Сероуглерод (CS2): структура, свойства, применение, риски — Наука
- Содержание:
- Состав
- Номенклатура
- Свойства
- Физическое состояние
- Молекулярный вес
- Точка плавления или затвердевания
- Точка кипения
- Точка возгорания
- температура самовоспламенения
- Плотность
- Давление газа
- Растворимость
- Химические свойства
- Получение
- Присутствие в природе
- Приложения
- В химической промышленности
- В производстве вискозы и целлофана
- При производстве тетрахлорметана
- В различных приложениях
- Древнее использование
- Риски
- Составьте уравнения реакций: а) серы с углем; б) серы с алюминием (укажите степени окисления атомов и расставьте коэффициенты с помощью
- Ваш ответ
- решение вопроса
- Похожие вопросы
- Углерод. Химия углерода и его соединений
- Углерод
- Положение в периодической системе химических элементов
- Электронное строение углерода
- Физические свойства
- Качественные реакции
- Соединения углерода
- Химические свойства
- Карбиды
- Оксид углерода (II)
- Строение молекулы и физические свойства
- Способы получения
- Химические свойства
- Оксид углерода (IV)
- Строение молекулы и физические свойства
- Способы получения
- Химические свойства
- Карбонаты и гидрокарбонаты
- Гидролиз карбонатов и гидрокарбонатов
Видео:Соединения серы. 9 класс.Скачать
Содержание:
В сероуглерод Это соединение, образованное объединением атома углерода (C) и двух атомов серы (S). Его химическая формула — CS2. Это бесцветная или слегка желтоватая жидкость с неприятным запахом из-за содержащихся в ней примесей (соединений серы). Когда он чистый, его запах мягкий и сладкий, похожий на хлороформ или эфир.
Он возникает естественным образом в результате воздействия солнечного света на органические молекулы, содержащиеся в морской воде. Кроме того, он образуется в болотных водах, а также извергается из вулканов вместе с другими газами.
Сероуглерод — это летучая жидкость, которая также легко воспламеняется, поэтому его следует хранить вдали от огня и искр или устройств, которые могут их произвести, даже электрических лампочек.
Он обладает способностью растворять большое количество соединений, материалов и элементов, таких как фосфор, сера, селен, смолы, лаки и т. Д. Поэтому он находит применение в качестве растворителя.
Он также является посредником в различных промышленных химических реакциях, таких как производство искусственного шелка или искусственного шелка.
С ним нужно обращаться осторожно и использовать защитные приспособления, поскольку он очень токсичен и опасен.
Видео:Уравнивание реакций горения углеводородовСкачать
Состав
Сероуглерод имеет один атом углерода и два атома серы по бокам от него.
Связи между атомом углерода и атомами серы ковалентные и двойные, поэтому они очень прочные. Молекула CS2 он имеет линейную и симметричную структуру.
Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать
Номенклатура
Видео:Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать
Свойства
Видео:Составление уравнений химических реакций. 1 часть. 8 класс.Скачать
Физическое состояние
От бесцветной до желтоватой жидкости.
Видео:Химия 9 класс (Урок№11 - Сера. Серовород. Сульфиды.)Скачать
Молекулярный вес
Видео:Химия. 9 класс (Урок№17 - Углерод. Аллотропные модификации углерода.Химические свойства. Адсорбция.)Скачать
Точка плавления или затвердевания
Видео:Решение задач на термохимические уравнения. 8 класс.Скачать
Точка кипения
Видео:Химия Просто! Что будет, если Модифицировать Картошку? Аллотропные модификации в химииСкачать
Точка возгорания
-30 ºC (метод закрытой чашки).
Видео:9.1 Аллотропия веществСкачать
температура самовоспламенения
Видео:ОКСИДЫ ХИМИЯ — Что такое Оксиды? Химические свойства Оксидов | Реакция ОксидовСкачать
Плотность
Жидкость = 1,26 г / см 3 при 20 ° С.
Пар = 2,67 раза больше воздуха.
Его пары более чем в два раза тяжелее воздуха, а жидкость тяжелее воды.
Видео:Опыты по химии. Горение серы в кислородеСкачать
Давление газа
279 мм рт. Ст. При 25 ° C.
Это высокое давление пара.
Видео:Углерод: химические свойства, аллотропия #углерод #химшкола #неметаллы #егэхимияСкачать
Растворимость
Очень мало растворим в воде: 2,16 г / л при 25 ° C. Растворим в хлороформе. Смешивается с этанолом, метанолом, эфиром, бензолом, хлороформом и четыреххлористым углеродом.
Видео:Химия 9 класс — Как определять Степень Окисления?Скачать
Химические свойства
CS2 он легко испаряется при комнатной температуре, так как его температура кипения очень низкая, а давление пара очень высокое.
Сероуглерод очень легко воспламеняется. Его пары очень легко воспламеняются даже при нагревании от электрической лампочки. Это означает, что он очень быстро реагирует с кислородом:
Тот факт, что он имеет высокое давление пара при комнатной температуре, делает опасным находиться рядом с пламенем.
При нагревании до разложения он может легко взорваться с выделением токсичных газов оксида серы. При температуре выше 90 ° C он самовоспламеняется.
Он разлагается при длительном хранении. Агрессивно в отношении меди и ее сплавов. Он также вступает в реакцию с некоторыми пластиками, каучуками и покрытиями.
Реагирует при определенных условиях с водой с образованием карбонилсульфида OCS, диоксида углерода CO.2 и сероводород H2S:
Со спиртами (ROH) в щелочной среде образует ксантогенаты (RO-CS-SNa):
CS2 + ROH + NaOH → H2O + RO — C (= S) –SNa
Видео:Горение угля в кислородеСкачать
Получение
Сероуглерод коммерчески получают реакцией серы с углеродом. Процесс проводят при температуре 750-900 ° С.
Вместо угля также можно использовать метан или природный газ, и даже могут использоваться этан, пропан и пропилен, и в этом случае реакция протекает при 400-700 ° C с высоким выходом.
Его также можно получить реакцией природного газа с сероводородом H2S при очень высокой температуре.
Видео:Решение цепочек превращений по химииСкачать
Присутствие в природе
CS2 это натуральный продукт, присутствующий в атмосфере в очень небольших количествах (следы). Он образуется фотохимически в поверхностных водах.
Воздействие солнечного света на определенные соединения, присутствующие в морской воде, такие как цистеин (аминокислота), приводит к образованию сероуглерода.
Он также выделяется естественным путем во время извержений вулканов и в небольших количествах обнаруживается на болотах.
Обычно мы вдыхаем его в очень небольших количествах, и он присутствует в некоторых продуктах питания. Он также содержится в сигаретном дыме.
В окружающей среде он разлагается солнечным светом. На земле он движется сквозь него. Некоторые микроорганизмы в почве разрушают его.
Видео:СЕРНАЯ КИСЛОТА разбавленная и концентрированная - в чем отличия? | Химия ОГЭСкачать
Приложения
Видео:Химические Цепочки — Решение Цепочек Химических Превращений // Химия 8 классСкачать
В химической промышленности
Сероуглерод является важным химическим соединением, поскольку он используется для получения других химикатов. Он может действовать как промежуточный химический продукт.
Он также используется в качестве технологического растворителя, например, для растворения фосфора, серы, селена, брома, йода, жиров, смол, восков, лаков и камедей.
Это позволяет, среди прочего, производить фармацевтические продукты и гербициды.
Видео:переход аллотропных модификаций СЕРЫ при нагреванииСкачать
В производстве вискозы и целлофана
С CS2 Получают ксантаты, которые представляют собой соединения, используемые при производстве вискозы и целлофана.
Для получения искусственного шелка или искусственного шелка используется целлюлоза, которую обрабатывают щелочью и сероуглеродом CS.2 и превращается в ксантогенат целлюлозы, растворимый в щелочи. Этот раствор вязкий и поэтому называется «вязким».
Вискоза проталкивается через очень маленькие отверстия в кислотной ванне. Здесь ксантогенат целлюлозы снова превращается в целлюлозу, которая нерастворима, и образуются длинные блестящие нити.
Нити или волокна могут быть скручены в материал, известный как вискоза.
(1) Целлюлоза + NaOH → Щелочная целлюлоза
ROH + NaOH → RONa
(2) Щелочная целлюлоза + сероуглерод → ксантогенат целлюлозы
RONa + S = C = S → RO — C (= S) –SNa
(3) Ксантогенат целлюлозы + кислота → Целлюлоза (волокна)
RO — C (= S) –SNa + кислота → ROH
Если целлюлозу осаждают путем пропускания ксантогената через узкую щель, целлюлоза регенерируется в виде тонких листов, составляющих целлофан. Он смягчается глицерином и используется в качестве защитной пленки для предметов.
Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать
При производстве тетрахлорметана
Сероуглерод реагирует с хлором Cl2 дать четыреххлористый углерод CCl4, который является важным негорючим растворителем.
В различных приложениях
Сероуглерод участвует в холодной вулканизации каучуков, служит промежуточным продуктом при производстве пестицидов и используется для получения катализаторов в нефтяной промышленности и при производстве бумаги.
Ксантаты, приготовленные с CS2 Они используются при флотации полезных ископаемых.
Древнее использование
CS2 это яд для живых организмов. Раньше его использовали для уничтожения вредителей, таких как крысы, сурки и муравьи, выливая жидкость в любое закрытое пространство, в котором эти животные жили (норы и муравейники).
При использовании для этой цели густые токсичные пары уничтожали все живые организмы, находившиеся в замкнутом пространстве.
Он также использовался как глистогонное средство для животных и для удаления личинок мясной мухи из желудка лошадей.
В сельском хозяйстве он использовался как инсектицид и нематоцид, для фумигации почвы, для фумигации питомников, зернохранилищ, силосов и зерновых мельниц. Также были опрысканы железнодорожные вагоны, корабли и баржи.
Все эти виды использования были запрещены из-за высокой воспламеняемости и токсичности CS.2.
Риски
CS2 он легко воспламеняется. Многие из их реакций могут вызвать пожар или взрыв. Смеси его паров с воздухом взрывоопасны. При воспламенении выделяет раздражающие или токсичные газы.
Сероуглерод нельзя сливать в канализацию, так как в трубках остается смесь CS.2 и воздух, который может вызвать взрыв при случайном воспламенении.
Его пары самопроизвольно воспламеняются при контакте с искрами или горячими поверхностями.
Сероуглерод сильно раздражает глаза, кожу и слизистые оболочки.
При вдыхании или проглатывании он серьезно влияет на центральную нервную систему, сердечно-сосудистую систему, глаза, почки и печень. Он также может всасываться через кожу, вызывая повреждение.
Составьте уравнения реакций: а) серы с углем; б) серы с алюминием (укажите степени окисления атомов и расставьте коэффициенты с помощью
Ваш ответ
решение вопроса
Похожие вопросы
- Все категории
- экономические 43,292
- гуманитарные 33,622
- юридические 17,900
- школьный раздел 607,160
- разное 16,830
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Углерод. Химия углерода и его соединений
Углерод
Положение в периодической системе химических элементов
Углерод расположен в главной подгруппе IV группы (или в 14 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.
Электронное строение углерода
Электронная конфигурация углерода в основном состоянии :
+6С 1s 2 2s 2 2p 2 1s 2s
2p
Электронная конфигурация углерода в возбужденном состоянии :
+6С * 1s 2 2s 1 2p 3 1s 2s
2p
Атом углерода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 1 неподеленную электронную пару в основном энергетическом состоянии и 4 неспаренных электрона в возбужденном энергетическом состоянии.
Степени окисления атома углерода — от -4 до +4. Характерные степени окисления -4, 0, +2, +4.
Физические свойства
Углерод в природе существует в виде нескольких аллотропных модификаций: алмаз, графит, карбин, фуллерен.
Алмаз — это модификация углерода с атомной кристаллической решеткой. Алмаз — самое твердое минеральное кристаллическое вещество, прозрачное, плохо проводит электрический ток и тепло. Атомы углерода в алмазе находятся в состоянии sp 3 -гибридизации.
Графит — это аллотропная модификация, в которой атомы углерода находятся в состоянии sp 2 -гибридизации. При этом атомы связаны в плоские слои, состоящие из шестиугольников, как пчелиные соты. Слои удерживаются между собой слабыми связями. Это наиболее устойчивая при нормальных условиях аллотропная модификация углерода.
Графит — мягкое вещество серо-стального цвета, с металлическим блеском. Хорошо проводит электрический ток. Жирный на ощупь.
Карбин — вещество, в составе которого атомы углерода находятся в sp-гибридизации. Состоит из цепочек и циклов, в которых атомы углерода соединены двойными и тройными связями. Карбин — мелкокристаллический порошок серого цвета.
[=C=C=C=C=C=C=]n или [–C≡C–C≡C–C≡C–]n
Фуллерен — это искусственно полученная модифицикация углерода. Молекулы фуллерена — выпуклые многогранники С60, С70 и др. Многогранники образованы пяти- и шестиугольниками, в вершинах которых расположены атомы углерода.
Фуллерены — черные вещества с металлическим блеском, обладающие свойствами полупроводников.
В природе углерод встречается как в виде простых веществ (алмаз, графит), так и в виде сложных соединений (органические вещества — нефть, природные газ, каменный уголь, карбонаты).
Качественные реакции
Качественная реакция на карбонат-ионы CO3 2- — взаимодействие солей-карбонатов с сильными кислотами . Более сильные кислоты вытесняют угольную кислоту из солей. При этом выделяется бесцветный газ, не поддерживающий горение – углекислый газ.
Например , карбонат кальция растворяется в соляной кислоте:
Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.
Качественная реакция на углекислый газ CO2 – помутнение известковой воды при пропускании через нее углекислого газа:
При дальнейшем пропускании углекислого газа осадок растворяется, т.к. карбонат кальция под действием избытка углекислого газа переходит в растворимый гидрокарбонат кальция:
Видеоопыт взаимодействия гидроксида кальция с углекислым газом (качественная реакция на углекислый газ) можно посмотреть здесь.
Углекислый газ СО2 не поддерживает горение . Угарный газ CO горит голубым пламенем.
Соединения углерода
Основные степени окисления углерода — +4, +2, 0, -1 и -4.
Наиболее типичные соединения углерода:
Степень окисления | Типичные соединения |
+4 | оксид углерода (IV) CO2 гидрокарбонаты MeHCO3 |
+2 | оксид углерода (II) СО муравьиная кислота HCOOH |
-4 | метан CH4 карбиды металлов (карбид алюминия Al4C3) бинарные соединения с неметаллами (карбид кремния SiC) |
Химические свойства
При нормальных условиях углерод существует, как правило, в виде атомных кристаллов (алмаз, графит), поэтому химическая активность углерода — невысокая.
1. Углерод проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому углерод реагирует и с металлами , и с неметаллами .
1.1. Из галогенов углерод при комнатной температуре реагирует с фтором с образованием фторида углерода:
1.2. При сильном нагревании углерод реагирует с серой и кремнием с образованием бинарного соединения сероуглерода и карбида кремния соответственно:
C + 2S → CS2
C + Si → SiC
1.3. Углерод не взаимодействует с фосфором .
При взаимодействии углерода с водородом образуется метан. Реакция идет в присутствии катализатора (никель) и при нагревании:
1.4. С азотом углерод реагирует при действии электрического разряда, образуя дициан:
2С + N2 → N≡C–C≡N
1.5. В реакциях с активными металлами углерод проявляет свойства окислителя. При этом образуются карбиды:
2C + Ca → CaC2
1.6. При нагревании с избытком воздуха графит горит , образуя оксид углерода (IV):
при недостатке кислорода образуется угарный газ СО:
2C + O2 → 2CO
Алмаз горит при высоких температурах:
Горение алмаза в жидком кислороде:
Графит также горит:
Графит также горит, например, в жидком кислороде:
Графитовые стержни под напряжением:
2. Углерод взаимодействует со сложными веществами:
2.1. Раскаленный уголь взаимодействует с водяным паром с образованием угарного газа и водорода:
C 0 + H2 + O → C +2 O + H2 0
2.2. Углерод восстанавливает многие металлы из основных и амфотерных оксидов . При этом образуются металл и угарный газ. Получение металлов из оксидов с помощью углерода и его соединений называют пирометаллургией.
Например , углерод взаимодействует с оксидом цинка с образованием металлического цинка и угарного газа:
ZnO + C → Zn + CO
Также углерод восстанавливает железо из железной окалины:
4С + Fe3O4 → 3Fe + 4CO
При взаимодействии с оксидами активных металлов углерод образует карбиды.
Например , углерод взаимодействует с оксидом кальция с образованием карбида кальция и угарного газа. Таким образом, углерод диспропорционирует в данной реакции:
3С + СаО → СаС2 + СО
2.3. Концентрированная серная кислота окисляет углерод при нагревании. При этом образуются оксид серы (IV), оксид углерода (IV) и вода:
2.4. Концентрированная азотная кислотой окисляет углерод также при нагревании. При этом образуются оксид азота (IV), оксид углерода (IV) и вода:
2.5. Углерод проявляет свойства восстановителя и при сплавлении с некоторыми солями , в которых содержатся неметаллы с высокой степенью окисления.
Например , углерод восстанавливает сульфат натрия до сульфида натрия:
Карбиды
Карбиды – это соединения элементов с углеродом . Карбиды разделяют на ковалентные и ионные в зависимости от типа химической связи между атомами.
Это соединения с металлами, при гидролизе которых образуется пропин
Например : Mg2C3
Пропиниды разлагаются водой или кислотами с образованием пропина и гидроксида или соли
Например:
Все карбиды проявляют свойства восстановителей и могут быть окислены сильными окислителями .
Например , карбид кремния окисляется концентрированной азотной кислотой при нагревании до углекислого газа, оксида кремния (IV) и оксида азота (II):
Оксид углерода (II)
Строение молекулы и физические свойства
Оксид углерода (II) («угарный газ») – это газ без цвета и запаха. Сильный яд. Небольшая концентрация угарного газа в воздухе может вызвать сонливость и головокружение. Большие концентрации угарного газа вызывают удушье.
Строение молекулы оксида углерода (II) – линейное. Между атомами углерода и кислорода образуется тройная связь, за счет дополнительной донорно-акцепторной связи:
Способы получения
В лаборатории угарный газ можно получить действием концентрированной серной кислоты на муравьиную или щавелевую кислоты:
НСООН → CO + H2O
В промышленности угарный газ получают в газогенераторах при пропускании воздуха через раскаленный уголь:
CO2 + C → 2CO
Еще один важный промышленный способ получения угарного газа — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:
Также возможна паровая конверсия угля:
C 0 + H2 + O → C +2 O + H2 0
Угарный газ в промышленности также можно получать неполным окислением метана:
Химические свойства
Оксид углерода (II) – несолеобразующий оксид . За счет углерода со степенью окисления +2 проявляет восстановительные свойства.
1. Угарный газ горит в атмосфере кислорода . Пламя окрашено в синий цвет:
2. Оксид углерода (II) окисляется хлором в присутствии катализатора или под действием света с образованием фосгена. Фосген – ядовитый газ.
3. Угарный газ взаимодействует с водородом при повышенном давлении . Смесь угарного газа и водорода называется синтез-газ. В зависимости от условий из синтез-газа можно получить метанол, метан, или другие углеводороды.
Например , под давлением больше 20 атмосфер, при температуре 350°C и под действием катализатора угарный газ реагирует с водородом с образованием метанола:
4. Под давлением оксид углерода (II) реагирует с щелочами. При этом образуется формиат – соль муравьиной кислоты.
Например , угарный газ реагирует с гидроксидом натрия с образованием формиата натрия:
CO + NaOH → HCOONa
5. Оксид углерода (II) восстанавливает металлы из оксидов .
Например , оксид углерода (II) реагирует с оксидом железа (III) с образованием железа и углекислого газа:
Оксиды меди (II) и никеля (II) также восстанавливаются угарным газом:
СО + CuO → Cu + CO2
СО + NiO → Ni + CO2
6. Угарный газ окисляется и другими сильными окислителями до углекислого газа или карбонатов.
Например , пероксидом натрия:
Оксид углерода (IV)
Строение молекулы и физические свойства
Оксид углерода (IV) (углекислый газ) — газ без цвета и запаха. Тяжелее воздуха. Замороженный углекислый газ называют также «сухой лед». Сухой лед легко подвергается сублимации — переходит из твердого состояния в газообразное.
Смешивая сухой лед и различные вещества, можно получить интересные эффекты. Например, сухой лед в пиве:
Углекислый газ не горит, поэтому его применяют при пожаротушении.
Молекула углекислого газа линейная , атом углерода находится в состоянии sp-гибридизации, образует две двойных связи с атомами кислорода:
Обратите внимание! Молекула углекислого газа не полярна. Каждая химическая связь С=О по отдельности полярна, а вся молекула не будет полярна. Объяснить это очень легко. Обозначим направление смещения электронной плотности в полярных связях стрелочками (векторами):
Теперь давайте сложим эти векторы. Сделать это очень легко. Представьте, что атом углерода — это покупатель в магазине. А атомы кислорода — это консультанты, которые тянут его в разные стороны. В данном опыте консультанты одинаковые, и тянут покупателя в разные стороны с одинаковыми силами. Несложно увидеть, что покупатель двигаться не будет ни влево, ни вправо. Следовательно, сумма этих векторов равна нулю. Следовательно, полярность молекулы углекислого газа равна нулю.
Способы получения
В лаборатории углекислый газ можно получить разными способами:
1. Углекислый газ образуется при действии сильных кислот на карбонаты и гидрокарбонаты металлов. При этом взаимодействуют с кислотами и нерастворимые карбонаты, и растворимые.
Например , карбонат кальция растворяется в соляной кислоте:
Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.
Еще один пример : гидрокарбонат натрия реагирует с бромоводородной кислотой:
2. Растворимые карбонаты реагируют с растворимыми солями алюминия, железа (III) и хрома (III) . Карбонаты трехвалентных металлов необратимо гидролизуются в водном растворе.
Например: хлорид алюминия реагирует с карбонатом калия. При этом выпадает осадок гидроксида алюминия, выделяется углекислый газ и образуется хлорид калия:
3. Углекислый газ также образуется при термическом разложении нерастворимых карбонатов и при разложении растворимых гидрокарбонатов.
Например , карбонат кальция разлагается при нагревании на оксид кальция и углекислый газ:
Химические свойства
Углекислый газ — типичный кислотный оксид . За счет углерода со степенью окисления +4 проявляет слабые окислительные свойства .
1. Как кислотный оксид, углекислый газ взаимодействует с водой . Реакция очень сильно обратима, поэтому мы считаем, что в реакциях угольная кислота распадается почти полностью при образовании.
2. Как кислотный оксид, углекислый газ взаимодействует с основными оксидами и основаниями . При этом углекислый газ реагирует только с сильными основаниями (щелочами) и их оксидами . При взаимодействии углекислого газа с щелочами возможно образование как кислых, так и средних солей.
Например , гидроксид калия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат калия:
При избытке щелочи образуется средняя соль, карбонат калия:
Помутнение известковой воды — качественная реакция на углекислый газ:
Видеоопыт взаимодействия гидроксида кальция (известковая вода) с углекислым газом можно посмотреть здесь.
3. Углекислый газ взаимодействует с карбонатами . При пропускании СО2 через раствор карбонатов образуются гидрокарбонаты.
Например , карбонат натрия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат натрия:
4. Как слабый окислитель, углекислый газ взаимодействует с некоторыми восстановителями .
Например , углекислый газ взаимодействует с углеродом с образованием угарного газа:
CO2 + C → 2CO
Магний горит в атмосфере углекислого газа:
Видеоопыт взаимодействия магния с углекислым газом можно посмотреть здесь.
Поэтому углекислый газ нельзя применять для пожаротушения горящего магния.
Углекислый газ взаимодействует с пероксидом натрия. При этом пероксид натрия диспропорционирует:
Карбонаты и гидрокарбонаты
При нагревании карбонаты (все, кроме карбонатов щелочных металлов и аммония) разлагаются до оксида металла и оксида углерода (IV).
Карбонат аммония при нагревании разлагается на аммиак, воду и углекислый газ:
Гидрокарбонаты при нагревании переходят в карбонаты:
Качественной реакцией на ионы СО3 2─ и НСО3 − является их взаимодействие с более сильными кислотами , последние вытесняют угольную кислоту из солей, а та разлагается с выделением СО2.
Например , карбонат натрия взаимодействует с соляной кислотой:
Гидрокарбонат натрия также взаимодействует с соляной кислотой:
NaHCO3 + HCl → NaCl + CO2 ↑ + H2O
Гидролиз карбонатов и гидрокарбонатов
Растворимые карбонаты и гидрокарбонаты гидролизуются по аниону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:
Однако карбонаты и гидрокарбонаты алюминия, хрома (III) и железа (III) гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:
Более подробно про гидролиз можно прочитать в соответствующей статье.
Ковалентные карбиды | Ионные карбиды | ||
Метаниды | Ацетилениды | Пропиниды | |
Это соединения углерода с неметаллами Например : SiC, B4C | Это соединения с металлами, в которых с.о. углерода равна -4 Например : Al4C3, Be2C | Это соединения с металлами, в которых с.о. углерода равна -1 Например : Na2C2, CaC2 | |
Частицы связаны ковалентными связями и образуют атомные кристаллы. Поэтому ковалентные карбиды химически стойкие. Окисляются только сильными окислителями | Метаниды разлагаются водой или кислотами с образованием метана и гидроксида или соли: Например : Al4C3 + 12H2O → 4Al(OH)3 + 3CH4 | Ацетилениды разлагаются водой или кислотами с образованием ацетилена и гидроксида или соли: Например: СаС2+ 2Н2O → Са(OH)2 + С2Н2 |