Уравнение реакций получения водорода из алюминия

Уравнение реакций получения водорода из алюминия

Уравнение реакций получения водорода из алюминияВ новостях по альтернативной энергетике за последнее время стали довольно часто упоминаться возможности получения энергии из алюминия. Прежде всего, имеется в виду использование алюминия для получения водорода и использования этого водорода как топлива для автомобильных и других двигателей. Попробуем с помощью обычных учебников по химии оценить возможности алюминиевой энергетики.

Прежде всего, определим количество водорода, которое можно получить из 1 кг алюминия при различных химических реакциях и его энергетическую ценность.

Для получения водорода из алюминия можно использовать свойство алюминия взаимодействовать с неконцентрированными кислотами:

а при определённых условиях и с водой

Молярная масса алюминия M=27 г/моль, что равно 0,027 кг/моль.

Молярная масса водорода, состоящего из двух атомов составляет 2г/моль, что равно 0,002 кг/моль.

Молярная масса воды равна 18 г/моль.

Во всех этих реакциях из двух молекул алюминия получается три молекулы водорода.

Значит, в реакции из каждых 0,054 кг алюминия получается 0,006 кг водорода. Во второй реакции алюминия с водой для получения Al2O3 также участвует 0,054 кг воды. В первой реакции количество воды для получения 2Аl(ОН)3 будет участвовать в два раза больше. Несложными вычислениями получаем, что при химических реакциях с участием 1 кг алюминия и как минимум 1 кг воды получаем 0,111 кг водорода, объём которого при нормальных условиях составит 1,24 м 3 .

Теперь посчитаем энергетическую ценность полученного водорода.

Теплота сгорания водорода составляет 120 МДж/кг. Для полученного количества водорода количество энергии при его сгорании составит 13,32 МДж, что после перевода в более наглядные единицы измерения составит 3,7 кВт.ч. энергии.

Если теплота сгорания бензина в среднем составляет 46 МДж/кг, то для замены энергии водорода, полученной из 1 кг алюминия понадобится 0,296 кг бензина, или примерно треть литра.

Если сравнить алюминий и другие реактивы участвующие в реакции, как по массе, так и по стоимости с бензином, то алюминиевая энергетика явно проигрывает бензину и другим традиционным видам топлива. Сравним также энергозатраты на получение алюминия с выходом энергии водорода полученного из алюминия.

В промышленности алюминий получают электролизом раствора глинозёма Аl2О3 в расплавленном криолите Na3 AlF6 с добавкой AlF3 и CaF2 при температуре 960°С и током в несколько тысяч ампер. На выплавку 1 кг алюминия расходуется 20 кВт.ч. электрической энергии.

Таким образом, расход энергии на получение алюминия в 5,4 раза больше, чем можно получить от водорода. Не смотря на то, что алюминий, как и водород один из самых распространённых на планете химических элементов, его невозможно использовать как источник энергии, предварительно не затрачивая на его производство большего количества энергии.

При обсуждении применения алюминия как энергоносителя не всегда учитываются технологические возможности применения алюминиевой энергетики. Сам процесс протекания химической реакции получения водорода из алюминия имеет определённые особенности. Алюминий относится к химически активным элементам и по активности занимает место между магнием и цинком. В обычных условиях реакции с водой не происходит из-за прочной плёнки окисла Аl2О3, который защищает алюминий от дальнейшего окисления. Чтобы алюминий в обычных условиях мог взаимодействовать с водой, необходимо удалять плёнку окисла без доступа воздуха, например, под слоем ртути, довольно ядовитым веществом. Но и тогда скорость реакции невелика. Чтобы разрушить окисную плёнку для взаимодействия алюминия с водой, необходимо подавать воду под давлением в виде пара при температуре 300 – 350 0 С. На нагрев пара необходимы время и энергия, чтобы и в пробках держать автомобиль в готовности «под парами». Поэтому удобнее пользоваться щёлочью или кислотой.

При взаимодействии алюминия со щёлочью или кислотой, плёнка постепенно разрушается и скорость реакции увеличивается. При этом увеличивается и температура реактивов, что в свою очередь ещё больше увеличивает скорость выделения водорода и повышения температуры. При других реакциях алюминиевого порошка с некоторыми реактивами, скорость протекания реакции и температура может быть большой, например, при горении термита. Алюминиевый порошок может входить в состав некоторых взрывчатых смесей. Как медленное, так и быстрое выделение тепла при химических реакциях трудно использовать для движения транспорта.

При работе автомобиля часто приходится быстро разгоняться и замедлять скорость или останавливаться. Увеличение или уменьшение мощности двигателя производится изменением количества поступающего топлива. Быстро удалить с алюминиевого порошка реактивы, чтобы точно регулировать скорость химической реакции невозможно. Поэтому автомобиль не сможет быстро набирать скорость, а после остановки некоторое время будет выделяться избыточный водород, создавая излишнее давление.

Химическим реакциям с выделением тепла (экзотермическим), предшествуют эндотермические реакции с поглощением тепла при получении реагентов. Поэтому дополнительной энергии получить не удаются. Реально мы имеем потери на переплавку шлаков, а также другие потери энергии на добычу, подготовку, транспортировку сырья и обычные тепловые потери при переплавке и электролизе алюминия.

Затраты энергии на обычную переплавку алюминиевого лома составляют примерно 5% от затрат энергии на получение алюминия электролизом расплава смеси сырья, поэтому алюминиевый лом нельзя считать бесполезными отходами. А вот реагенты, получаемые после химических реакций, перерабатывать опять в алюминий сложно и дорого.

Сейчас разработаны несколько вариантов сплавов алюминия, у которых не образуется защитной плёнки, но их надо защищать от действия воды и воздуха, да и стоимость их больше, чем обычного алюминия.

По мере прохождения химической реакции, всё большую часть смеси составляют уже отработанные реактивы и скорость реакции замедляется. Количество получаемого водорода уменьшается и двигатель, работающий на водороде, получаемом из алюминия уже «не тянет». Необходима заправка новой порцией топлива. Но, топливный бак остаётся почти полным, и не до конца прореагировавшую смесь, например, на основе алюминия с кислотой или щёлочью нужно удалять из бака и только потом можно добавлять новые реактивы. После удаления отработанных реактивов и добавления новых, обеспечить надёжную герметизацию заправочного отверстия, так как бак будет находиться под некоторым давлением.

Алюминиевая энергетика оказывается не такой уж и экологически чистой. Для перехода автомобилей на алюминиевое топливо необходимо во много раз увеличить количество электрической энергии для получения алюминия и достаточного количества других химических реактивов.

Существуют химические способы восстановления алюминия, например, восстановление его с помощью более активных химических элементов. Эти и другие похожие реакции использовали для получения самых первых образцов алюминия, когда стоимость алюминия была сравнима со стоимостью драгоценных металлов. Пожалуй, возвращаться к тем временам не стоит.

1″ :pagination=»pagination» :callback=»loadData» :options=»paginationOptions»>

Видео:Получение водорода и проверка его на чистотуСкачать

Получение водорода и проверка его на чистоту

Водород можно получить при взаимодействии алюминия с растворами соляной и серной кислот. Составьте уравнения этих реакций.

Al + HCl → AlCl3 + H2
Как видим, справа у нас 3 атома хлора в хлориде алюминия и два атома водорода в молекуле. Наименьшее кратное – шесть. Поставим коэффициенты:
Al + 6HCl → 2AlCl3 + 3H2
Осталось уравнять только алюминий:
2Al + 6HCl = 2AlCl3 + 3H2

Al + H2SO4 = Al2(SO4)3 + H2
В правой части мы видим соль, содержащую 2 атома алюминия и 3 остатка серной кислоты. Очевидно, что соответствующие коэффициенты нужны в левой части:
2Al + 3H2SO4 = Al2(SO4)3 + H2
Остаётся уравнять только водород:
2Al + 3H2SO4 = Al2(SO4)3 + 3H2

Видео:Получение чистого водорода путем химической реакции алюминия со щелочамиСкачать

Получение чистого водорода путем химической реакции алюминия со щелочами

Алюминий. Химия алюминия и его соединений

Уравнение реакций получения водорода из алюминия

Бинарные соединения алюминия

Алюминий

Положение в периодической системе химических элементов

Алюминий расположен в главной подгруппе III группы (или в 13 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение алюминия и свойства

Электронная конфигурация алюминия в основном состоянии :

+13Al 1s 2 2s 2 2p 6 3s 2 3p 1 1s Уравнение реакций получения водорода из алюминия 2s Уравнение реакций получения водорода из алюминия 2p Уравнение реакций получения водорода из алюминия 3s Уравнение реакций получения водорода из алюминия 3p Уравнение реакций получения водорода из алюминия

Электронная конфигурация алюминия в возбужденном состоянии :

+13Al * 1s 2 2s 2 2p 6 3s 1 3p 2 1s Уравнение реакций получения водорода из алюминия 2s Уравнение реакций получения водорода из алюминия 2p Уравнение реакций получения водорода из алюминия 3s Уравнение реакций получения водорода из алюминия 3p Уравнение реакций получения водорода из алюминия

Алюминий проявляет парамагнитные свойства. Алюминий на воздухе быстро образует прочные оксидные плёнки, защищающие поверхность от дальнейшего взаимодействия, поэтому устойчив к коррозии.

Физические свойства

Алюминий – лёгкий металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Обладает высокой тепло- и электропроводностью.

Уравнение реакций получения водорода из алюминия

Температура плавления 660 о С, температура кипения 1450 о С, плотность алюминия 2,7 г/см 3 .

Алюминий — один из наиболее ценных цветных металлов для вторичной переработки. На протяжении последних лет, цена на лом алюминия в пунктах приема непреклонно растет. По ссылке можно узнать о том, как сдать лом алюминия.

Нахождение в природе

Алюминий — самый распространенный металл в природе, и 3-й по распространенности среди всех элементов (после кислорода и кремния). Содержание в земной коре — около 8%.

В природе алюминий встречается в виде соединений:

Уравнение реакций получения водорода из алюминия

Корунд Al2O3. Красный корунд называют рубином, синий корунд называют сапфиром.

Уравнение реакций получения водорода из алюминия

Способы получения

Алюминий образует прочную химическую связь с кислородом. Поэтому традиционные способы получения алюминия восстановлением из оксида протекают требуют больших затрат энергии. Для промышленного получения алюминия используют процесс Холла-Эру. Для понижения температуры плавления оксид алюминия растворяют в расплавленном криолите (при температуре 960-970 о С) Na3AlF6, а затем подвергают электролизу с углеродными электродами. При растворении в расплаве криолита оксид алюминия распадается на ионы:

На катоде происходит восстановление ионов алюминия:

Катод: Al 3+ +3e → Al 0

На аноде происходит окисление алюминат-ионов:

Суммарное уравнение электролиза расплава оксида алюминия:

Лабораторный способ получения алюминия заключается в восстановлении алюминия из безводного хлорида алюминия металлическим калием:

AlCl3 + 3K → Al + 3KCl

Качественные реакции

Качественная реакция на ионы алюминия — взаимодействие избытка солей алюминия с щелочами . При этом образуется белый аморфный осадок гидроксида алюминия.

Например , хлорид алюминия взаимодействует с гидроксидом натрия:

AlCl3 + 3NaOH → Al(OH)3 + 3NaCl

Уравнение реакций получения водорода из алюминия

При дальнейшем добавлении щелочи амфотерный гидроксид алюминия растворяется с образованием тетрагидроксоалюмината:Уравнение реакций получения водорода из алюминия

Обратите внимание , если мы поместим соль алюминия в избыток раствора щелочи, то белый осадок гидроксида алюминия не образуется, т.к. в избытке щелочи соединения алюминия сразу переходят в комплекс:

AlCl3 + 4NaOH = Na[Al(OH)4] + 3NaCl

Соли алюминия можно обнаружить с помощью водного раствора аммиака. При взаимодействии растворимых солей алюминия с водным раствором аммиака также в ыпадает полупрозрачный студенистый осадок гидроксида алюминия.

AlCl3 + 3NH3·H2O = Al(OH)3 ↓ + 3NH4Cl

Al 3+ + 3NH3·H2O = Al(OH)3 ↓ + 3NH4 +

Видеоопыт взаимодействия раствора хлорида алюминия с раствором аммиака можно посмотреть здесь.

Химические свойства

1. Алюминий – сильный восстановитель . Поэтому он реагирует со многими неметаллами .

1.1. Алюминий реагируют с галогенами с образованием галогенидов:

1.2. Алюминий реагирует с серой с образованием сульфидов:

1.3. Алюминий реагируют с фосфором . При этом образуются бинарные соединения — фосфиды:

Al + P → AlP

1.4. С азотом алюминий реагирует при нагревании до 1000 о С с образованием нитрида:

2Al + N2 → 2AlN

1.5. Алюминий реагирует с углеродом с образованием карбида алюминия:

1.6. Алюминий взаимодействует с кислородом с образованием оксида:

Видеоопыт взаимодействия алюминия с кислородом воздуха (горение алюминия на воздухе) можно посмотреть здесь.

2. Алюминий взаимодействует со сложными веществами:

2.1. Реагирует ли алюминий с водой? Ответ на этот вопрос вы без труда найдете, если покопаетесь немного в своей памяти. Наверняка хотя бы раз в жизни вы встречались с алюминиевыми кастрюлями или алюминиевыми столовыми приборами. Такой вопрос я любил задавать студентам на экзаменах. Что самое удивительное, ответы я получал разные — у кого-то алюминий таки реагировал с водой. И очень, очень многие сдавались после вопроса: «Может быть, алюминий реагирует с водой при нагревании?» При нагревании алюминий реагировал с водой уже у половины респондентов))

Тем не менее, несложно понять, что алюминий все-таки с водой в обычных условиях (да и при нагревании) не взаимодействует. И мы уже упоминали, почему: из-за образования оксидной пленки . А вот если алюминий очистить от оксидной пленки (например, амальгамировать), то он будет взаимодействовать с водой очень активно с образованием гидроксида алюминия и водорода:

2Al 0 + 6 H2 + O → 2 Al +3 ( OH)3 + 3 H2 0

Уравнение реакций получения водорода из алюминия

Амальгаму алюминия можно получить, выдержав кусочки алюминия в растворе хлорида ртути ( II ):

3HgCl2 + 2Al → 2AlCl3 + 3Hg

Уравнение реакций получения водорода из алюминия

Видеоопыт взаимодействия амальгамы алюминия с водой можно посмотреть здесь.

2.2. Алюминий взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой). При этом образуются соль и водород.

Например , алюминий бурно реагирует с соляной кислотой :

2Al + 6HCl = 2AlCl3 + 3H2

Уравнение реакций получения водорода из алюминия

2.3. При обычных условиях алюминий не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV), сульфат алюминия и вода:

2.4. Алюминий не реагирует с концентрированной азотной кислотой также из-за пассивации.

С разбавленной азотной кислотой алюминий реагирует с образованием молекулярного азота:

При взаимодействии алюминия в виде порошка с очень разбавленной азотной кислотой может образоваться нитрат аммония:

2.5. Алюминий – амфотерный металл, поэтому он взаимодействует с щелочами . При взаимодействии алюминия с раствором щелочи образуется тетрагидроксоалюминат и водород:

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2

Уравнение реакций получения водорода из алюминия

Видеоопыт взаимодействия алюминия со щелочью и водой можно посмотреть здесь.

Алюминий реагирует с расплавом щелочи с образованием алюмината и водорода:

2Al + 6NaOH → 2Na3AlO3 + 3H2

Эту же реакцию можно записать в другом виде (в ЕГЭ рекомендую записывать реакцию именно в таком виде):

2Al + 6NaOH → 2NaAlO2 + 3H2↑ + 2Na2O

2.6. Алюминий восстанавливает менее активные металлы из оксидов . Процесс восстановления металлов из оксидов называется алюмотермия .

Например , алюминий вытесняет медь из оксида меди (II). Реакция очень экзотермическая:

2Al + 3CuO → 3Cu + Al2O3

Уравнение реакций получения водорода из алюминия

Еще пример : алюминий восстанавливает железо из железной окалины, оксида железа (II, III):

Восстановительные свойства алюминия также проявляются при взаимодействии его с сильными окислителями: пероксидом натрия, нитратами и нитритами в щелочной среде, перманганатами, соединениями хрома (VI):

🎥 Видео

37. Водород. Методы полученияСкачать

37. Водород. Методы получения

Водород и его получение через алюминийСкачать

Водород и его получение через алюминий

Водород/химические свойства водорода/8 классСкачать

Водород/химические свойства водорода/8 класс

ВОДОРОД ПО ТРЕБОВАНИЮ. УПРАВЛЯЕМАЯ РЕАКЦИЯСкачать

ВОДОРОД ПО ТРЕБОВАНИЮ.  УПРАВЛЯЕМАЯ РЕАКЦИЯ

Реакции металлов с кислородом и водой. 8 класс.Скачать

Реакции металлов с кислородом и водой. 8 класс.

ВОДОРОД БЕЗ ЭЛЕКТРИЧЕСТВАСкачать

ВОДОРОД БЕЗ ЭЛЕКТРИЧЕСТВА

Составление уравнений химических реакций. 1 часть. 8 класс.Скачать

Составление уравнений химических реакций.  1 часть. 8 класс.

Получение водорода из Al + KOHСкачать

Получение водорода из Al + KOH

Водород/способы получения/реакции/8 классСкачать

Водород/способы получения/реакции/8 класс

🔥 ЭЛЕКТРОЛИЗ ВОДЫ. ЛУЧШИЕ ЭЛЕКТРОДЫ ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И КИСЛОРОДА.Скачать

🔥 ЭЛЕКТРОЛИЗ ВОДЫ. ЛУЧШИЕ ЭЛЕКТРОДЫ ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И КИСЛОРОДА.

Решаем два варианта Добротина за 2 часаСкачать

Решаем два варианта Добротина за 2 часа

Водород. 8 класс.Скачать

Водород. 8 класс.

Получение водородаСкачать

Получение водорода

Водород и кислород. 1 часть. 8 класс.Скачать

Водород и кислород. 1 часть. 8 класс.

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Получение водорода в домашних условияхСкачать

Получение водорода в домашних условиях

Опыты по химии. Лабораторный способ получения и собирания водорода, проверка водорода на чистотуСкачать

Опыты по химии. Лабораторный способ получения и собирания водорода, проверка водорода на чистоту

Получение водорода из алюминия, медного купороса и пищевой соли/Production of hydrogenСкачать

Получение водорода из алюминия, медного купороса и пищевой соли/Production of hydrogen
Поделиться или сохранить к себе: