Уравнение с параметром и корнем егэ

Задача 18 ЕГЭ-2021 по математике. Параметры

Посмотрите на условия задач с параметрами ЕГЭ-2021. Вы заметите, что на вид все они похожи. Однако сходство только внешнее, и решаются они по-разному. В этой статье – обзор задач с параметрами ЕГЭ-2021 по математике.

1. Начнем с задачи, которую лучше всего решить аналитическим способом. Слева в уравнении модуль, справа – произведение модуля и корня квадратного. Лучше всего первым действием сделать возведение обеих частей уравнения в квадрат (при неотрицательности подкоренного выражения).

О том, как решать уравнения, где слева модуль и справа модуль, читайте здесь: Уравнения с модулем.

При каких значениях параметра a уравнение

имеет ровно 2 решения?

Уравнение равносильно системе:

Вынесли общий множитель за скобку

Так как и при всех исходное уравнение имеет корни и при всех Значит, исходное уравнение имеет ровно два корня в следующих случаях:

не имеет решений и

2) совпадение корней

Рассмотрим первый случай.

Неравенство — не имеет решений, если

Рассмотрим второй случай.

1) Корни и совпадают, тогда и

Так как исходное уравнение при имеет один корень

2) Корни и совпадают.

Уравнение имеет корни и

3) Корни и совпадают, исходное уравнение имеет ровно два корня.

Мы применили аналитический способ решения: с помощью равносильных переходов от исходного уравнения перешли к такой форме, где сразу видно, какие корни имеет уравнение при определенных значениях параметра.

На Онлайн-курсе подготовки к ЕГЭ на 100 баллов мы подробно рассказывали об этом методе и решали множество задач. Способ хорош тем, что вы просто действуете по образцу – и быстро приходите к ответу.

2. Второе уравнение очень похоже на первое. И первое действие будет таким же: возведением обеих частей в квадрат. А закончим мы – для разнообразия – построением графиков в системе координат (а; х).

Найти a, при которых имеет ровно 2 решения.

Возведем обе части уравнения в квадрат.

Найдем, каким значениям параметра соответствует ровно два значения

Построим в системе координат графики функций:

Мы находим такие при которых горизонтальная прямая имеет ровно 2 общие точки с совокупностью прямых, являющихся графиком исходного уравнения.

Видим, что в общем случае прямая пересекает каждую из трех прямых, то есть исходное уравнение имеет ровно 3 решения.
Ровно 2 решения будет в случаях, когда прямая проходит через точки пересечения прямых, то есть в случаях совпадения корней.

Уравнение с параметром и корнем егэ

Данная совокупность имеет ровно два решения в случаях совпадения корней.

О графическом способе решения задач с параметрами читайте здесь: Графический метод решения задач с параметрами.

3. В третьем задании также присутствуют выражения под модулями. Но подход будет другой: мы применим метод интервалов для модулей, о котором можно прочитать здесь: Уравнения с модулем.

С его помощью раскроем модули и получим график функции, заданной описанием: на разных интервалах график этой функции выглядит по-разному, то есть состоит из отдельных кусочков. А дальше – графическое решение.

Найдите все значения a, при каждом из которых уравнение

имеет ровно два различных корня.

Применим метод интервалов для модулей. Уравнение равносильно совокупности систем:

Мы сделали так, потому что при оба модуля раскрываем с противоположным знаком:

Заметим, что если уравнение не выполняется ни при каких

Решим графически полученную совокупность.

Рассмотрим функцию такую, что:

Уравнение с параметром и корнем егэ

Уравнение с параметром и корнем егэ

Для функции ось ординат – вертикальная асимптота.

Уравнение имеет ровно два корня при или

Вообще задачи с параметрами, как правило, можно решать многими способами.

4. И наконец, довольно сложное уравнение с тремя модулями. Нам придется раскрывать все эти модули по определению, рассматривая 4 случая. Но ничего страшного здесь нет – просто аккуратность. А потом мы разобьем координатную плоскость (х; а) на области и в каждой из областей построим график уравнения. Кто знаком с методом областей – тот легко с этим справится.

При каких значениях параметра a уравнение имеет ровно три различных решения

Видео:Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnlineСкачать

Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnline

Задание 17. Уравнения и неравенства с параметром

Существует ровно три генеральных метода решения задач 17:

  • Метод перебора — классический перебор вариантов. Например, когда выражение под модулем больше нуля и когда меньше;
  • Графический метод — привлечение чертежа. Во многих задачах 17 достаточно начертить графики функций — и решение становится очевидным;
  • Метод следствий — нестандартный и, как правило, самый изощренный. Если в исходном условии удастся подметить что-нибудь полезное, в дальнейшем можно значительно упростить решение всей задачи.

Конечно, одну и ту же задачу зачастую можно решить разными способами. Но далеко не все они оптимальны: выбрав неправильный «путь», можно увязнуть в вычислениях, так и не дойдя до ответа.

Поэтому в данном разделе я рассмотрю все способы, а ваша задача — практиковаться и учиться правильно выбирать.:)

Глава 1. Графический подход § 1. Вебинар по задачам 18: модуль и окружности Уравнение с параметром и корнем егэ§ 2. Как решать задачу 18: графический подход Уравнение с параметром и корнем егэ§ 3. Задача 18: две окружности и модуль Уравнение с параметром и корнем егэ§ 4. Задача 18: пересечение графиков окружности и модуля Уравнение с параметром и корнем егэ§ 5. Новая задача 18 из пробного ЕГЭ — наглядный пример того, как эффективно работает графическое решение задач с параметром. Уравнение с параметром и корнем егэГлава 2. Аналитический подход § 1. Задачи 18: Аналитическое решение Уравнение с параметром и корнем егэ§ 2. Окружность и модуль: задачи 18 с двумя параметрами Уравнение с параметром и корнем егэ§ 3. Аналитическое решение задачи 18 с перебором различных вариантов Уравнение с параметром и корнем егэГлава 3. Нестандартные приемы § 1. Задача 18: метод симметричных корней Уравнение с параметром и корнем егэ§ 2. Как увидеть симметрию корней в задаче 18? Уравнение с параметром и корнем егэ§ 3. Метод мажорант в задаче 18 Уравнение с параметром и корнем егэ§ 4. Графическое решение сложных задач 18 с модулем Уравнение с параметром и корнем егэ§ 5. Задание 18: Симметрия корней в системе уравнений Уравнение с параметром и корнем егэ§ 6. Анализ знаков квадратного трёхчлена в сложных задачах 18 Уравнение с параметром и корнем егэ§ 7. Применение производной для отыскания точек пересечения графиков Уравнение с параметром и корнем егэ§ 8. Продвинутый метод симметричных корней Уравнение с параметром и корнем егэ§ 9. Новая задача 18 с графическим решением Уравнение с параметром и корнем егэ

Видео:Простое уравнение с параметром с корнями | Параметр 98 | mathus.ru #егэ2024Скачать

Простое уравнение с параметром с корнями | Параметр 98 | mathus.ru #егэ2024

Задания по теме «Задачи с параметром»

Открытый банк заданий по теме задачи с параметром. Задания C6 из ЕГЭ по математике (профильный уровень)

Видео:5-часовой стрим по ПАРАМЕТРАМ. Вся алгебра для №17 с нуля и до уровня ЕГЭ 2023Скачать

5-часовой стрим по ПАРАМЕТРАМ. Вся алгебра для №17 с нуля и до уровня ЕГЭ 2023

Задание №1227

Условие

Найдите все значения a > 0, при каждом из которых система begin(x-4)^2+(|y|-4)^2=9,\ x^2+(y-4)^2=a^2end имеет ровно 2 решения.

Решение

Если y geqslant 0, то первое уравнение задаёт окружность phi _1 с центром в точке C_1 (4; 4) радиуса 3 , а если y то оно задаёт окружность phi _2 с центром в точке C_2 (4; -4) того же радиуса.

При a > 0 второе уравнение задаёт окружность phi с центром в точке C(0; 4) радиуса a . Поэтому задача состоит в том, чтобы найти все значения параметра a , при каждом из которых окружность phi имеет ровно две общие точки с объединением окружностей phi _1 и phi _2.

Уравнение с параметром и корнем егэ

Координаты точки касания окружностей phi и phi _1 явно видны на чертеже — точки A_1 (1; 4) и B_1 (7; 4) . То есть при a=CA_1=1 и a=CB_1=7 окружности phi и phi _1 касаются. При a > 7 и a окружности phi и phi _1 не пересекаются, при 1 окружности phi и phi _2 имеют 2 общие точки.

Далее, из точки C проведём луч CC_2 и обозначим A_2 и B_2 точки его пересечения с окружностью phi_2 , где A_2 лежит между C и C_2. Заметим, что длина отрезка CC_2= sqrt <4^2+(4-(-4))^>= sqrt = 4sqrt 5.

При a или a > CB_2 окружности phi и phi_2 не пересекаются. При CA_2 окружности phi и phi _2 имеют 2 общие точки. При a =CA_2=4sqrt 5-3 или a=CB_2=4sqrt 5+3, окружности phi и phi _2 касаются.

Исходная система имеет ровно 2 решения тогда и только тогда, когда окружность phi с одной из окружностей phi _1 и phi _2 имеет 2 общие точки, а с другой не пересекается, либо касается одновременно двух окружностей.

Так как 1 то условию задачи удовлетворяют значения ain (1;4sqrt 5-3) cup (7; 4sqrt 5+3).

📸 Видео

Уравнение с параметром из ЕГЭ №18 | Математика TutorOnlineСкачать

Уравнение с параметром из ЕГЭ №18 | Математика TutorOnline

Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Аналитический методСкачать

Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Аналитический метод

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис ТрушинСкачать

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис Трушин

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

Параметры с нуля до уровня ЕГЭ. Линейные уравнения. Математик МГУСкачать

Параметры с нуля до уровня ЕГЭ. Линейные уравнения. Математик МГУ

✓ Тригонометрическое уравнение с параметром | ЕГЭ. Задание 17. Математика. Профиль | Борис ТрушинСкачать

✓ Тригонометрическое уравнение с параметром | ЕГЭ. Задание 17. Математика. Профиль | Борис Трушин

Все уравнения с параметром на РешуЕГЭ. Тотальный разбор 17 номера ЕГЭ по математикеСкачать

Все уравнения с параметром на РешуЕГЭ. Тотальный разбор 17 номера ЕГЭ по математике

Реши любой параметр. Задача 18 Профильный ЕГЭСкачать

Реши любой параметр. Задача 18 Профильный ЕГЭ

Иррациональное уравнение с параметром с реального ЕГЭ 2022Скачать

Иррациональное уравнение с параметром с реального ЕГЭ 2022

✓ Параметры | ЕГЭ. Математика. Профильный уровень. Задание 17 | #ТрушинLive​​ #049 | Борис ТрушинСкачать

✓ Параметры | ЕГЭ. Математика. Профильный уровень. Задание 17 | #ТрушинLive​​ #049 | Борис Трушин

#12. Крутое уравнение с параметром и модулем из ЕГЭ!Скачать

#12. Крутое уравнение с параметром и модулем из ЕГЭ!

✓ Пять способов решить задачу с параметром | ЕГЭ-2018. Задание 17. Математика | Борис ТрушинСкачать

✓ Пять способов решить задачу с параметром | ЕГЭ-2018. Задание 17. Математика | Борис Трушин

Параметр с корнем | Задание №17 из ЕГЭ по математике | Эйджей из ВебиумаСкачать

Параметр с корнем | Задание №17 из ЕГЭ по математике | Эйджей из Вебиума

Сможешь решить уравнение с параметром? Из ЕГЭ 2019Скачать

Сможешь решить уравнение с параметром? Из ЕГЭ 2019

✓ Новые четыре способа решить параметр | ЕГЭ. Задание 17. Математика. Профиль | Борис ТрушинСкачать

✓ Новые четыре способа решить параметр | ЕГЭ. Задание 17. Математика. Профиль | Борис Трушин

✓ Параметр с тройным модулем | ЕГЭ. Задание 17. Математика. Профильный уровень | Борис ТрушинСкачать

✓ Параметр с тройным модулем | ЕГЭ. Задание 17. Математика. Профильный уровень | Борис Трушин

Задача 17 ЕГЭ профильный. Параметры с нуляСкачать

Задача 17 ЕГЭ профильный. Параметры с нуля
Поделиться или сохранить к себе: