Уравнение с двумя скобками равно нулю

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:№2 Квадратное уравнение со скобками (х-1)(x-2)=-6х Как избавиться от скобок в уравнении Как решить уСкачать

№2 Квадратное уравнение со скобками (х-1)(x-2)=-6х Как избавиться от скобок в уравнении Как решить у

Калькулятор онлайн.
Решение квадратного уравнения.

С помощью этой математической программы вы можете решить квадратное уравнение.

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
— с помощью дискриминанта
— с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения (81x^2-16x-1=0) ответ выводится в такой форме:

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x — 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 — 5&6/5z +1/7z^2
Результат: ( 3frac — 5frac z + fracz^2 )

При вводе выражения можно использовать скобки. В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)

Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Немного теории.

Видео:Уравнение в котором произведение множителей равно нулю. Алгебра 7 класс.Скачать

Уравнение в котором произведение множителей равно нулю. Алгебра 7 класс.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
( -x^2+6x+14=0, quad 8x^2-7x=0, quad x^2-frac=0 )
имеет вид
( ax^2+bx+c=0, )
где x — переменная, a, b и c — числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями.

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x — переменная, a, b и c — некоторые числа, причём ( a neq 0 ).

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где ( a neq 0 ), наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения
( x^2-11x+30=0, quad x^2-6x=0, quad x^2-8=0 )

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением. Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 — неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где ( c neq 0 );
2) ax 2 +bx=0, где ( b neq 0 );
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при ( c neq 0 ) переносят его свободный член в правую часть и делят обе части уравнения на a:
( x^2 = -frac Rightarrow x_ = pm sqrt< -frac> )

Так как ( c neq 0 ), то ( -frac neq 0 )

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при ( b neq 0 ) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Видео:Как решать уравнение со скобками Уравнение вида произведение элементов=0 Произведение скобок=0Скачать

Как решать уравнение со скобками Уравнение вида произведение элементов=0 Произведение скобок=0

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
( x^2+fracx +frac=0 )

Преобразуем это уравнение, выделив квадрат двучлена:
( x^2+2x cdot frac+left( fracright)^2- left( fracright)^2 + frac = 0 Rightarrow )

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.
( D = b^2-4ac )

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
( x_ = frac < -b pm sqrt> ), где ( D= b^2-4ac )

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень ( x=-frac ).
3) Если D 0), один корень (при D = 0) или не иметь корней (при D

Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
( left< begin x_1+x_2=-p \ x_1 cdot x_2=q end right. )

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Произведение равно нулю

В каком случае произведение равно нулю?

произведение равно нулю, если хотя бы один из множителей равен нулю .

С помощью этого правила решают уравнения, в которых произведение нескольких множителей равно нулю. Уравнения вида «Произведение равно нулю» — одни из самых распространенных в математике. Их начинают изучать с 6 класса. В 6 классе множители представляют собой линейные уравнения.

Уравнение с двумя скобками равно нулю

Это уравнение вида «произведение равно нулю». Произведение равно нулю, если хотя бы один из множителей равен нулю, поэтому приравниваем к нулю каждый из множителей:

5x=0 или 2x-7=0 или 3x+18=0.

Теперь решаем каждое из уравнений. Первое — простейшее линейное уравнение. Обе части уравнения делим на число, стоящее перед иксом:

Второе и третье — линейные уравнения. Алгоритм решения: неизвестные — в одну сторону, известные — в другую, изменив при этом их знаки:

2x=7 I :2 3x=-18 I :3

Замечания.

1) Это уравнение также можно рассмотреть как произведение четырех множителей:

Уравнение с двумя скобками равно нулю

Рассуждаем так: поскольку произведение равно нулю, если хотя бы один из множителей равен нулю, а первый множитель 5≠0, приравниваем к нулю остальные множители:

x=0 или 2x-7=0 или 3x+18=0.

2) Поскольку перед буквой и перед скобками знак умножения можно не писать, условие уравнений обычно выглядят так:

Уравнение с двумя скобками равно нулю

Это уравнение типа «произведение равно нулю». Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:

6x-7=o или 5x+9=0 или 4x+11=0 или 9x-6=0

6x=7 I:6 5x=-9 I:5 4x=-11 I:4 9x=6 I:9

x=7/6 x=-9/5 x=-11/4 x=6/9

В первом уравнении получили неправильную дробь. Выделяем из нее целую часть. Во втором и третьем уравнении ответ записываем в виде десятичной дроби. Для этого делим числитель на знаменатель уголком. В четвертом уравнении нужно сократить дробь в ответе

Уравнение с двумя скобками равно нулю

Уравнение с двумя скобками равно нулю

А как узнать, записать ответ в виде обыкновенной или в виде десятичной дроби? Любую ли обыкновенную дробь можно перевести в десятичную? Любую ли десятичную дробь можно перевести в обыкновенную? Об этом мы поговорим в следующий раз.

Видео:Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать

Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.

2 Comments

определение наверху неверное, т.к. произведение двух или более множителей равно нулю тогда и только тогда когда хотя-бы один из них равен нулю, а остальные не теряют смысла.

Мне понравился ход мысли Вашего учителя математики. Она расширила определение, чтобы ученики не забывали проверить, входят ли найденные корни в область допустимых значений уравнения (или неравенства).

Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Уравнения равные нулю

Что такое «уравнения равные нулю»?

Если в левой части уравнения стоит сумма или разность одночленов или многочленов, а в правой части — нуль, то это может быть обычное линейное уравнение.

Если левая часть уравнения представляет собой произведения двух или нескольких множителей, а правая часть — нуль, то это — уравнение типа «произведение равно нулю».

В общем виде простейшие равные нулю уравнения можно записать как

Уравнение с двумя скобками равно нулю

(множителей может быть больше).

Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому приравниваем к нулю каждый множитель:

Уравнение с двумя скобками равно нулю

и решаем каждое из полученных уравнений отдельно.

Уравнение с двумя скобками равно нулю

Это — уравнение типа «произведение равно нулю».

Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:

Уравнение с двумя скобками равно нулю

Уравнение с двумя скобками равно нулю

Уравнение с двумя скобками равно нулю

Уравнение с двумя скобками равно нулю

Уравнение с двумя скобками равно нулю

Уравнение с двумя скобками равно нулю

Уравнение с двумя скобками равно нулю

Уравнение с двумя скобками равно нулю

Уравнение с двумя скобками равно нулю

Уравнение с двумя скобками равно нулю

Уравнение с двумя скобками равно нулю

Уравнение с двумя скобками равно нулю

Уравнение с двумя скобками равно нулю

Уравнение с двумя скобками равно нулю

Уравнение с двумя скобками равно нулю

Уравнение с двумя скобками равно нулю

Если в уравнении, равном 0, левую часть можно разложить на множители, то такое уравнение также можно решить как уравнение типа «произведение равно 0».

Уравнение с двумя скобками равно нулю

Сгруппируем первое слагаемое с третьим, а четвёртое — со вторым:

Уравнение с двумя скобками равно нулю

Из первых скобок вынесем за скобки общий множитель x², из вторых — 4:

Уравнение с двумя скобками равно нулю

Общий множитель (x-3) вынесем за скобки:

Уравнение с двумя скобками равно нулю

Получили уравнение типа «произведение равно 0». Приравниваем к нулю каждый из множителей:

Уравнение с двумя скобками равно нулю

Корень первого уравнения —

Уравнение с двумя скобками равно нулю

Второе уравнение не имеет корней (сумма положительных чисел не может равняться нулю).

В алгебре многие уравнения сводятся к уравнениям типа «произведение равно нулю» с помощью разложения на множители.

Множители могут линейными, квадратными, логарифмическими, тригонометрическими и т.д. уравнениями.

Еще один важный частный случай уравнений, равных нулю, рассмотрим позже.

13 комментариев

Показательное уравнение:
3^((x+2)/(3x-4))-2*3^((5x-10)/(3x-4))-7=0
Корень известен: x=2.
Подскажите, пожалуйста, как найти решение. Преобразовать в квадратное уравнение что-то не получается.

🌟 Видео

Уравнение с двумя скобками.5 класс.МатематикаСкачать

Уравнение с двумя скобками.5 класс.Математика

Математика 5 класс. 28 октября. Вынесение множителя за скобки в уравнениях #2Скачать

Математика 5 класс. 28 октября. Вынесение множителя за скобки в уравнениях #2

Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Как решить уравнение #россия #сша #америка #уравненияСкачать

Как решить уравнение #россия #сша #америка #уравнения

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

№5 Линейное уравнение 2-3(2х+2)=5-4х Простое уравнение со скобками 6кл 7кл 8кл 9кл 11кл ОГЭ ЕГЭСкачать

№5 Линейное уравнение 2-3(2х+2)=5-4х Простое уравнение со скобками 6кл 7кл 8кл 9кл 11кл ОГЭ ЕГЭ

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Как решать линейные уравнения Решите уравнение 5 класс 6 класс 7 класс Как решать простое уравнениеСкачать

Как решать линейные уравнения Решите уравнение 5 класс 6 класс 7 класс Как решать простое уравнение
Поделиться или сохранить к себе: