Разделы: Математика
Класс: 6
Цели урока:
- повторить правила раскрытия скобок и приведения подобных слагаемых;
- ввести определение линейного уравнения с одним неизвестным;
- познакомить учащихся со свойствами равенств;
- научить решать линейные уравнения;
- научить решать задачи на «было − стало».
Оборудование: компьютер, проектор.
- Ход урока
- I. Проверка предыдущего домашнего задания.
- II. Повторение теоретического материала.
- III. Устные задания по слайдам.
- IV. Новая тема. Решение линейных уравнений.
- Уравнение с произведением за 6 класс
- Основные правила математики с примерами. 6 класс. Часть 2.
- Содержание
- Линейные уравнения — алгоритмы и примеры решений с объяснением для 6 класса
- Общие сведения
- Классификация уравнений
- Обыкновенные тождества
- Выражения с параметром
- Понижение степени
- Системы линейного типа
- 📸 Видео
Видео:Линейное уравнение с одной переменной. 6 класс.Скачать
Ход урока
I. Проверка предыдущего домашнего задания.
II. Повторение теоретического материала.
- Как найти неизвестное слагаемое? [От суммы отнять известное слагаемое]
- Как найти неизвестное уменьшаемое? [К вычитаемому прибавить разность]
- Как найти неизвестное вычитаемое? [От уменьшаемого отнять разность]
- Как найти неизвестный множитель? [Произведение разделить на известный множитель]
- Как найти неизвестное делимое? [Делитель умножить на частное]
- Как найти неизвестный делитель? [Делимое разделить на частное]
- Как раскрыть скобки, перед которыми стоит знак плюс? [Опустить скобки и этот знак плюс, переписать слагаемые с теми же знаками]
- Как раскрыть скобки, перед которыми стоит знак минус? [Опустить скобки и этот знак минус, переписать слагаемые с противоположными знаками]
- Как выглядит распределительное свойство умножения? [(a+b)∙c=ac+bc]
III. Устные задания по слайдам.
(слайд 2, слайд 3).
1) Раскройте скобки:
3+(х+2); 3-(х+2); 3+(х-7); 3-(х-7); 3+(-х+5); 3-(-х+5); -4(-5-х); 9(; 9(; 2(7+9х); 4(2-3х); -6(9-5х); -3(1+4х).
2) Приведите подобные слагаемые:
6b-b; 9,5m+3m; a —a; m-m; -4x-x+3; 7x-6y-3x+8y.
3) Упростите выражение:
IV. Новая тема. Решение линейных уравнений.
До сегодняшнего урока мы не умели решать уравнения, в которых неизвестное находилось слева и справа от знака равенства: 3x+7=x+15. Некоторые из нас постоянно забывают правила нахождения неизвестного слагаемого, уменьшаемого, вычитаемого. Сегодня мы постараемся разрешить все эти затруднения.
Уравнение, которое можно привести к виду ax=b, где a и b − некоторые числа (a0), называется линейным уравнением с одним неизвестным.
Линейные уравнения обладают свойствами:
- Корни уравнения не изменяются, если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (стр. 229 учебника).
- Корни уравнения не изменяются, если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак (стр. 230 учебника).
Рассмотрим план решения линейного уравнения:
х-1+(х+2)=-4(-5-х)-5 х-1+х+2=20+4х-5 х+х-4х=20-5+1-2 -2х=14 х=14:(-2) х=-7 Ответ: -7. | 1) раскрыть скобки, если они есть; 2) слагаемые, содержащие неизвестное, перенести в левую часть равенства, а не содержащие неизвестное − в правую; 3) привести подобные слагаемые; 4) найти неизвестный множитель. |
Какими из свойств равенств мы воспользовались для решения уравнения? (вторым)
Рассмотрим примеры уравнений, при решении которых будет удобно воспользоваться и первым свойством.
х+3=х+5 │∙9 Удобно умножить на наименьшее общее кратное знаменателей дробей.
(х+3)∙9=(х+5)∙9 Далее − по плану.
Видео:Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравненияСкачать
Уравнение с произведением за 6 класс
Математику уж затем учить надо, что она ум в порядок приводит
Основные правила математики с примерами. 6 класс. Часть 2.
Содержание
Умножение. Свойства умножения
Произведением числа на натуральное число не равное 1, называют сумму, состоящую из слагаемых, каждое из которых равно а:
a · b = a + a + a + . . . + a ⏟ b
Если один из двух множителей равен 1, то произведение равно второму множителю:
Если один из множителей равен нулю, то произведение равно нулю:
Если произведение равно нулю, то хотя бы один из множителей равен нулю.
!Важное правило. Помогает решать уравнения
( x — a ) ( x — b ) = 0 ; И л и x — a = 0 , и л и x — b = 0 ; 2 к о р н я x = a и x = b . ( x — 5 ) ( x + 2 ) = 0 ; И л и x — 5 = 0 , и л и x + 2 = 0 ; 2 к о р н я x = 5 и x = — 2 .
Умножение обыкновенных дробей
Чтобы умножить дробь на натуральное число, надо ее числитель умножить на это число, а знаменатель оставить без изменения:
Чтобы умножить смешанные числа, надо сначала записать их в виде неправильных дробей, а затем воспользоваться правилом умножения дробей.
Умножение рациональных чисел
Чтобы умножить два числа с разными знаками, надо умножить их модули и перед полученным произведением поставить знак «-».
Чтобы умножить два отрицательных числа, надо умножить их модули.
Для любого рационального числа :
Если произведение • — отрицательное, то числа и имеют разные знаки.
Деление обыкновенных дробей
Чтобы разделить одну дробь на другую, надо делимое умножить на число, обратное делителю:
a b : c d = a b · d c
Деление рациональных чисел
Чтобы найти частное двух чисел с разными знаками, надо модуль делимого разделить на модуль делителя и перед полученным числом поставить знак «-».
Чтобы найти частное двух отрицательных чисел, надо модуль делимого разделить на модуль делителя.
Нахождение дроби от числа
Чтобы найти дробь от числа, можно число умножить на эту дробь.
Чтобы найти проценты от числа, можно представить проценты в виде дроби и умножить число на эту дробь.
Нахождение числа по его дроби
Чтобы найти число по значению его дроби, можно это значение разделить на эту дробь.
Найти число, если известно, что
е г о д р о б ь 5 7 с о с т а в л я е т ч и с л о 15 : 15 : 5 7 = 15 · 7 5 = 15 3 · 7 5 1 = 21
Чтобы найти число по его процентам, можно представить проценты в виде дроби и разделить значение процентов на эту дробь.
Найти число, если известно, что
24 % э т о г о ч и с л а р а в н ы 48 . 24 % = 24 100 ; 48 : 24 100 = 48 · 100 24 = 48 2 · 100 24 1 = 200
Степень числа
Степенью числа с натуральным показателем , большим , называют произведение множителей, каждый из которых равен :
a n = a · a · a · … · a ⏟ n
Число при этом называют основанием степени.
Степенью числа с показателем называют само число
Вторую степень числа называют также квадратом числа. Например, запись читают: « в квадрате».
Третью степень называют кубом числа, а запись читают: « в кубе».
Если в числовое выражение входит степень, то сначала выполняют возведение в степень, а затем производят другие действия.
Найти значение выражения
5 · 2 3 + 15 5 · 2 2 3 1 + 3 15 = 5 · 8 + 15 = 40 + 15 = 55
Числовые и буквенные выражения
Запись, составленную из чисел, знаков арифметических действий и скобок, называют числовым выражением.
Запись, составленную из чисел, букв, знаков арифметических действий и скобок, называют буквенным выражением.
Приведение подобных слагаемых
Чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на общую буквенную часть.
Раскрытие скобок
Если перед скобками стоит знак «-», то при раскрытии скобок надо опустить этот знак, а все знаки, стоящие перед слагаемыми в скобках, изменить на противоположные.
Если перед скобками стоит знак « + », то при раскрытии скобок надо опустить этот знак, а все знаки, стоящие перед слагаемыми в скобках, оставить без изменений.
Свойства уравнений
- Если к обеим частям данного уравнения прибавить (или из обеих частей вычесть) одно и то же число, то получим уравнение, имеющее те же корни, что и данное.
- Если данное уравнение не имеет корней, то, прибавив к обеим его частям одно и то же число, получим уравнение, тоже не имеющее корней.
- Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив при этом его знак на противоположный, то получим уравнение, имеющее те же корни, что и данное.
- Если обе части уравнения умножить (разделить) на одно и то же отличное от нуля число, то получим уравнение, имеющее те же корни, что и данное.
Отношения
- Частное двух чисел и , не равных нулю, еще называют отношением чисел и , или отношением числа к числу .
- Отношение положительных чисел и показывает, во сколько раз число больше числа , или какую часть число составляет число .
показывает, что число 10 в 5 раз больше числа 2 или число 2 в 5 раз меньше числа 10.
- Отношение не изменится, если его члены умножить или разделить на одно и то же число, не равное нулю.
Пропорции
Равенство двух отношений называют пропорцией. В буквенном виде пропорцию можно записать так:
a : b = c : d и л и a b = c d
Числа и называют крайними членами пропорции, а числа и — средними членами пропорции.
Основное свойство пропорции
Произведение крайних членов пропорции равно произведению ее средних членов:
a b = c d ⇒ a d = b c
Если , , и числа, не равные нулю, и • = • , то отношения
могут образовывать пропорцию
Процентное отношение двух чисел
Процентное отношение двух чисел — это их отношение, выраженное в процентах. Оно показывает, сколько процентов одно число составляет от другого.
Чтобы найти процентное отношение двух чисел, надо их отношение умножить на 100 и к результату дописать знак процента.
Прямая и обратная пропорциональная зависимость
Две величины называют прямо пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз.
Если величины и обратно пропорциональны, то их соответствующие значения удовлетворяют равенству
, где -число, постоянное для данных величин.
Видео:Решение уравнений, 6 классСкачать
Линейные уравнения — алгоритмы и примеры решений с объяснением для 6 класса
Простые равенства с неизвестными — первоначальный этап знакомства с линейными уравнениями. Примеры с объяснением для 6 класса основываются не только на решении последних, но и на базовых определениях, а также использования формул сокращенного умножения для понижения степени до единицы. Математики рекомендуют начать с теории, а затем перейти к ее практическому применению.
Видео:Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 2 часть. 6 класс.Скачать
Общие сведения
Уравнение — совокупность чисел и переменных. Иными словами, тождеством, содержащим неизвестные величины, называется математическая запись, в которой следует определить значения переменных, превращающих это выражение в истинное. Например, переменная t в выражении 2t=6 эквивалентна 3, поскольку 2*3=6.
Линейное — тождество, в котором максимальный показатель степени при неизвестной величине всегда эквивалентен единице.
В математике существует термин «корень уравнения». Он означает, что для решения равенства необходимо найти все допустимые значения, превращающие его в истинное тождество. Далее следует разобрать классификацию линейных выражений с переменными.
Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Классификация уравнений
Прежде чем рассматривать примеры уравнений по алгебре в 7 классе (изучаются подробнее, чем в 6-м), необходимо разобрать их классификацию, поскольку она влияет на алгоритм нахождения корней. Они бывают трех типов:
Первый вид — обыкновенные приведенные линейные уравнения, состоящие из числовых величин и переменных с единичным степенным показателем. Они являются наиболее распространенными не только в математике и физике, но и в других дисциплинах с физико-математическим уклоном. Графиком их функции является прямая линия, которую также называют прямо пропорциональной зависимостью.
Ко второму типу относятся любые многочлены линейного типа, имеющие переменную, а также некоторый параметр. Последний влияет на решение и нахождение корней. Обычно он задается на начальном этапе решения, но бывают и исключения. В последнем случае необходимо указывать диапазон допустимых значений параметра.
Суть решения второго вида уравнений — предотвратить превращение тождества в пустое множество. Для этой цели требуется исключить при помощи записи в виде неравенства все ложные значения параметра. Выражения с параметром применяются в программировании при написании и разработке различных алгоритмов. Кроме того, их можно встретить при описании физических процессов и явлений.
Последний тип — выражения высшей степени, которые при помощи математических преобразований превращаются в первый или второй тип. Для их решения необходимо знать формулы сокращенного умножения, понижающие степень до единицы, а также навык раскрытия скобок и приведения подобных компонентов.
Обыкновенные тождества
Простое линейное уравнение записывается в таком виде: At+Bt+Ct+As+Bs+Cs=0. Некоторых коэффициентов может и не быть. Кроме того, тождество может записываться в виде выражения, включающего в свой состав скобки. Алгоритм решения имеет следующий вид:
Следует отметить, что также составляются примеры линейных уравнений для тренировки в 7 классе. Необходимо разобрать решение одного из них «7 (t-1)(t+1)-7t (t-1)=8». Решать его нужно по вышеописанному алгоритму:
Последний пункт реализации методики свидетельствует о том, что корень тождества найден правильно. Далее нужно рассмотреть выражения с параметром.
Выражения с параметром
Уравнения с некоторым параметром решаются немного по другой методике. Ее суть заключается в нахождении корня, дополнительно зависящего от некоторого значения. Алгоритм имеет следующий вид:
Реализацию методики необходимо рассмотреть на практическом примере «t-2+pt=0», где р — параметр тождества. Решать выражение нужно по такому алгоритму:
Иногда в некоторых задачах нет необходимости подставлять значение параметра. В этом случае следует просто записать формулу корня, указав допустимый интервал (диапазон) последнего. Например, в вышеописанном примере решение записывается следующим образом: t=2/(1+p)
. Каждый ученик должен понять основной смысл решения уравнений этого типа — научиться находить область значений параметра, не превращающие выражение в пустое множество.
Понижение степени
Некоторые уравнения представлены степенью при неизвестной, превышающую единицу. К ним относятся следующие виды: квадратные, кубические и бикубические. Каждый из трех видов имеет собственный алгоритм нахождения корней.
Однако некоторые из них можно свести к линейному типу. Для этого применяется метод разложения на множители. Он подразумевает алгебраические соотношения, при помощи которых выражение легко записывается в обыкновенной линейной форме. К ним относятся следующие:
Первая и вторая формула называется квадратом суммы или разности соответственно. Третья — разность квадратов. Кроме того, бывают случаи, при которых невозможно применить эти тождества. Для этого требуется выносить общий множитель за скобки, тем самым понижая степень. Для нахождения корней существует определенная методика:
Реализация алгоритма нужно проверить на практическом примере, т. е. следует решить уравнение «3t^2-3=0». Найти его корни можно, воспользовавшись вышеописанной методикой:
Кубические и бикубические должны сводиться к квадратным, а затем преобразовываться в линейные, поскольку формулы кубов суммы и разности, при их разложении на множители, дают вторую степень. Однако существует еще один частный случай, о котором не упоминалось при классификации линейных выражений с неизвестными — системы уравнений.
Системы линейного типа
Система уравнений — совокупность выражений с неизвестными, которые имеют общие решения. Методика для вычисления корней имеет следующий вид:
Однако для практического применения вышеописанной методики необходимо разобрать систему уравнений, состоящую из двух тождеств (5t-2s=1 и 4t^2-s^2=0). Решать ее нужно по вышеописанной методике:
В третьем пункте математики рекомендуют разложить тождество на множители, поскольку необходимо всегда понижать степень при неизвестной величине. Во всех трех случаях описаны простые примеры, которые позволяют перейти к более сложным заданиям.
Следует отметить, что еще одним методом решения системы уравнений считается построение графиков функций, входящих в ее состав. Методика поиска решений сводится к простым шагам, которые можно править относительно предыдущего алгоритма таким образом:
В последнем пункте методики находятся корни системы уравнений. Далее рекомендуется их подставить в исходные выражения для проверки.
Таким образом, линейные уравнения применяются в различных физико-математических дисциплинах и прикладных науках. Для их решения существуют определенные методики, позволяющие выполнить эту операцию за короткий промежуток времени и не допустить ошибок.
📸 Видео
Раскрытие скобок. 6 класс.Скачать
Математика 6 класс (Урок№50 - Уравнения. Часть 2.)Скачать
Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать
Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 1 часть. 6 класс.Скачать
Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
6 класс, 42 урок, Решение уравненийСкачать
Пропорция. Основное свойство пропорции. 6 класс.Скачать
Решение уравнений - математика 6 классСкачать
Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать
Решить уравнение с дробями - Математика - 6 классСкачать
Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать
Решение уравнений. Видеоурок 28. Математика 6 классСкачать
Как решать уравнения со скобками быстро и правильно. Математика 6 класс.Скачать
Модуль числа. Практическая часть. 6 класс.Скачать
Подобные слагаемые. Приведение подобных слагаемых. 6 класс.Скачать