рис.8). Тогда G’ центроид, а H’- ортоцентр треугольника ABC, причем точки O’( центр окружности, описанной около треугольника ABC), G’ и H’ лежат на одной прямой. Заметим, что центр O сферы, описанной около тетраэдра ABCD, лежит на перпендикуляре к плоскости треугольника ABC, восстановленном в точке O’.

Будем доказывать теорему тем же способом, что и теорему 2 для треугольника: строить разными способами точку H, удовлетворяющую соотношению (5).

Вначале сложим векторы OA, OB и OC:

или G’M = 2OG’. Точки O’,G’,H’, лежат на прямой Эйлера треугольника ABC, причем H’G’ = 2G’O’. Следовательно,

Отсюда вытекает, что прямые H’M и OO’ параллельны, а так как прямая OO’ перпендикулярна к плоскости ABC, то и прямая H’M перпендикулярна к этой плоскости. Следовательно, точка M’ лежит на прямой DH’ ( если точки O и O’ совпадают, то точки M и H’ тоже совпадают).

Из левого равенства следует, что точка H является серединой отрезка DM, т.е. точка H лежит на DH’ тетраэдра.

Аналогично строится точка N: ON=OA+OB+OD и та же точка H: OH= —(ON+OC) и доказывается, что точка H лежит на высоте тетраэдра, проведенной из вершины C, и т.д.

Следовательно, высоты ортоцентрического тетраэдра пересекаются в одной точке H, определяемой соотношением (5).

Прямая Эйлера тетраэдра.

Теорема 6. Центр О описанной сферы, центроид G и ортоцентр Н ортоцентрического тетраэдра ABCD лежат на одной прямой, причем точки О и Н симметричны относительно точки G.

Доказательство. По формулам (4) и (5)

откуда OH=2OG. Полученное равенство означает, что точки O, G, H лежат на одной прямой, причем точки О и Н симметричны относительно точки G.

Прямую, на которой лежат точки O, G, H, можно назвать прямой Эйлера ортоцентрического тетраэдра.

В данном реферате собран материал необходимый для выявления прямой Эйлера и прямой Эйлера тетраэдра.

Использованные источники информации:

Видео:11 класс, 20 урок, Уравнение сферыСкачать

11 класс, 20 урок, Уравнение сферы

Радиус описанной сферы тетраэдра

Уравнение сферы описанной около тетраэдра

Видео:Как достроить равногранный тетраэдр и найти радиус описанной сферыСкачать

Как достроить равногранный тетраэдр и найти радиус описанной сферы

Свойства

Зная радиус сферы, описанной около тетраэдра, нужно, во-первых, найти ребро тетраэдра, а также можно узнать сразу радиус сферы, вписанной в тетраэдр, так как он ровно в три раза меньше радиуса описанной окружности. a=(2√6 R_1)/3 r_1=R_1/3

Затем, зная ребро тетраэдра через радиус сферы, описанной около тетраэдра, можно найти его периметр, который представляет собой длину всех ребер тетраэдра, площадь одной грани и площадь полной поверхности тетраэдра, состоящей из четырех граней. P=4√6 R_1 S_1=2√3 〖R_1〗^2 S_(п.п.)=4S_1=8√3 〖R_1〗^2

Помимо радиусов вписанной и описанной около тетраэдра сфер, тетраэдр также обладает радиусами вписанной и описанной окружностей около основания, являющимся одной из граней, которые можно вычислить через радиус описанной сферы. r=(√2 R_1)/3 R=(2√2 R_1)/3

Чтобы найти высоту тетраэдра, нужно умножить радиус описанной вокруг него сферы на четыре и разделить на три, а чтобы вычислить апофему тетраэдра через радиус описанной сферы, необходимо умножить его на корень из двух. h=(4R_1)/3 l=√2 R_1

Объем тетраэдра, зная радиус сферы, описанной около него, равен радиусу в кубе, умноженному на коэффициент восемь корней из трех, деленный на три.. V=(8√3 〖R_1〗^3)/3

Видео:№577. Напишите уравнение сферы с центром А, проходящей через точку N, если: а) А ( — 2; 2; 0)Скачать

№577. Напишите уравнение сферы с центром А, проходящей через точку N, если: а) А ( — 2; 2; 0)

Координаты центра описанной вокруг тетраэдра сферы.
Радиус описанной вокруг тетраэдра сферы.

Пусть A(xa, ya, za), B(xb, yb, zb), C(xc, yc, zc), S(xs, ys, zs) – вершины тетраэдра,
bgColor=»#F0E68C» O(xo, yo, zo) – центр описанной вокруг тетраэдра SABC сферы радиуса R

Уравнение сферы описанной около тетраэдра

Уравнение сферы описанной около тетраэдра

Из второго, третьего и четвёртого уравнения вычистаем первое:

Уравнение сферы описанной около тетраэдра

Уравнение сферы описанной около тетраэдра

По формулам Крамера: Уравнение сферы описанной около тетраэдра

В знаменателе стоит отличное от нуля смешанное произведение векторов AS, BS, CS, равное по модулю утроенному объёму данного тетраэдра SABC. Поэтому у данной системы сущестует единственное решение.

Центр описанной вокруг тетраэдра сферы имеет координаты:

🔍 Видео

Сфера и шар. Сечение сферы. Вписанная и описанная сфераСкачать

Сфера и шар. Сечение сферы. Вписанная и описанная сфера

№579. Докажите, что каждое из следующих уравнений является уравнением сферы. Найдите координатыСкачать

№579. Докажите, что каждое из следующих уравнений является уравнением сферы. Найдите координаты

Пирамиды, в которых высота проходит через центр описанной около основания окружностиСкачать

Пирамиды,  в которых высота проходит через центр описанной около основания окружности

Быстро находим радиус описанной сферыСкачать

Быстро находим радиус описанной сферы

№576. Найдите уравнение сферы радиуса R с центром А, если: а) А (2; -4; 7), R = 3; б) А (0; 0; 0),Скачать

№576. Найдите уравнение сферы радиуса R с центром А, если: а) А (2; -4; 7), R = 3; б) А (0; 0; 0),

Геометрия. 10 класс. Уравнение сферы /16.03.2021/Скачать

Геометрия. 10 класс. Уравнение сферы /16.03.2021/

10 класс, 12 урок, ТетраэдрСкачать

10 класс, 12 урок, Тетраэдр

ДВИ математика. КАРКАСНЫЙ ТЕТРАЭДР!Скачать

ДВИ математика. КАРКАСНЫЙ ТЕТРАЭДР!

Как строить сечения тетраэдра и пирамидыСкачать

Как строить сечения тетраэдра и пирамиды

10 класс, 14 урок, Задачи на построение сеченийСкачать

10 класс, 14 урок, Задачи на построение сечений

11 класс. Геометрия. Объём пирамиды. 28.04.2020.Скачать

11 класс. Геометрия. Объём пирамиды. 28.04.2020.

Вычисление радиуса сферы, описанной около правильной треугольной пирамидыСкачать

Вычисление радиуса сферы, описанной около правильной треугольной пирамиды

Геометрия 11 класс: Сфера и шар. Уравнение сферы. Площадь сферыСкачать

Геометрия 11 класс: Сфера и шар. Уравнение сферы. Площадь сферы

ШАР и СФЕРА егэ по геометрии 12 задание 11 классСкачать

ШАР и СФЕРА егэ по геометрии 12 задание 11 класс

ЕГЭ Задание 14 Пирамида вписана в сферуСкачать

ЕГЭ Задание 14 Пирамида вписана в сферу

Геометрия 10 класс (Урок№7 - Тетраэдр и параллелепипед.)Скачать

Геометрия 10 класс (Урок№7 - Тетраэдр и параллелепипед.)

Найти радиус описанной сферы около пирамиды Д213Скачать

Найти радиус описанной сферы около пирамиды Д213
Поделиться или сохранить к себе: