Видео:Йод - САМЫЙ КРАСОЧНЫЙ ЭЛЕМЕНТ НА ЗЕМЛЕ!Скачать
Йодоводород, йодоводородная кислота (HI)
Способы получения йодоводорода
В промышленности
- Взаимодействие йода с гидразином:
- Взаимодействие простых веществ происходит только при нагревании и протекает не до конца:
В лаборатории
- Вытеснение HI из йодидов ортофосфорной кислотой:
- гидролиз галогенидов неметаллов
- восстановление свободного йода:
Физические свойства йодоводорода
Водный раствор HI — иодоводородная кислота. Это бесцветная жидкость с резким запахом. Иодоводородная кислота является сильной кислотой.
В 100 г воды при обычном давлении и 20 °C растворяется 132 г HI, а при 100 °C — 177 г.
Химические свойства йодоводорода
Йодоводород – сильный восстановитель.
- Окисляется кислородом воздуха, приобретая бурый цвет:
- Взаимодействует с концентрированной серной кислотой с образованием сероводорода и свободного йода:
- Окисляется другими неметаллами:
- Окисляется даже слабыми окислителями:
- Присоединяется к кратным связям органических соединений (реакция электрофильного присоединения):
HI + CH3 – CH = CH2 → CH3 – CHI – CH3
- Образуют полииоды, присоединяя элементарный иод:
Кислородные кислоты и окислы иода
Видео:Химическая реакция йода и алюминия.Скачать
Иодноватистая кислота (HIO)
Иодноватистая кислота HIO — существует только в очень разбавленных растворах, окрашена в зеленоватый цвет. Очень неустойчива.
Получение йодноватистой кислоты
Образуется при взаимодействии иода с водой. Реакция обратима, а равновесие сильно сдвинуто в сторону исходных веществ:
Химические свойства йодноватистой кислоты
- Проявляет амфотерные свойства – слабая кислота и слабое основание. Диссоциирует и как кислота, и как основание:
- Разлагается при комнатной температуре с течением времени:
- Разлагается щелочами:
3HIO + 3NaOH = 2NaI + NaIO3 + 3H2O
Соли иодноватистой кислоты называют гипоиодитами.
Видео:Йод и всё что вы хотели знать про него. Химия – просто.Скачать
Иодноватая кислота (HIO3)
Йодноватая кислота HIO3— белое кристаллическое вещество со стеклянным блеском и горьковато-кислым вкусом. При обычной температуре устойчива. Сильная одноосновная кислота, имеющая склонность к полимеризации в концентрированных растворах
Получение иодноватой кислоты
Получают в водных растворах при окислении иода хлором, пероксидом водорода либо дымящей азотной кислотой:
Химические свойства йодноватой кислоты
- хорошо растворима в воде:
- При медленном нагревании до 110ºС она частично плавится, частично образует ангидроиодноватую кислоту HI3O8.
При нагревании HIO3 выше 230°C образует порошок иодноватого ангидрида I2O5, при растворении в воде, которого вновь образуется иодноватая кислота:
- Нейтрализуется щелочами:
- Проявляет окислительные свойства:
- При электролизе йодноватой кислоты образуется йодная кислота:
Соли иодноватой кислоты — иодаты
- Они довольно устойчивы и разлагаются при температуре выше 400 °C.
- Обладают сильными окислительными свойствами в кислой среде:
- При электролизе раствора иодаты распадаются на водород и периодаты:
Видео:реакция крахмала с йодомСкачать
Иодная кислота (HIO4)
Иодная кислота HIO4 — белое гигроскопичное кристаллическое вещество. В водном растворе Н5IO6 является слабой кислотой. В растворах образует гидраты состава mHIO4•nН2О, например, H3IO5, H4I2O9, H5IO6 и т. д Их устойчивость зависит от концентрации раствора. Проявляет сильные окислительные свойства
Получение йодной кислоты
- При воздействии хлорной кислоты на иод в присутствии катализатора:
- Электролизом раствора иодноватой кислоты:
Химические свойства йодной кислоты
- При растворении в воде образует гидраты:
- НIO4 разлагается при нагревании выше 122ºС:
- Щелочами нейтрализуется не полностью:
- Сильные окислительные свойства:
Cоли йодной кислоты — периодаты
Йодная кислота может образовать соли, содержащие ионы, IO6 5− , IO5 3− , IO4 — и I2O9 4− — соответственно орто-, мезо-, мета- и дипериодаты.
Получение периодатов
Периодаты можно получить при окислении иодатов сильными окислителями в щелочной среде:
Химические свойства периодатов
- Периодаты — сильные окислители, при нагревании выше 300ºС разлагаются с выделением кислорода:
- Разлагаются концентрированными кислотами:
- Разлагаются концентрированными щелочами:
- Проявляют окислительные свойства:
Оксиды йода
Видео:Реакции металлов с кислородом и водой. 8 класс.Скачать
Пентаоксид (пятиокись) иода, йодноватый ангидрид (I2O5)
Иодноватый ангидрид I2O5 – белое, гигроскопичное вещество. На свету темнеет из-за частичного разложения.
Получение пентаоксида йода
Получают при медленном нагревании йодноватой или йодной кислоты
Химические свойства пентаоксида йода
- На свету разлагается:
- Как кислотный оксид реагирует с водой, со щелочами:
- Легко фторируется:
- Восстанавливается монооксидом углерода:
Видео:Взаимодействие металлов с кислотами. 8 класс.Скачать
Химические свойства йода
Образует ряд кислот: иодоводородную (HI), иодноватистую (HIO), иодистую (HIO2), иодноватую (HIO3), иодную (HIO4).
С металлами иод при легком нагревании энергично взаимодействует, образуя иодиды:
С водородом иод реагирует только при нагревании и не полностью, образуя иодоводород:
Атомарный иод — окислитель, менее сильный, чем хлор и бром. Сероводород H2S , Na2S2O3 и другие восстановители восстанавливают его до иона I−:
I2 + H2S = S + 2HI
При растворении в воде иод частично реагирует с ней:
I2 + H2O ↔ HI + HIO, образуя гидрат йода
Йод окисляется концентрированной кислотой:
3I2 + 10HNO3 → 6HIO3 + 10NO2 + 2H2O.
С некоторыми элементами — углеродом, азотом, кислородом, серой и селеном — йод непосредственно не соединяется. Несовместим он и с эфирными маслами, растворами аммиака, белой осадочной ртутью (образуется взрывчатая смесь).
Конфигурация внешних электронов атома Йода 5s25p5. B соответствии с этим йод проявляет в соединениях переменную валентность (степень окисления): -1; +1; +3; +5;+7.
Хлор и другие сильные окислители в водных растворах переводят его в IO3-.
В горячих водных растворах щелочей образуются Йодид и Йодат.
I2 + 2KOH = KI + KIO + H2O
3KIO = 2KI + KIO3
При нагревании йод взаимодействует с фосфором:
А йодид фосфора в свою очередь взаимодействует с водой:
2PI3 + H2O = 3HI + H2 (PHO3)
При взаимодействии H2SO4 и KI образуется продукт, окрашенный темно-бурый цвет, и сульфатная кислота восстанавливается до H2S
8KI + 9H2SO4 = 4I2 + 8KHSO4 + SO2 + H2O
Йод легко реагирует с алюминием, причем катализатором в этой реакции является вода:
3I2 + 2AL = 2ALI3
Йод может также окислять сернистую кислоту и сероводород:
H2SO3 + I2 + H2O = H2SO4 + HI
H2S + I2 = 2HI + S
При окислении йодид-иона йодат-ионом в кислой среде образуется свободный йод:
5KI + KIO3 + 3H2SO4 = 3I2 + 3K2SO4 + 3H2O
При нагревании йодатной кислоты она распадается, с образованием наиболее стойкого оксида галогенов:
2HIO3 = I2O5 + H2O
Оксид йода (V) проявляет окислительные свойства. Его используют при анализе CO:
5CO + I2O5 = I2 + 5CO2
Пары Йода ядовиты и раздражают слизистые оболочки. На кожу Йод оказывает прижигающее и обеззараживающее действие. Пятна от Йода смывают растворами соды или тиосульфата натрия.
Применение йода
В металлургии(I2) Для деревообработки(KI, KI3)
В аналитике(иодометрия) В пищевых добавках(NaI) В медецине
Фтор
Фтор— элемент 17-й группы периодической таблицы химических элементов (по устаревшей классификации — элемент главной подгруппы VII группы), второго периода, с атомным номером . Фтор — чрезвычайно химически активный неметалл и самый сильный окислитель, является самым лёгким элементом из группы галогенов. Простое вещество фтор при нормальных условиях — двухатомный газ (формула F2) бледно-жёлтого цвета с резким запахом, напоминающим озон или хлор. Очень ядовит.
Видео:ПОЛУЧЕНИЕ ОГНЯ ИЗ ЙОДА И АЛЮМИНИЯСкачать
Химия йода и его соединений
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Химия йода и его соединений
История открытия этого элемента, напрямую связана с именем французского химика–технолога и фармацевта Бернара Куртуа, родившегося в 1777 и умершего в 1838 году. Свое великое открытие ученый сделал в 1811 г. В этот период, как раз, когда шли Наполеоновский войны, государство нуждалось в больших объемах селитры, которая использовалась для производства пороха. Страна уже имела большие запасы натриевой селитры, но она была малопригодна для производства пороха, так как быстро сырела на воздухе. Однако, уже был известен способ превращения натриевой селитры в калийную, с использованием золы морских водорослей. Этим и занимался Куртуа в своей лаборатории, т.е. в тот период он являлся производителем селитры. По ходу своей работы он заметил, что в золе водорослей находится какое-то вещество, которое разъедает железные и медные сосуды, но ни он сам и ни один из его помощников не знали, как это вещество выделить. Очень распространена версия о том, что совершить открытие Куртуа помог его кот. Говорят, что Бернар Куртуа не только работал в своей лаборатории, но и зачастую любил обедать в ней. А его кот часто находился рядом с ним. В один из таких дней, что-то напугало кота, и он бросился бежать, столкнув на своем пути несколько колб, в одной из которых находился спиртовой экстракт золы водорослей, а в другой серная кислота. Колбы разбились и находящиеся в них вещества смешались вместе, при этом в воздух поднялись фиолетовые пары, а затем выпали в мелкие темные кристаллики вокруг. Действительно, при действие серной кислоты на йодные соли щелочных металлов (NaI, KI), выделяется йодоводород (HI), который является непрочным веществом и в присутствие серной кислоты разлагается с образованием молекулярного йода и некоторых других продуктов: H 2 SO 4 + 8HI = H 2 S + 4I 2 + 4H 2 O
Куртуа сильно заинтересовался наблюдаемым явлением и хорошо изучил новое вещество. Некоторое время спустя Куртуа сообщил о своем открытие двум друзьям Н. Клеману и Ш.Б. Дезорму. А спустя еще какое-то время, новым элементом заинтересовались двое знаменитых ученых – француз Ж.Л. Гей-Люссак и англичанин Г. Дэви. Начав исследования данного элемента, эти ученые долгое время вели между собой горячие научные споры, а когда пришло время выбирать название химического элемента Гей-Люссак предложил – Йод, а Дэви – Йодин, причем оба руководствовались цветом (от греч. Iodes – фиолетовый).
Йод при комнатной температуре представляет собой темно-фиолетовые кристаллы со слабым блеском. При нагревании под атмосферным давлением он сублимируется (возгоняется), превращаясь в пар фиолетового цвета; при охлаждении пары йода кристаллизуются, минуя жидкое состояние. Этим пользуются на практике для очистки йода от нелетучих примесей. Мало растворим в воде, хорошо во многих органических растворителях.
Видео:Химические свойства металлов. 9 класс.Скачать
Нахождение в природе
Йод — редкий элемент. Он чрезвычайно сильно рассеян в природе и, будучи далеко не самым распространенным элементом, присутствует практически везде. Йод находится в виде йодидов в морской воде ( 20—30 мг на тонну морской воды). Присутствует в живых организмах, больше всего в водорослях ( 2,5 г на тонну высушенной морской капусты, ламинарии). Известен в природе также в свободной форме, в качестве минерала, но такие находки единичны, — в термальных источниках Везувия и на острове Вулькано (Италия). Запасы природных йодидов оцениваются в 15 млн тонн , 99 % запасов находятся в Чили и Японии. В настоящее время в этих странах ведётся интенсивная добыча йода.
Сырьём для промышленного получения йода в России служат нефтяные буровые воды
Природный йод состоит только из одного изотопа — йода-127
Строение атома и атомные характеристики йода
Электронная формула йода: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 5 .
Конфигурация внешнего электронного слоя — 5s 2 p 5 .
В соединениях проявляет степени окисления −1, 0, +1, +3, +5 и +7 (валентности I, III, V и VII).
Йод относится к группе галогенов.
Химически йод довольно активен, хотя и в меньшей степени, чем хлор и бром.
Известной качественной реакцией на йод является его взаимодействие с крахмалом, при котором наблюдается синее окрашивание в результате образования соединения включения.
С металлами йод при легком нагревании энергично взаимодействует, образуя йодиды:
Йод легко реагирует с алюминием, причем катализатором в этой реакции является вода:
С водородом йод реагирует только при нагревании и не полностью, образуя йодоводород:
Йод является окислителем, менее сильным, чем фтор, хлор и бром. Сероводород H 2 S, Na 2 S 2 O 3 и другие восстановители восстанавливают его до иона I − :
Последняя реакция также используется в аналитической химии для определения йода.
Йод может также окислять сернистую кислоту:
При растворении в воде йод частично реагирует с ней
Йод окисляется концентрированной кислотой:
В горячих водных растворах щелочей образуются йодид и йодат
I 2 + 2KOH = KI + KIO + H2O
3KIO = 2KI + KIO 3
При нагревании йод взаимодействует с фосфором:
а йодид фосфора в свою очередь взаимодействует с водой, образуя йодоводород и фосфоновую (трив. фосфористую) кислоту:
Образует ряд кислот: йодоводородную (HI), йодноватистую (HIO), йодистую (HIO 2 ), йодноватую (HIO 3 ), йодную (HIO 4 ).
Йодоводород, газ, очень похож по своим свойствам на хлороводород, но отличается более выраженными восстановительными свойствами. Очень хорошо растворим в воде (425:1), концентрированный раствор йодоводорода дымит вследствие выделения паров HI, образующего с водяными парами туман.
В водном растворе принадлежит к числу наиболее сильных кислот.
Йодоводород уже при комнатной температуре постепенно окисляется кислородом воздуха, причем под действием света реакция сильно ускоряется:
Восстановительные свойства йодоводорода заметно проявляются при взаимодействии с концентрированной серной кислотой, которая при этом восстанавливается до свободной серы или даже до H 2 S. Поэтому HI невозможно получить действием серной кислоты на иодиды. Обычно йодоводород получают действием воды на соединения йода с фосфором — РI 3 . Последний подвергается при этом полному гидролизу, образуя фосфористую кислоту и йодоводород: РI 3 + ЗН 2 О = Н 3 РО 3 + 3HI
Раствор йодоводорода (вплоть до 50%-ной концентрации) можно также получить, пропуская H 2 S в водную суспензию йода.
Йодоводород реагирует с хлоридом железа (III) с образованием молекулярного йода:
или с сульфатом железа (III):
Йодоводород легко окисляется соединениями азота, например , оксидом азота (IV) :
💥 Видео
7 ПРОСТЫХ ХИМИЧЕСКИХ ОПЫТОВ!Скачать
Галилео. Эксперимент. Алюминий с йодомСкачать
Сколько Йода я получу из обычных ВОДОРОСЛЕЙ?Скачать
7 ПРОСТЫХ ХИМИЧЕСКИХ ОПЫТОВ ДЛЯ ДОМА!Скачать
Все реакции с металлами за 1 урок | ЕГЭ по химии 2024 | Екатерина СтрогановаСкачать
Взаимодействие алюминия с йодомСкачать
Получение ЙОДИДА РТУТИ HgI2. Реакция РТУТИ и ЙОДА. Опыты по химии.Chemical experiment.Mercury iodideСкачать
Получаем йод из спиртовой настойки (химия)Скачать
Реакция йода с алюминием (огонь от капли воды)Скачать
Качественная реакция на йодСкачать
Взрывная наука: Нитрид трииодаСкачать
Получение Йодоформа. Реакция Ацетона, Йода и Гидрооксида Натрия. Реакция C3H6O, I2 и NaOH.Скачать