Уравнение реакции серы с углеродом

Содержание
  1. Сероуглерод (CS2): структура, свойства, применение, риски
  2. Содержание:
  3. Состав
  4. Номенклатура
  5. Свойства
  6. Физическое состояние
  7. Молекулярный вес
  8. Точка плавления или затвердевания
  9. Точка кипения
  10. Точка возгорания
  11. температура самовоспламенения
  12. Плотность
  13. Давление газа
  14. Растворимость
  15. Химические свойства
  16. Получение
  17. Присутствие в природе
  18. Приложения
  19. В химической промышленности
  20. В производстве вискозы и целлофана
  21. При производстве тетрахлорметана
  22. В различных приложениях
  23. Древнее использование
  24. Риски
  25. Составьте уравнения реакций: а) серы с углем; б) серы с алюминием (укажите степени окисления атомов и расставьте коэффициенты с помощью
  26. Ваш ответ
  27. решение вопроса
  28. Похожие вопросы
  29. Углерод. Химия углерода и его соединений
  30. Углерод
  31. Положение в периодической системе химических элементов
  32. Электронное строение углерода
  33. Физические свойства
  34. Качественные реакции
  35. Соединения углерода
  36. Химические свойства
  37. Карбиды
  38. Оксид углерода (II)
  39. Строение молекулы и физические свойства
  40. Способы получения
  41. Химические свойства
  42. Оксид углерода (IV)
  43. Строение молекулы и физические свойства
  44. Способы получения
  45. Химические свойства
  46. Карбонаты и гидрокарбонаты
  47. Гидролиз карбонатов и гидрокарбонатов

Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Сероуглерод (CS2): структура, свойства, применение, риски

Сероуглерод (CS2): структура, свойства, применение, риски — Наука

Видео:Уравнивание реакций горения углеводородовСкачать

Уравнивание реакций горения углеводородов

Содержание:

В сероуглерод Это соединение, образованное объединением атома углерода (C) и двух атомов серы (S). Его химическая формула — CS2. Это бесцветная или слегка желтоватая жидкость с неприятным запахом из-за содержащихся в ней примесей (соединений серы). Когда он чистый, его запах мягкий и сладкий, похожий на хлороформ или эфир.

Он возникает естественным образом в результате воздействия солнечного света на органические молекулы, содержащиеся в морской воде. Кроме того, он образуется в болотных водах, а также извергается из вулканов вместе с другими газами.

Сероуглерод — это летучая жидкость, которая также легко воспламеняется, поэтому его следует хранить вдали от огня и искр или устройств, которые могут их произвести, даже электрических лампочек.

Он обладает способностью растворять большое количество соединений, материалов и элементов, таких как фосфор, сера, селен, смолы, лаки и т. Д. Поэтому он находит применение в качестве растворителя.

Он также является посредником в различных промышленных химических реакциях, таких как производство искусственного шелка или искусственного шелка.

С ним нужно обращаться осторожно и использовать защитные приспособления, поскольку он очень токсичен и опасен.

Видео:Соединения серы. 9 класс.Скачать

Соединения серы. 9 класс.

Состав

Сероуглерод имеет один атом углерода и два атома серы по бокам от него.

Связи между атомом углерода и атомами серы ковалентные и двойные, поэтому они очень прочные. Молекула CS2 он имеет линейную и симметричную структуру.

Видео:Химия. 9 класс (Урок№17 - Углерод. Аллотропные модификации углерода.Химические свойства. Адсорбция.)Скачать

Химия. 9 класс (Урок№17 - Углерод. Аллотропные модификации углерода.Химические свойства. Адсорбция.)

Номенклатура

Видео:Химия 9 класс (Урок№11 - Сера. Серовород. Сульфиды.)Скачать

Химия 9 класс (Урок№11 - Сера. Серовород. Сульфиды.)

Свойства

Видео:Составление уравнений химических реакций. 1 часть. 8 класс.Скачать

Составление уравнений химических реакций.  1 часть. 8 класс.

Физическое состояние

От бесцветной до желтоватой жидкости.

Видео:Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

Молекулярный вес

Видео:Решение задач на термохимические уравнения. 8 класс.Скачать

Решение задач на термохимические уравнения. 8 класс.

Точка плавления или затвердевания

Видео:Углерод: химические свойства, аллотропия #углерод #химшкола #неметаллы #егэхимияСкачать

Углерод: химические свойства, аллотропия #углерод #химшкола #неметаллы #егэхимия

Точка кипения

Видео:Химия Просто! Что будет, если Модифицировать Картошку? Аллотропные модификации в химииСкачать

Химия Просто! Что будет, если Модифицировать Картошку? Аллотропные модификации в химии

Точка возгорания

-30 ºC (метод закрытой чашки).

Видео:Опыты по химии. Горение серы в кислородеСкачать

Опыты по химии. Горение серы в кислороде

температура самовоспламенения

Видео:ОКСИДЫ ХИМИЯ — Что такое Оксиды? Химические свойства Оксидов | Реакция ОксидовСкачать

ОКСИДЫ ХИМИЯ — Что такое Оксиды? Химические свойства Оксидов | Реакция Оксидов

Плотность

Жидкость = 1,26 г / см 3 при 20 ° С.

Пар = 2,67 раза больше воздуха.

Его пары более чем в два раза тяжелее воздуха, а жидкость тяжелее воды.

Видео:9.1 Аллотропия веществСкачать

9.1 Аллотропия веществ

Давление газа

279 мм рт. Ст. При 25 ° C.

Это высокое давление пара.

Видео:Химические Цепочки — Решение Цепочек Химических Превращений // Химия 8 классСкачать

Химические Цепочки —  Решение Цепочек Химических Превращений // Химия 8 класс

Растворимость

Очень мало растворим в воде: 2,16 г / л при 25 ° C. Растворим в хлороформе. Смешивается с этанолом, метанолом, эфиром, бензолом, хлороформом и четыреххлористым углеродом.

Видео:Химия 9 класс — Как определять Степень Окисления?Скачать

Химия 9 класс — Как определять Степень Окисления?

Химические свойства

CS2 он легко испаряется при комнатной температуре, так как его температура кипения очень низкая, а давление пара очень высокое.

Сероуглерод очень легко воспламеняется. Его пары очень легко воспламеняются даже при нагревании от электрической лампочки. Это означает, что он очень быстро реагирует с кислородом:

Тот факт, что он имеет высокое давление пара при комнатной температуре, делает опасным находиться рядом с пламенем.

При нагревании до разложения он может легко взорваться с выделением токсичных газов оксида серы. При температуре выше 90 ° C он самовоспламеняется.

Он разлагается при длительном хранении. Агрессивно в отношении меди и ее сплавов. Он также вступает в реакцию с некоторыми пластиками, каучуками и покрытиями.

Реагирует при определенных условиях с водой с образованием карбонилсульфида OCS, диоксида углерода CO.2 и сероводород H2S:

Со спиртами (ROH) в щелочной среде образует ксантогенаты (RO-CS-SNa):

CS2 + ROH + NaOH → H2O + RO — C (= S) –SNa

Видео:СЕРНАЯ КИСЛОТА разбавленная и концентрированная - в чем отличия? | Химия ОГЭСкачать

СЕРНАЯ КИСЛОТА разбавленная и концентрированная - в чем отличия? | Химия ОГЭ

Получение

Сероуглерод коммерчески получают реакцией серы с углеродом. Процесс проводят при температуре 750-900 ° С.

Вместо угля также можно использовать метан или природный газ, и даже могут использоваться этан, пропан и пропилен, и в этом случае реакция протекает при 400-700 ° C с высоким выходом.

Его также можно получить реакцией природного газа с сероводородом H2S при очень высокой температуре.

Видео:Решение цепочек превращений по химииСкачать

Решение цепочек превращений по химии

Присутствие в природе

CS2 это натуральный продукт, присутствующий в атмосфере в очень небольших количествах (следы). Он образуется фотохимически в поверхностных водах.

Воздействие солнечного света на определенные соединения, присутствующие в морской воде, такие как цистеин (аминокислота), приводит к образованию сероуглерода.

Он также выделяется естественным путем во время извержений вулканов и в небольших количествах обнаруживается на болотах.

Обычно мы вдыхаем его в очень небольших количествах, и он присутствует в некоторых продуктах питания. Он также содержится в сигаретном дыме.

В окружающей среде он разлагается солнечным светом. На земле он движется сквозь него. Некоторые микроорганизмы в почве разрушают его.

Видео:Горение угля в кислородеСкачать

Горение угля в кислороде

Приложения

Видео:переход аллотропных модификаций СЕРЫ при нагреванииСкачать

переход  аллотропных  модификаций  СЕРЫ  при нагревании

В химической промышленности

Сероуглерод является важным химическим соединением, поскольку он используется для получения других химикатов. Он может действовать как промежуточный химический продукт.

Он также используется в качестве технологического растворителя, например, для растворения фосфора, серы, селена, брома, йода, жиров, смол, восков, лаков и камедей.

Это позволяет, среди прочего, производить фармацевтические продукты и гербициды.

Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

В производстве вискозы и целлофана

С CS2 Получают ксантаты, которые представляют собой соединения, используемые при производстве вискозы и целлофана.

Для получения искусственного шелка или искусственного шелка используется целлюлоза, которую обрабатывают щелочью и сероуглеродом CS.2 и превращается в ксантогенат целлюлозы, растворимый в щелочи. Этот раствор вязкий и поэтому называется «вязким».

Вискоза проталкивается через очень маленькие отверстия в кислотной ванне. Здесь ксантогенат целлюлозы снова превращается в целлюлозу, которая нерастворима, и образуются длинные блестящие нити.

Нити или волокна могут быть скручены в материал, известный как вискоза.

(1) Целлюлоза + NaOH → Щелочная целлюлоза

ROH + NaOH → RONa

(2) Щелочная целлюлоза + сероуглерод → ксантогенат целлюлозы

RONa + S = C = S → RO — C (= S) –SNa

(3) Ксантогенат целлюлозы + кислота → Целлюлоза (волокна)

RO — C (= S) –SNa + кислота → ROH

Если целлюлозу осаждают путем пропускания ксантогената через узкую щель, целлюлоза регенерируется в виде тонких листов, составляющих целлофан. Он смягчается глицерином и используется в качестве защитной пленки для предметов.

При производстве тетрахлорметана

Сероуглерод реагирует с хлором Cl2 дать четыреххлористый углерод CCl4, который является важным негорючим растворителем.

В различных приложениях

Сероуглерод участвует в холодной вулканизации каучуков, служит промежуточным продуктом при производстве пестицидов и используется для получения катализаторов в нефтяной промышленности и при производстве бумаги.

Ксантаты, приготовленные с CS2 Они используются при флотации полезных ископаемых.

Древнее использование

CS2 это яд для живых организмов. Раньше его использовали для уничтожения вредителей, таких как крысы, сурки и муравьи, выливая жидкость в любое закрытое пространство, в котором эти животные жили (норы и муравейники).

При использовании для этой цели густые токсичные пары уничтожали все живые организмы, находившиеся в замкнутом пространстве.

Он также использовался как глистогонное средство для животных и для удаления личинок мясной мухи из желудка лошадей.

В сельском хозяйстве он использовался как инсектицид и нематоцид, для фумигации почвы, для фумигации питомников, зернохранилищ, силосов и зерновых мельниц. Также были опрысканы железнодорожные вагоны, корабли и баржи.

Все эти виды использования были запрещены из-за высокой воспламеняемости и токсичности CS.2.

Риски

CS2 он легко воспламеняется. Многие из их реакций могут вызвать пожар или взрыв. Смеси его паров с воздухом взрывоопасны. При воспламенении выделяет раздражающие или токсичные газы.

Сероуглерод нельзя сливать в канализацию, так как в трубках остается смесь CS.2 и воздух, который может вызвать взрыв при случайном воспламенении.

Его пары самопроизвольно воспламеняются при контакте с искрами или горячими поверхностями.

Сероуглерод сильно раздражает глаза, кожу и слизистые оболочки.

При вдыхании или проглатывании он серьезно влияет на центральную нервную систему, сердечно-сосудистую систему, глаза, почки и печень. Он также может всасываться через кожу, вызывая повреждение.

Составьте уравнения реакций: а) серы с углем; б) серы с алюминием (укажите степени окисления атомов и расставьте коэффициенты с помощью

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,292
  • гуманитарные 33,622
  • юридические 17,900
  • школьный раздел 607,160
  • разное 16,830

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Углерод. Химия углерода и его соединений

Уравнение реакции серы с углеродом

Углерод

Положение в периодической системе химических элементов

Углерод расположен в главной подгруппе IV группы (или в 14 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение углерода

Электронная конфигурация углерода в основном состоянии :

+6С 1s 2 2s 2 2p 2 1s Уравнение реакции серы с углеродом 2s Уравнение реакции серы с углеродом 2p Уравнение реакции серы с углеродом

Электронная конфигурация углерода в возбужденном состоянии :

+6С * 1s 2 2s 1 2p 3 1s Уравнение реакции серы с углеродом 2s Уравнение реакции серы с углеродом 2p

Атом углерода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 1 неподеленную электронную пару в основном энергетическом состоянии и 4 неспаренных электрона в возбужденном энергетическом состоянии.

Степени окисления атома углерода — от -4 до +4. Характерные степени окисления -4, 0, +2, +4.

Физические свойства

Углерод в природе существует в виде нескольких аллотропных модификаций: алмаз, графит, карбин, фуллерен.

Алмаз — это модификация углерода с атомной кристаллической решеткой. Алмаз — самое твердое минеральное кристаллическое вещество, прозрачное, плохо проводит электрический ток и тепло. Атомы углерода в алмазе находятся в состоянии sp 3 -гибридизации.

Уравнение реакции серы с углеродомУравнение реакции серы с углеродом

Графит — это аллотропная модификация, в которой атомы углерода находятся в состоянии sp 2 -гибридизации. При этом атомы связаны в плоские слои, состоящие из шестиугольников, как пчелиные соты. Слои удерживаются между собой слабыми связями. Это наиболее устойчивая при нормальных условиях аллотропная модификация углерода.

Графит — мягкое вещество серо-стального цвета, с металлическим блеском. Хорошо проводит электрический ток. Жирный на ощупь.

Уравнение реакции серы с углеродомУравнение реакции серы с углеродом

Карбин — вещество, в составе которого атомы углерода находятся в sp-гибридизации. Состоит из цепочек и циклов, в которых атомы углерода соединены двойными и тройными связями. Карбин — мелкокристаллический порошок серого цвета.

[=C=C=C=C=C=C=]n или [–C≡C–C≡C–C≡C–]n

Уравнение реакции серы с углеродомУравнение реакции серы с углеродом

Фуллерен — это искусственно полученная модифицикация углерода. Молекулы фуллерена — выпуклые многогранники С60, С70 и др. Многогранники образованы пяти- и шестиугольниками, в вершинах которых расположены атомы углерода.

Фуллерены — черные вещества с металлическим блеском, обладающие свойствами полупроводников.

Уравнение реакции серы с углеродом

В природе углерод встречается как в виде простых веществ (алмаз, графит), так и в виде сложных соединений (органические вещества — нефть, природные газ, каменный уголь, карбонаты).

Качественные реакции

Качественная реакция на карбонат-ионы CO3 2- — взаимодействие солей-карбонатов с сильными кислотами . Более сильные кислоты вытесняют угольную кислоту из солей. При этом выделяется бесцветный газ, не поддерживающий горение – углекислый газ.

Например , карбонат кальция растворяется в соляной кислоте:

Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.

Качественная реакция на углекислый газ CO2помутнение известковой воды при пропускании через нее углекислого газа:

При дальнейшем пропускании углекислого газа осадок растворяется, т.к. карбонат кальция под действием избытка углекислого газа переходит в растворимый гидрокарбонат кальция:

Уравнение реакции серы с углеродом

Видеоопыт взаимодействия гидроксида кальция с углекислым газом (качественная реакция на углекислый газ) можно посмотреть здесь.

Углекислый газ СО2 не поддерживает горение . Угарный газ CO горит голубым пламенем.

Уравнение реакции серы с углеродом

Соединения углерода

Основные степени окисления углерода — +4, +2, 0, -1 и -4.

Наиболее типичные соединения углерода:

Степень окисленияТипичные соединения
+4оксид углерода (IV) CO2

гидрокарбонаты MeHCO3

+2оксид углерода (II) СО

муравьиная кислота HCOOH

-4метан CH4

карбиды металлов (карбид алюминия Al4C3)

бинарные соединения с неметаллами (карбид кремния SiC)

Химические свойства

При нормальных условиях углерод существует, как правило, в виде атомных кристаллов (алмаз, графит), поэтому химическая активность углерода — невысокая.

1. Углерод проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому углерод реагирует и с металлами , и с неметаллами .

1.1. Из галогенов углерод при комнатной температуре реагирует с фтором с образованием фторида углерода:

1.2. При сильном нагревании углерод реагирует с серой и кремнием с образованием бинарного соединения сероуглерода и карбида кремния соответственно:

C + 2S → CS2

C + Si → SiC

1.3. Углерод не взаимодействует с фосфором .

При взаимодействии углерода с водородом образуется метан. Реакция идет в присутствии катализатора (никель) и при нагревании:

1.4. С азотом углерод реагирует при действии электрического разряда, образуя дициан:

2С + N2 → N≡C–C≡N

1.5. В реакциях с активными металлами углерод проявляет свойства окислителя. При этом образуются карбиды:

2C + Ca → CaC2

1.6. При нагревании с избытком воздуха графит горит , образуя оксид углерода (IV):

при недостатке кислорода образуется угарный газ СО:

2C + O2 → 2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Уравнение реакции серы с углеродом

Графит также горит, например, в жидком кислороде:

Уравнение реакции серы с углеродом

Графитовые стержни под напряжением:

2. Углерод взаимодействует со сложными веществами:

2.1. Раскаленный уголь взаимодействует с водяным паром с образованием угарного газа и водорода:

C 0 + H2 + O → C +2 O + H2 0

2.2. Углерод восстанавливает многие металлы из основных и амфотерных оксидов . При этом образуются металл и угарный газ. Получение металлов из оксидов с помощью углерода и его соединений называют пирометаллургией.

Например , углерод взаимодействует с оксидом цинка с образованием металлического цинка и угарного газа:

ZnO + C → Zn + CO

Также углерод восстанавливает железо из железной окалины:

4С + Fe3O4 → 3Fe + 4CO

При взаимодействии с оксидами активных металлов углерод образует карбиды.

Например , углерод взаимодействует с оксидом кальция с образованием карбида кальция и угарного газа. Таким образом, углерод диспропорционирует в данной реакции:

3С + СаО → СаС2 + СО

2.3. Концентрированная серная кислота окисляет углерод при нагревании. При этом образуются оксид серы (IV), оксид углерода (IV) и вода:

2.4. Концентрированная азотная кислотой окисляет углерод также при нагревании. При этом образуются оксид азота (IV), оксид углерода (IV) и вода:

2.5. Углерод проявляет свойства восстановителя и при сплавлении с некоторыми солями , в которых содержатся неметаллы с высокой степенью окисления.

Например , углерод восстанавливает сульфат натрия до сульфида натрия:

Карбиды

Карбиды – это соединения элементов с углеродом . Карбиды разделяют на ковалентные и ионные в зависимости от типа химической связи между атомами.

Это соединения с металлами, при гидролизе которых образуется пропин

Например : Mg2C3

Пропиниды разлагаются водой или кислотами с образованием пропина и гидроксида или соли

Например:

Все карбиды проявляют свойства восстановителей и могут быть окислены сильными окислителями .

Например , карбид кремния окисляется концентрированной азотной кислотой при нагревании до углекислого газа, оксида кремния (IV) и оксида азота (II):

Оксид углерода (II)

Строение молекулы и физические свойства

Оксид углерода (II) («угарный газ») – это газ без цвета и запаха. Сильный яд. Небольшая концентрация угарного газа в воздухе может вызвать сонливость и головокружение. Большие концентрации угарного газа вызывают удушье.

Строение молекулы оксида углерода (II) – линейное. Между атомами углерода и кислорода образуется тройная связь, за счет дополнительной донорно-акцепторной связи:

Уравнение реакции серы с углеродом

Способы получения

В лаборатории угарный газ можно получить действием концентрированной серной кислоты на муравьиную или щавелевую кислоты:

НСООН → CO + H2O

В промышленности угарный газ получают в газогенераторах при пропускании воздуха через раскаленный уголь:

CO2 + C → 2CO

Еще один важный промышленный способ получения угарного газа — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

Также возможна паровая конверсия угля:

C 0 + H2 + O → C +2 O + H2 0

Угарный газ в промышленности также можно получать неполным окислением метана:

Химические свойства

Оксид углерода (II) – несолеобразующий оксид . За счет углерода со степенью окисления +2 проявляет восстановительные свойства.

1. Угарный газ горит в атмосфере кислорода . Пламя окрашено в синий цвет:

2. Оксид углерода (II) окисляется хлором в присутствии катализатора или под действием света с образованием фосгена. Фосген – ядовитый газ.

3. Угарный газ взаимодействует с водородом при повышенном давлении . Смесь угарного газа и водорода называется синтез-газ. В зависимости от условий из синтез-газа можно получить метанол, метан, или другие углеводороды.

Например , под давлением больше 20 атмосфер, при температуре 350°C и под действием катализатора угарный газ реагирует с водородом с образованием метанола:

4. Под давлением оксид углерода (II) реагирует с щелочами. При этом образуется формиат – соль муравьиной кислоты.

Например , угарный газ реагирует с гидроксидом натрия с образованием формиата натрия:

CO + NaOH → HCOONa

5. Оксид углерода (II) восстанавливает металлы из оксидов .

Например , оксид углерода (II) реагирует с оксидом железа (III) с образованием железа и углекислого газа:

Оксиды меди (II) и никеля (II) также восстанавливаются угарным газом:

СО + CuO → Cu + CO2

СО + NiO → Ni + CO2

6. Угарный газ окисляется и другими сильными окислителями до углекислого газа или карбонатов.

Например , пероксидом натрия:

Оксид углерода (IV)

Строение молекулы и физические свойства

Оксид углерода (IV) (углекислый газ) — газ без цвета и запаха. Тяжелее воздуха. Замороженный углекислый газ называют также «сухой лед». Сухой лед легко подвергается сублимации — переходит из твердого состояния в газообразное.

Смешивая сухой лед и различные вещества, можно получить интересные эффекты. Например, сухой лед в пиве:

Углекислый газ не горит, поэтому его применяют при пожаротушении.

Молекула углекислого газа линейная , атом углерода находится в состоянии sp-гибридизации, образует две двойных связи с атомами кислорода:

Уравнение реакции серы с углеродом

Обратите внимание! Молекула углекислого газа не полярна. Каждая химическая связь С=О по отдельности полярна, а вся молекула не будет полярна. Объяснить это очень легко. Обозначим направление смещения электронной плотности в полярных связях стрелочками (векторами):

Уравнение реакции серы с углеродом

Теперь давайте сложим эти векторы. Сделать это очень легко. Представьте, что атом углерода — это покупатель в магазине. А атомы кислорода — это консультанты, которые тянут его в разные стороны. В данном опыте консультанты одинаковые, и тянут покупателя в разные стороны с одинаковыми силами. Несложно увидеть, что покупатель двигаться не будет ни влево, ни вправо. Следовательно, сумма этих векторов равна нулю. Следовательно, полярность молекулы углекислого газа равна нулю.

Способы получения

В лаборатории углекислый газ можно получить разными способами:

1. Углекислый газ образуется при действии сильных кислот на карбонаты и гидрокарбонаты металлов. При этом взаимодействуют с кислотами и нерастворимые карбонаты, и растворимые.

Например , карбонат кальция растворяется в соляной кислоте:

Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.

Еще один пример : гидрокарбонат натрия реагирует с бромоводородной кислотой:

2. Растворимые карбонаты реагируют с растворимыми солями алюминия, железа (III) и хрома (III) . Карбонаты трехвалентных металлов необратимо гидролизуются в водном растворе.

Например: хлорид алюминия реагирует с карбонатом калия. При этом выпадает осадок гидроксида алюминия, выделяется углекислый газ и образуется хлорид калия:

3. Углекислый газ также образуется при термическом разложении нерастворимых карбонатов и при разложении растворимых гидрокарбонатов.

Например , карбонат кальция разлагается при нагревании на оксид кальция и углекислый газ:

Химические свойства

Углекислый газ — типичный кислотный оксид . За счет углерода со степенью окисления +4 проявляет слабые окислительные свойства .

1. Как кислотный оксид, углекислый газ взаимодействует с водой . Реакция очень сильно обратима, поэтому мы считаем, что в реакциях угольная кислота распадается почти полностью при образовании.

2. Как кислотный оксид, углекислый газ взаимодействует с основными оксидами и основаниями . При этом углекислый газ реагирует только с сильными основаниями (щелочами) и их оксидами . При взаимодействии углекислого газа с щелочами возможно образование как кислых, так и средних солей.

Например , гидроксид калия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат калия:

При избытке щелочи образуется средняя соль, карбонат калия:

Помутнение известковой воды — качественная реакция на углекислый газ:

Видеоопыт взаимодействия гидроксида кальция (известковая вода) с углекислым газом можно посмотреть здесь.

3. Углекислый газ взаимодействует с карбонатами . При пропускании СО2 через раствор карбонатов образуются гидрокарбонаты.

Например , карбонат натрия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат натрия:

4. Как слабый окислитель, углекислый газ взаимодействует с некоторыми восстановителями .

Например , углекислый газ взаимодействует с углеродом с образованием угарного газа:

CO2 + C → 2CO

Магний горит в атмосфере углекислого газа:

Видеоопыт взаимодействия магния с углекислым газом можно посмотреть здесь.

Поэтому углекислый газ нельзя применять для пожаротушения горящего магния.

Углекислый газ взаимодействует с пероксидом натрия. При этом пероксид натрия диспропорционирует:

Карбонаты и гидрокарбонаты

При нагревании карбонаты (все, кроме карбонатов щелочных металлов и аммония) разлагаются до оксида металла и оксида углерода (IV).

Карбонат аммония при нагревании разлагается на аммиак, воду и углекислый газ:

Гидрокарбонаты при нагревании переходят в карбонаты:

Качественной реакцией на ионы СО3 2─ и НСО3 − является их взаимодействие с более сильными кислотами , последние вытесняют угольную кислоту из солей, а та разлагается с выделением СО2.

Например , карбонат натрия взаимодействует с соляной кислотой:

Гидрокарбонат натрия также взаимодействует с соляной кислотой:

NaHCO3 + HCl → NaCl + CO2 ↑ + H2O

Гидролиз карбонатов и гидрокарбонатов

Растворимые карбонаты и гидрокарбонаты гидролизуются по аниону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

Однако карбонаты и гидрокарбонаты алюминия, хрома (III) и железа (III) гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

Более подробно про гидролиз можно прочитать в соответствующей статье.

Поделиться или сохранить к себе:
Ковалентные карбидыИонные карбиды
МетанидыАцетиленидыПропиниды
Это соединения углерода с неметаллами

Например :

SiC, B4C

Это соединения с металлами, в которых с.о. углерода равна -4

Например :

Al4C3, Be2C

Это соединения с металлами, в которых с.о. углерода равна -1

Например :

Na2C2, CaC2

Частицы связаны ковалентными связями и образуют атомные кристаллы. Поэтому ковалентные карбиды химически стойкие. Окисляются только сильными окислителямиМетаниды разлагаются водой или кислотами с образованием метана и гидроксида или соли:

Например :

Al4C3 + 12H2O → 4Al(OH)3 + 3CH4

Ацетилениды разлагаются водой или кислотами с образованием ацетилена и гидроксида или соли:

Например:

СаС2+ 2Н2O

Са(OH)2 + С2Н2