Линейное уравнение регрессии имеет вид y=bx+a+ε
Здесь ε — случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения εi для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям xi и yi можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где ei – наблюдаемые значения (оценки) ошибок εi, а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β — используют МНК (метод наименьших квадратов).
Система нормальных уравнений.
Для наших данных система уравнений имеет вид:
10a + 356b = 49
356a + 2135b = 9485
Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 68.16, a = 11.17
Уравнение регрессии:
y = 68.16 x — 11.17
1. Параметры уравнения регрессии.
Выборочные средние.
1.1. Коэффициент корреляции
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:
Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 Y фактором X весьма высокая и прямая.
1.2. Уравнение регрессии (оценка уравнения регрессии).
Линейное уравнение регрессии имеет вид y = 68.16 x -11.17
Коэффициентам уравнения линейной регрессии можно придать экономический смысл. Коэффициент уравнения регрессии показывает, на сколько ед. изменится результат при изменении фактора на 1 ед.
Коэффициент b = 68.16 показывает среднее изменение результативного показателя (в единицах измерения у ) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 68.16.
Коэффициент a = -11.17 формально показывает прогнозируемый уровень у , но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений x , то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения x , можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и x определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе — обратная). В нашем примере связь прямая.
1.3. Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета — коэффициенты. Коэффициент эластичности находится по формуле:
Он показывает, на сколько процентов в среднем изменяется результативный признак у при изменении факторного признака х на 1%. Он не учитывает степень колеблемости факторов.
В нашем примере коэффициент эластичности больше 1. Следовательно, при изменении Х на 1%, Y изменится более чем на 1%. Другими словами — Х существенно влияет на Y.
Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:
Т.е. увеличение x на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего Y на 0.9796 среднеквадратичного отклонения этого показателя.
1.4. Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.
Поскольку ошибка больше 15%, то данное уравнение не желательно использовать в качестве регрессии.
1.6. Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R 2 = 0.98 2 = 0.9596, т.е. в 95.96 % случаев изменения x приводят к изменению у . Другими словами — точность подбора уравнения регрессии — высокая. Остальные 4.04 % изменения Y объясняются факторами, не учтенными в модели.
x | y | x 2 | y 2 | x·y | y(x) | (yi— y ) 2 | (y-y(x)) 2 | (xi— x ) 2 | |y — yx|:y |
0.371 | 15.6 | 0.1376 | 243.36 | 5.79 | 14.11 | 780.89 | 2.21 | 0.1864 | 0.0953 |
0.399 | 19.9 | 0.1592 | 396.01 | 7.94 | 16.02 | 559.06 | 15.04 | 0.163 | 0.1949 |
0.502 | 22.7 | 0.252 | 515.29 | 11.4 | 23.04 | 434.49 | 0.1176 | 0.0905 | 0.0151 |
0.572 | 34.2 | 0.3272 | 1169.64 | 19.56 | 27.81 | 87.32 | 40.78 | 0.0533 | 0.1867 |
0.607 | 44.5 | .3684 | 1980.25 | 27.01 | 30.2 | 0.9131 | 204.49 | 0.0383 | 0.3214 |
0.655 | 26.8 | 0.429 | 718.24 | 17.55 | 33.47 | 280.38 | 44.51 | 0.0218 | 0.2489 |
0.763 | 35.7 | 0.5822 | 1274.49 | 27.24 | 40.83 | 61.54 | 26.35 | 0.0016 | 0.1438 |
0.873 | 30.6 | 0.7621 | 936.36 | 26.71 | 48.33 | 167.56 | 314.39 | 0.0049 | 0.5794 |
2.48 | 161.9 | 6.17 | 26211.61 | 402 | 158.07 | 14008.04 | 14.66 | 2.82 | 0.0236 |
7.23 | 391.9 | 9.18 | 33445.25 | 545.2 | 391.9 | 16380.18 | 662.54 | 3.38 | 1.81 |
2. Оценка параметров уравнения регрессии.
2.1. Значимость коэффициента корреляции.
По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=7 находим tкрит:
tкрит = (7;0.05) = 1.895
где m = 1 — количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически — значим
В парной линейной регрессии t 2 r = t 2 b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.
2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:
S 2 y = 94.6484 — необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).
Sy = 9.7287 — стандартная ошибка оценки (стандартная ошибка регрессии).
S a — стандартное отклонение случайной величины a.
Sb — стандартное отклонение случайной величины b.
2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения.
Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя. (a + bxp ± ε) где
Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X p = 1 (-11.17 + 68.16*1 ± 6.4554)
(50.53;63.44)
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
Индивидуальные доверительные интервалы для Y при данном значении X.
(a + bx i ± ε)
где
xi | y = -11.17 + 68.16xi | εi | ymin | ymax |
0.371 | 14.11 | 19.91 | -5.8 | 34.02 |
0.399 | 16.02 | 19.85 | -3.83 | 35.87 |
0.502 | 23.04 | 19.67 | 3.38 | 42.71 |
0.572 | 27.81 | 19.57 | 8.24 | 47.38 |
0.607 | 30.2 | 19.53 | 10.67 | 49.73 |
0.655 | 33.47 | 19.49 | 13.98 | 52.96 |
0.763 | 40.83 | 19.44 | 21.4 | 60.27 |
0.873 | 48.33 | 19.45 | 28.88 | 67.78 |
2.48 | 158.07 | 25.72 | 132.36 | 183.79 |
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
Проверим гипотезу H0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H1 не равно) на уровне значимости α=0.05.
tкрит = (7;0.05) = 1.895
Поскольку 12.8866 > 1.895, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Поскольку 2.0914 > 1.895, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b — tкрит Sb; b + tкрит Sb)
(68.1618 — 1.895 • 5.2894; 68.1618 + 1.895 • 5.2894)
(58.1385;78.1852)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a — ta)
(-11.1744 — 1.895 • 5.3429; -11.1744 + 1.895 • 5.3429)
(-21.2992;-1.0496)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
2) F-статистики. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с lang=EN-US>n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.
где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:
где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=7, Fkp = 5.59
Поскольку фактическое значение F > Fkp, то коэффициент детерминации статистически значим (Найденная оценка уравнения регрессии статистически надежна).
Проверка на наличие автокорреляции остатков.
Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.
Автокорреляция (последовательная корреляция) определяется как корреляция между наблюдаемыми показателями, упорядоченными во времени (временные ряды) или в пространстве (перекрестные ряды). Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов и очень редко при использовании перекрестных данных.
В экономических задачах значительно чаще встречается положительная автокорреляция, нежели отрицательная автокорреляция. В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов.
Отрицательная автокорреляция фактически означает, что за положительным отклонением следует отрицательное и наоборот. Такая ситуация может иметь место, если ту же зависимость между спросом на прохладительные напитки и доходами рассматривать по сезонным данным (зима-лето).
Среди основных причин, вызывающих автокорреляцию, можно выделить следующие:
1. Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводят к системным отклонениям точек наблюдения от линии регрессии, что может обусловить автокорреляцию.
2. Инерция. Многие экономические показатели (инфляция, безработица, ВНП и т.д.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Поэтому изменение показателей происходит не мгновенно, а обладает определенной инертностью.
3. Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).
4. Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его интервалам. Это может привести к определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может служить причиной автокорреляции.
Последствия автокорреляции схожи с последствиями гетероскедастичности: выводы по t- и F-статистикам, определяющие значимость коэффициента регрессии и коэффициента детерминации, возможно, будут неверными.
Обнаружение автокорреляции
1. Графический метод
Есть ряд вариантов графического определения автокорреляции. Один из них увязывает отклонения ei с моментами их получения i. При этом по оси абсцисс откладывают либо время получения статистических данных, либо порядковый номер наблюдения, а по оси ординат – отклонения ei (либо оценки отклонений).
Естественно предположить, что если имеется определенная связь между отклонениями, то автокорреляция имеет место. Отсутствие зависимости скоре всего будет свидетельствовать об отсутствии автокорреляции.
Автокорреляция становится более наглядной, если построить график зависимости ei от ei-1.
Видео:Уравнение линейной регрессии. Интерпретация стандартной табличкиСкачать
Выявленных связей и соотношений, установление состава эндогенных и
Читайте также:
|
Экзогенных переменных.
Табличное значение критерия Стьюдента зависит Только от уровня доверительной вероятности и длины исходного ряда
Табличное значение критерия Стьюдента не зависит от значений коэффициентов регрессии
Табличное значение критерия Фишера зависит И от уровня доверительной вероятности, и от числа факторов, включенных в модель и от длины исходного ряда
Укажите правильную функцию логарифмического тренда:
Укажите правильную функцию гиперболического тренда:
Уравнение Y=a+bk+(1-b)l+u, где Y — темп прироста выпуска, k — темп прироста затрат капитала и l — темп прироста затрат труда, может быть оценено как модель линейной регрессии: непосредственно, с помощью обычного МНК, как зависимость Y от k и l со свободным членом
Уравнение регрессии имеет вид = 2,02 + 0,78х. На сколько
единиц своего измерения в среднем изменится при увеличении х на одну единицу своего измерения: увеличится на 0,78
Уравнение степенной функции имеет вид:
Уравнение гиперболы имеет вид:
Уравнение множественной регрессии имеет вид: у= -27,16 + 1,37х1, -0,29х2. Параметр b1 = 1,37 означает следующее: при увеличении х1, на одну единицу своего измерения и при фиксированном значении фактора х2, переменная Y увеличится на 1,37 единиц своего измерения
Частный коэффициент корреляции оценивает: тесноту связи между двумя переменными при фиксированном значении остальных факторов
Что показывает коэффициент регрессии степенной модели? на сколько процентов изменится y, если x изменился на один процент
Экзогенные переменные модели характеризуются тем, что они: являются независимыми и определяются вне системы
Модуль 2
1.Пусть Y — товарооборот магазина, млн.руб., Х1 — торговая площадь, тыс.кв.м, Х2 — среднее количество посетителей в день, тыс. чел. Каков будет товарооборот магазина, если он находится в относительно оживленном месте с количеством посетителей 20000 и имеет торговую площадь 1000 кв.м? 7,411 млн.руб.
2.Найдите приведенную форму, соответствующую структурной форме модели
3.По 39 точкам оценена следующая формула производственной функции, в которой отдельно рассмотрены две составляющие затрат основного капитала: K1 — здания и сооружения, и K2 — машины и оборудование; а также две составляющие затрат труда: L1 — затраты квалифицированного труда, и L2 — затраты неквалифицированного труда; Y – выпуск: ln(Y)=‑4,3 + 0,35ln(K1) + 0,26ln(K2) + 0,63ln(L1) + 0,58ln(L2)
(1,4) (0,03) (0,05) (0,41) (0,38); R 2 =0,92; DW=1,74 (в скобках приведены стандартные ошибки коэффициентов).
Какой из выводов и дальнейших шагов представляется Вам верным?
Нужно исключить фактор L (переменные L1 и L2), т.к. он оказался незначимым
4.По данным с 1990 по 1998 гг. построено уравнение регрессии Значения фактора xt можно спрогнозировать по трендовой модели xt=1+0,2t. Рассчитайте точечный прогноз результирующего показателя yt в 2000 г.102,44
5.Дана следующая макроэкономическая модель:
Y = C + I + G — макроэкономическое тождество
C = α +βY + U1 — функция потребления
I =γ – µ∙R + δY + U2 — функция инвестиций
M = ηY – λR + U3 — уравнение денежного рынка
где эндогенными переменными являются доход Y, потребление C, инвестиции I и процентная ставка R. Переменные G (государственные расходы) и (M) (реальная денежная масса) – экзогенные. Выберите верное утверждение из следующих.
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)
Видео:Математика #1 | Корреляция и регрессияСкачать
Задача №1 Построение уравнения регрессии
Имеются следующие данные разных стран об индексе розничных цен на продукты питания (х) и об индексе промышленного производства (у).
Индекс розничных цен на продукты питания (х) | Индекс промышленного производства (у) | |
---|---|---|
1 | 100 | 70 |
2 | 105 | 79 |
3 | 108 | 85 |
4 | 113 | 84 |
5 | 118 | 85 |
6 | 118 | 85 |
7 | 110 | 96 |
8 | 115 | 99 |
9 | 119 | 100 |
10 | 118 | 98 |
11 | 120 | 99 |
12 | 124 | 102 |
13 | 129 | 105 |
14 | 132 | 112 |
Требуется:
1. Для характеристики зависимости у от х рассчитать параметры следующих функций:
В) равносторонней гиперболы.
2. Для каждой модели рассчитать показатели: тесноты связи и среднюю ошибку аппроксимации.
3. Оценить статистическую значимость параметров регрессии и корреляции.
4. Выполнить прогноз значения индекса промышленного производства у при прогнозном значении индекса розничных цен на продукты питания х=138.
Решение:
1. Для расчёта параметров линейной регрессии
Решаем систему нормальных уравнений относительно a и b:
Построим таблицу расчётных данных, как показано в таблице 1.
Таблица 1 Расчетные данные для оценки линейной регрессии
№ п/п | х | у | ху | x 2 | y 2 | ||
---|---|---|---|---|---|---|---|
1 | 100 | 70 | 7000 | 10000 | 4900 | 74,26340 | 0,060906 |
2 | 105 | 79 | 8295 | 11025 | 6241 | 79,92527 | 0,011712 |
3 | 108 | 85 | 9180 | 11664 | 7225 | 83,32238 | 0,019737 |
4 | 113 | 84 | 9492 | 12769 | 7056 | 88,98425 | 0,059336 |
5 | 118 | 85 | 10030 | 13924 | 7225 | 94,64611 | 0,113484 |
6 | 118 | 85 | 10030 | 13924 | 7225 | 94,64611 | 0,113484 |
7 | 110 | 96 | 10560 | 12100 | 9216 | 85,58713 | 0,108467 |
8 | 115 | 99 | 11385 | 13225 | 9801 | 91,24900 | 0,078293 |
9 | 119 | 100 | 11900 | 14161 | 10000 | 95,77849 | 0,042215 |
10 | 118 | 98 | 11564 | 13924 | 9604 | 94,64611 | 0,034223 |
11 | 120 | 99 | 11880 | 14400 | 9801 | 96,91086 | 0,021102 |
12 | 124 | 102 | 12648 | 15376 | 10404 | 101,4404 | 0,005487 |
13 | 129 | 105 | 13545 | 16641 | 11025 | 107,1022 | 0,020021 |
14 | 132 | 112 | 14784 | 17424 | 12544 | 110,4993 | 0,013399 |
Итого: | 1629 | 1299 | 152293 | 190557 | 122267 | 1299,001 | 0,701866 |
Среднее значение: | 116,3571 | 92,78571 | 10878,07 | 13611,21 | 8733,357 | х | х |
8,4988 | 11,1431 | х | х | х | х | х | |
72,23 | 124,17 | х | х | х | х | х |
Среднее значение определим по формуле:
Cреднее квадратическое отклонение рассчитаем по формуле:
и занесём полученный результат в таблицу 1.
Возведя в квадрат полученное значение получим дисперсию:
Параметры уравнения можно определить также и по формулам:
Таким образом, уравнение регрессии:
Следовательно, с увеличением индекса розничных цен на продукты питания на 1, индекс промышленного производства увеличивается в среднем на 1,13.
Рассчитаем линейный коэффициент парной корреляции:
Связь прямая, достаточно тесная.
Определим коэффициент детерминации:
Вариация результата на 74,59% объясняется вариацией фактора х.
Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчётные) значения .
,
следовательно, параметры уравнения определены правильно.
Рассчитаем среднюю ошибку аппроксимации – среднее отклонение расчётных значений от фактических:
В среднем расчётные значения отклоняются от фактических на 5,01%.
Оценку качества уравнения регрессии проведём с помощью F-теста.
F-тест состоит в проверке гипотезы Н0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера.
Fфакт определяется по формуле:
где n – число единиц совокупности;
m – число параметров при переменных х.
Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.
Полученные оценки уравнения регрессии позволяют использовать его для прогноза.
Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:
2. Степенная регрессия имеет вид:
Для определения параметров производят логарифмирование степенной функции:
Для определения параметров логарифмической функции строят систему нормальных уравнений по способу наименьших квадратов:
Построим таблицу расчётных данных, как показано в таблице 2.
Таблица 2 Расчетные данные для оценки степенной регрессии
№п/п | х | у | lg x | lg y | lg x*lg y | (lg x) 2 | (lg y) 2 |
---|---|---|---|---|---|---|---|
1 | 100 | 70 | 2,000000 | 1,845098 | 3,690196 | 4,000000 | 3,404387 |
2 | 105 | 79 | 2,021189 | 1,897627 | 3,835464 | 4,085206 | 3,600989 |
3 | 108 | 85 | 2,033424 | 1,929419 | 3,923326 | 4,134812 | 3,722657 |
4 | 113 | 84 | 2,053078 | 1,924279 | 3,950696 | 4,215131 | 3,702851 |
5 | 118 | 85 | 2,071882 | 1,929419 | 3,997528 | 4,292695 | 3,722657 |
6 | 118 | 85 | 2,071882 | 1,929419 | 3,997528 | 4,292695 | 3,722657 |
7 | 110 | 96 | 2,041393 | 1,982271 | 4,046594 | 4,167284 | 3,929399 |
8 | 115 | 99 | 2,060698 | 1,995635 | 4,112401 | 4,246476 | 3,982560 |
9 | 119 | 100 | 2,075547 | 2,000000 | 4,151094 | 4,307895 | 4,000000 |
10 | 118 | 98 | 2,071882 | 1,991226 | 4,125585 | 4,292695 | 3,964981 |
11 | 120 | 99 | 2,079181 | 1,995635 | 4,149287 | 4,322995 | 3,982560 |
12 | 124 | 102 | 2,093422 | 2,008600 | 4,204847 | 4,382414 | 4,034475 |
13 | 129 | 105 | 2,110590 | 2,021189 | 4,265901 | 4,454589 | 4,085206 |
14 | 132 | 112 | 2,120574 | 2,049218 | 4,345518 | 4,496834 | 4,199295 |
Итого | 1629 | 1299 | 28,90474 | 27,49904 | 56,79597 | 59,69172 | 54,05467 |
Среднее значение | 116,3571 | 92,78571 | 2,064624 | 1,964217 | 4,056855 | 4,263694 | 3,861048 |
8,4988 | 11,1431 | 0,031945 | 0,053853 | х | х | х | |
72,23 | 124,17 | 0,001021 | 0,0029 | х | х | х |
Продолжение таблицы 2 Расчетные данные для оценки степенной регрессии
№п/п | х | у | ||||
---|---|---|---|---|---|---|
1 | 100 | 70 | 74,16448 | 17,34292 | 0,059493 | 519,1886 |
2 | 105 | 79 | 79,62057 | 0,385112 | 0,007855 | 190,0458 |
3 | 108 | 85 | 82,95180 | 4,195133 | 0,024096 | 60,61728 |
4 | 113 | 84 | 88,59768 | 21,13866 | 0,054734 | 77,1887 |
5 | 118 | 85 | 94,35840 | 87,57961 | 0,110099 | 60,61728 |
6 | 118 | 85 | 94,35840 | 87,57961 | 0,110099 | 60,61728 |
7 | 110 | 96 | 85,19619 | 116,7223 | 0,11254 | 10,33166 |
8 | 115 | 99 | 90,88834 | 65,79901 | 0,081936 | 38,6174 |
9 | 119 | 100 | 95,52408 | 20,03384 | 0,044759 | 52,04598 |
10 | 118 | 98 | 94,35840 | 13,26127 | 0,037159 | 27,18882 |
11 | 120 | 99 | 96,69423 | 5,316563 | 0,023291 | 38,6174 |
12 | 124 | 102 | 101,4191 | 0,337467 | 0,005695 | 84,90314 |
13 | 129 | 105 | 107,4232 | 5,872099 | 0,023078 | 149,1889 |
14 | 132 | 112 | 111,0772 | 0,85163 | 0,00824 | 369,1889 |
Итого | 1629 | 1299 | 1296,632 | 446,4152 | 0,703074 | 1738,357 |
Среднее значение | 116,3571 | 92,78571 | х | х | х | х |
8,4988 | 11,1431 | х | х | х | х | |
72,23 | 124,17 | х | х | х | х |
Решая систему нормальных уравнений, определяем параметры логарифмической функции.
Получим линейное уравнение:
Выполнив его потенцирование, получим:
Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата . По ним рассчитаем показатели: тесноты связи – индекс корреляции и среднюю ошибку аппроксимации.
Связь достаточно тесная.
В среднем расчётные значения отклоняются от фактических на 5,02%.
Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.
Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:
3. Уравнение равносторонней гиперболы
Для определения параметров этого уравнения используется система нормальных уравнений:
Произведем замену переменных
и получим следующую систему нормальных уравнений:
Решая систему нормальных уравнений, определяем параметры гиперболы.
Составим таблицу расчётных данных, как показано в таблице 3.
Таблица 3 Расчетные данные для оценки гиперболической зависимости
№п/п | х | у | z | yz | ||
---|---|---|---|---|---|---|
1 | 100 | 70 | 0,010000000 | 0,700000 | 0,0001000 | 4900 |
2 | 105 | 79 | 0,009523810 | 0,752381 | 0,0000907 | 6241 |
3 | 108 | 85 | 0,009259259 | 0,787037 | 0,0000857 | 7225 |
4 | 113 | 84 | 0,008849558 | 0,743363 | 0,0000783 | 7056 |
5 | 118 | 85 | 0,008474576 | 0,720339 | 0,0000718 | 7225 |
6 | 118 | 85 | 0,008474576 | 0,720339 | 0,0000718 | 7225 |
7 | 110 | 96 | 0,009090909 | 0,872727 | 0,0000826 | 9216 |
8 | 115 | 99 | 0,008695652 | 0,860870 | 0,0000756 | 9801 |
9 | 119 | 100 | 0,008403361 | 0,840336 | 0,0000706 | 10000 |
10 | 118 | 98 | 0,008474576 | 0,830508 | 0,0000718 | 9604 |
11 | 120 | 99 | 0,008333333 | 0,825000 | 0,0000694 | 9801 |
12 | 124 | 102 | 0,008064516 | 0,822581 | 0,0000650 | 10404 |
13 | 129 | 105 | 0,007751938 | 0,813953 | 0,0000601 | 11025 |
14 | 132 | 112 | 0,007575758 | 0,848485 | 0,0000574 | 12544 |
Итого: | 1629 | 1299 | 0,120971823 | 11,13792 | 0,0010510 | 122267 |
Среднее значение: | 116,3571 | 92,78571 | 0,008640844 | 0,795566 | 0,0000751 | 8733,357 |
8,4988 | 11,1431 | 0,000640820 | х | х | х | |
72,23 | 124,17 | 0,000000411 | х | х | х |
Продолжение таблицы 3 Расчетные данные для оценки гиперболической зависимости
№п/п | х | у | ||||
---|---|---|---|---|---|---|
1 | 100 | 70 | 72,3262 | 0,033231 | 5,411206 | 519,1886 |
2 | 105 | 79 | 79,49405 | 0,006254 | 0,244083 | 190,0458 |
3 | 108 | 85 | 83,47619 | 0,017927 | 2,322012 | 60,61728 |
4 | 113 | 84 | 89,64321 | 0,067181 | 31,84585 | 77,1887 |
5 | 118 | 85 | 95,28761 | 0,121031 | 105,8349 | 60,61728 |
6 | 118 | 85 | 95,28761 | 0,121031 | 105,8349 | 60,61728 |
7 | 110 | 96 | 86,01027 | 0,10406 | 99,79465 | 10,33166 |
8 | 115 | 99 | 91,95987 | 0,071112 | 49,56344 | 38,6174 |
9 | 119 | 100 | 96,35957 | 0,036404 | 13,25272 | 52,04598 |
10 | 118 | 98 | 95,28761 | 0,027677 | 7,357059 | 27,18882 |
11 | 120 | 99 | 97,41367 | 0,016024 | 2,516453 | 38,6174 |
12 | 124 | 102 | 101,46 | 0,005294 | 0,291565 | 84,90314 |
13 | 129 | 105 | 106,1651 | 0,011096 | 1,357478 | 149,1889 |
14 | 132 | 112 | 108,8171 | 0,028419 | 10,1311 | 369,1889 |
Итого: | 1629 | 1299 | 1298,988 | 0,666742 | 435,7575 | 1738,357 |
Среднее значение: | 116,3571 | 92,78571 | х | х | х | х |
8,4988 | 11,1431 | х | х | х | х | |
72,23 | 124,17 | х | х | х | х |
Значения параметров регрессии a и b составили:
Связь достаточно тесная.
В среднем расчётные значения отклоняются от фактических на 4,76%.
Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.
Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:
По уравнению равносторонней гиперболы получена наибольшая оценка тесноты связи по сравнению с линейной и степенной регрессиями. Средняя ошибка аппроксимации остаётся на допустимом уровне.
🎬 Видео
Нелинейная регрессия в MS Excel. Как подобрать уравнение регрессии? Некорректное значение R^2Скачать
Линейная регрессияСкачать
Парная регрессия: линейная зависимостьСкачать
Уравнение регрессииСкачать
13-02 Линейная регрессия и метод максимального правдоподобияСкачать
Эконометрика Линейная регрессия и корреляцияСкачать
МНК. Пример 2. Парная регрессияСкачать
Как решить такое уравнение ➜ c³+c²=2 ➜ Решаем на разных множествахСкачать
Эконометрика. Множественная регрессия и корреляция.Скачать
Эконометрика. Нелинейная регрессия. Степенная функция.Скачать
Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать
Лекция 2.1: Линейная регрессия.Скачать
Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать
Машинное обучение. Лекция 2. Линейная регрессияСкачать
Эконометрика. Нелинейная регрессия. Гипербола.Скачать
Прогнозирование с помощью 2-хфакторного уравнения линейной регрессииСкачать
Множественная регрессияСкачать
Корреляция: коэффициенты Пирсона и Спирмена, линейная регрессияСкачать