Уравнение реакции процесса крекинга нефти

Термический крекинг

Видео:10 класс § 40 "Глубокая переработка нефти. Крекинг, риформинг"Скачать

10 класс § 40 "Глубокая переработка нефти. Крекинг, риформинг"

Назначение

Термический крекинг – процесс переработки нефтяных фракций путем их термического разложения с целью получения дополнительного количества светлых нефтепродуктов (бензина), крекинг-остатка для производства игольного кокса и термогазойля для производства сажи.

Одной из разновидностью термического крекинга является висбрекинг – процесс получения котельных топлив путем снижения вязкости тяжелого сырья (мазута и гудрона).

Видео:Термические процессыСкачать

Термические процессы

Сырье и продукты

Сырьем процесса термического крекинга могут являться:

Продуктами промышленных установок термического крекинга являются:

  1. Бензин
  2. Крекинг-остаток
  3. Газ
  4. Иногда отбирают еще и керосиновую или керосиногазойлевую фракцию

Выход бензина при каталитическом крекинге зависит наряду с прочими условиями от вида сырья: он составляет (по массе )

  • для гудрона 10-12 %
  • мазута 30-35
  • газойля 50-55
  • керосина 60-65

Бензины термического крекинга содержат непредельные углеводороды и имеют низкое качество. В связи с этим процесс термического крекинга не является перспективным, однако он завоевал историческую нишу и свое место в нефтепереработке.

Видео:КрекингСкачать

Крекинг

Основы термических превращений

Крекинг парафиновых углеводородов

Для крекинга парафинов характерен распад на более низкомолекулярные углеводороды. Продукты распада состоят из парафиновых и олефиновых углеводородов и водорода. Рассмотрим последовательность термического разложения на примере н-бутана.

  1. Первичный распад молекулы на радикалы: СН3-СН2-СН2-СН3→2•С2Н5
  2. Развитие цепи:

Уравнение реакции процесса крекинга нефти3. Образуещиеся радикалы вновь вступают во взаимодействие с молекулами исходного углеводорода, концентрация радикалов возрастает и возникает значительная вероятность столкновения двух радикалов с образованием парафиновых углеводородов или молекул водорода:

Уравнение реакции процесса крекинга нефти

Крекинг нафтеновых углеводородов

Термический распад нафтеновых углеводородов происходит по молекулярному механизму.

Уравнение реакции процесса крекинга нефти

Бициклические нафтены, например декалин, при крекинге также в основном дают продукты разложения (ароматические углеводороды, моноциклические нафтеновые углеводороды, алифатические углеводороды) и в меньшей степени-продукты дегидрирования (в данном случае нафталин и тетралин).

Крекинг ароматических углеводородов

Простейшим представителем голоядерных углеводородов является бензол (т.кип̴ ≈ 80 °С). Бензольное кольцо чрезвычайно стабильно, однако бензол довольно легко переходит в дифенил, что сопровождается выделением водорода: 2С6Н6↔С6Н5―С6Н5+Н2

Механизм реакций уплотнения

При термокрекинге, наряду с реакциями разложения, в результате которых получается бензин и газ, идут вторичные реакции уплотнения образовавшихся продуктов, в результате которых получается кокс и крекингостаток.

На химизм процесса оказывают влияние его продолжительность (время пребывания углеводородов в реакционной зоне), давление, характер исходного сырья. Сырье, содержащее алкилароматические углеводороды и парафиновые, претерпевают вначале разложение, подготавливающее материал для последующих реакций уплотнения; таким материалом являются голоядерные непредельные и ароматические углеводороды.

Уравнение реакции процесса крекинга нефти

Увеличение температуры повышает скорость протекающих реакций, глубину процесса, а также приводит к преобладанию реакций расщепления по сравнению с реакциями уплотнения. Глубина процесса оценивается выходом бензина, газа и кокса и их соотношением. Температуру выбирают в зависимости от склонности исходного сырья к коксообразованию или газообразованию.

С увеличением глубины превращения выход бензина вначале возрастет, затем достигает некоторого максимума и начинает снижаться. Данное явление связано с тем, что скорость разложения бензина на газ начинает увеличивать скорость образования бензина.

Влияние давления проявляется как непосредственно на направленности протекающих реакций, так и через изменение фазового соотношения в реакционной зоне. Давление оказывает влияние на состав продуктов крекинга, повышает выход продуктов уплотнения и снижает выход газообразных продуктов. С увеличением давления снижается доля паров и повышается доля жидкости в реакционной зоне, что позволяет при заданном времени пребывания углеводородов значительно снизить объем реакционной зоны или углубить процесс.

Особый момент при термокрекинге – обеспечение требуемой селективности процесса. При довольно широком молекулярном спектре углеводородов сырье сначала делят на фракции, а затем осуществляют их термокрекинг при оптимальных рабочих условиях в отдельных реакторах.

При достижении определенной глубины термического крекинга начинается образование твердого продукта-кокса, который представляет собой результат последовательных превращений ароматических углеводородов в карбиды и асфальтены. Явление коксообразования негативно сказывается на эксплуатации реакторных устройств термического крекинга, ограничивая их межремонтный пробег из-за необходимости очищать реакционную аппаратуру от коксоотложений.

С целью достижения требуемой глубины процесса при умеренной температуре без значительных коксообразований осуществляют регенерацию части получаемых продуктов на повторный крекинг. Реакционным устройством служит трубчатая печь или трубчатая печь с выносной полой реакционной камерой.

Последняя может быть заполнена только паром или иметь некоторый уровень жидкости.

Видео:Каталитический крекинг нефтиСкачать

Каталитический крекинг нефти

Технологическая схема

Рис 1. Схема двухпоточной установки термического крекинга с выносом реакционной камеры: 1 – печь тяжелого сырья (легкого крекинга); 2 – печь легкого сырья (глубокого крекинга); 3 – выносная реакционная камера; 4 – испаритель высокого давления; 5 – колонна ректификации; 6 – испаритель низкого давления; 7 – теплообменник; 8 – холодильник; 9 – газосепаратор низкого давления; 10,11 – конденсатор-холодильник; 12 – газосепаратор высокого давления.

Видео:Каталитический крекингСкачать

Каталитический крекинг

Уравнение реакции процесса крекинга нефти

Бензина, получаемого при перегонке нефти, не хватает для покрытия всех нужд. В лучшем случае из нефти удается получить до 20% бензина, остальное – высококипящие продукты.

В связи с этим перед химией стала задача найти способы получения бензина в большом количестве. Удобный путь был найден с помощью созданной А.М. Бутлеровым теории строения органических соединений.

Высококипящие продукты разгонки нефти непригодны для употребления в качестве моторного топлива. Их высокая температура кипения обусловлена тем, что молекулы таких углеводородов представляют собой слишком длинные цепи. Если расщепить крупные молекулы, содержащие до 18 углеродных атомов, получаются низкокипящие продукты типа бензина.

Этим путем пошел русский инженер В.Г.Шухов, который в 1891 г. разработал метод расщепления сложных углеводородов, названный впоследствии крекингом (что означает расщепление).

Уравнение реакции процесса крекинга нефти

Сущность крекинга заключается в том, что при нагревании происходит расщепление крупных молекул углеводородов на более мелкие, в том числе на молекулы, входящие в состав бензина. Обычно расщепление происходит примерно в центре углеродной цепи по С—С-связи, например:

Уравнение реакции процесса крекинга нефти

Однако разрыву могут подвергаться и другие С—С-связи. Поэтому при крекинге образуется сложная смесь жидких алканов и алкенов.

Получившиеся вещества частично могут разлагаться далее, например:Уравнение реакции процесса крекинга нефти

Такой процесс, осуществляемый при температуре около 470°С – 550°С и небольшом давлении, называется термическим крекингом. Этому процессу обычно подвергаются высококипящие нефтяные фракции, например, мазут. Процесс протекает медленно, при этом образуются углеводороды с неразветвлённой цепью атомов углерода.

Бензин, получаемый термическим крекингом, невысокого качества, не стоек при хранении, он легко окисляется, что обусловлено наличием в нём непредельных углеводородов. Однако, детонационная стойкость (взрывоустойчивость, характеризующаяся октановым числом) такого бензина выше, чем у бензина прямой перегонки из-за большого содержания непредельных углеводородов. При использовании, к бензину необходимо добавлять антиокислители, чтобы защитить двигатель.

Коренным усовершенствованием крекинга явилось внедрение в практику процесса каталитического крекинга. Этот процесс был впервые осуществлен в 1918 г. Н.Д.Зелинским.

Уравнение реакции процесса крекинга нефти

Каталитический крекинг позволил получать в крупных масштабах авиационный бензин.

Его проводят в присутствии катализатора (алюмосиликатов: смеси оксида алюминия и оксида кремния) при температуре 450 — 500°С и атмосферном давлении. Обычно каталитическому крекингу подвергают дизельную фракцию.

При каталитическом крекинге, который осу­ществляется с большой скоростью, получается бензин более высокого качества, чем при термическом крекинге. Это связано с тем, что наряду с реакциями расщепления происходят реакции изомеризации алканов нормального строения. Кроме того, образуется небольшой процент ароматических углеводородов, улучшающих качество бензина.

Бензин каталитического крекинга более устойчив при хранении, так как в его состав входит значительно меньше непредельных углеводородов по сравнению с бензином термического крекинга, обладает ещё большей детонационной стойкостью, чем бензин термического крекинга.

Учебный фильм «Каталитический крекинг нефти»

Таким образом, высокое качество бензина, получаемого каталитическим крекингом, обеспечивается наличием в его составе разветвленного строения углеводородов и ароматических углеводородов.

Уравнение реакции процесса крекинга нефти

Основным способом переработки нефтяных фракций являются различные виды крекинга.

Впервые (1871–1878) крекинг нефти был осуществлен в лабораторном и полупромышленном масштабе сотрудником Петербургского технологического института А.А.Летним. Первый патент на установку для крекинга заявлен Шуховым в 1891 г. В промышленности крекинг получил распространение с 1920-х гг.

Крекинг – это термическое разложение углеводородов и других составных частей нефти.

Чем выше температура, тем больше скорость крекинга и больше выход газов и ароматических углеводородов. Крекинг нефтяных фракций кроме жидких продуктов дает первостепенно важное сырье – газы, содержащие непредельные углеводороды (олефины).

Различают следующие основные виды крекинга:

жидкофазный (20–60 атм, 430–550°С), дает непредельный и насыщенный бензины, выход бензина порядка 50%, газов 10%;
парофазный (обычное или пониженное давление, 600°С), дает непредельно-ароматический бензин, выход меньше, чем при жидкофазном крекинге, образуется большое количество газов;
пиролиз нефти – разложение органических веществ без доступа воздуха при высокой температуре (обычное или пониженное давление, 650–700°С), дает смесь ароматических углеводородов (пиробензол), выход порядка 15%, более половины сырья превращается в газы;
деструктивное гидрирование (давление водорода 200–250 атм, 300–400°С в присутствии катализаторов – железа, никеля, вольфрама и др.), дает предельный бензин с выходом до 90%;
каталитический крекинг (300–500°С в присутствии катализаторов – AlCl3, алюмосиликатов, МоS3, Сr2О3 и др.), дает газообразные продукты и высокосортный бензин с преобладанием ароматических и предельных углеводородов изостроения.

В технике большую роль играет так называемый каталитический риформинг – превращение низкосортных бензинов в высокосортные высокооктановые бензины или ароматические углеводороды.

Уравнение реакции процесса крекинга нефти

Основными реакциями при крекинге являются реакции расщепления углеводородных цепей, изомеризации и циклизации. Огромную роль в этих процессах играют свободные углеводородные радикалы.

Видео:ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и ПолучениеСкачать

ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и Получение

Крекинг – Cracking, переработка нефти

Определение крекинга, история возникновения крекинга

Определение крекинга, история возникновения крекинга, виды крекинга

Крекинг — это реакции расщепления углеродного скелета крупных молекул при нагревании и в присутствии Катализаторов.

Кре́кинг (англ. Cracking, расщепление) — это высокотемпературная нефтепереработка и её фракций с целью получения, как правило, продуктов меньшей молекулярной массы — моторных топлив, смазочных масел и т. п., а также сырья для химической и нефтехимической промышленности. Крекинг протекает с разрывом связей С-С и образованием свободных радикалов или карбанионов. Одновременно с разрывом связей С-С происходит дегидрирование, изомеризация, полимеризация и конденсация как промежуточных, так и исходных веществ. В результате последних двух процессов образуются так называемый крекинг-остаток (фракция с температурой кипения более 350 °C) и нефтяной кокс.

Крекинг (англ. Cracking, от crack — расщеплять), нефтепереработка и её фракций для получения главным образом моторных топлив, а также химического сырья, протекающая с распадом тяжёлых углеводородов. Наряду с распадом при крекинге, происходят изомеризация и синтез новых молекул, например в результате циклизации, полимеризации и конденсации.

История

Первая в мире промышленная установка непрерывного термического крекинга черного золота была создана и запатентована инженером В. Г. Шуховым и его помощником С. П. Гавриловым в 1891 году (патент единой Руси№ 12926 от 27 ноября 1891 года). Была сделана экспериментальная установка. Научные и инженерные решения В. Г. Шухова повторены У. Бартоном при сооружении первой промышленной установки в США в 1915-1918 годах. Первые отечественные промышленные установки крекинга построены В. Г. Шуховым в 1934 году на заводе «Советский крекинг» в Баку.

Оптимальные условия для крекинга, дающие наибольший выход легких бензиновых фракций, были найдены в начале XX века английским химиком Бартоном. Еще в 1890 году Бартон занимался в Британии перегонкой под давлением русских тяжелых масел (мазута) для получения из них керосина, а в 1913 году он взял американский патент на первый в истории способ получения бензина из тяжелых нефтяных фракций. Впервые крекинг —процесс по способу Бартона в промышленных условиях был осуществлен в 1916 году, а к 1920 году в производстве находилось уже более 800 его установок.

Наиболее благоприятная температура для крекинга — 425 — 475 градусов. Однако если просто нагревать сырую нефть до такой высокой температуры, большая часть ее испарится. Крекинг продуктов в парообразном состоянии был связан с некоторыми трудностями, поэтому целью Бартона было не дать черного золота испаряться. Но как добиться такого состояния, чтобы при нагревании нефть не закипала? Это возможно, если проводить весь процесс под высоким давлением. Известно, что под большим давлением любая жидкость закипает при более высокой, чем при нормальных условиях, температуре, и эта температура тем выше, чем больше давление.

Установка имела следующее устройство. Работающий под давлением котел находился над топкою, снабженной дымогарной трубой. Котел изготавливался из хорошего прочного железа с толщиной стенок около 2 см и был тщательно проклепан. Поднимающаяся вверх труба вела к водяному холодильнику, откуда газопровод шел к сборному резервуару. После того как товар крекинга проходил через счетный аппарат для жидкостей, находившаяся на днище этого резервуара труба разветвлялась на две боковые трубки. Каждая боковая трубка снабжалась контрольным краном; одна из них вела к трубе, а другая к трубе.

В начале крекинга котел наполняли мазутом. Благодаря теплу печи содержимое котла медленно нагревалось приблизительно до 130 градусов. При этом из мазута испарялись остатки содержащейся в нем воды. Сгущаясь в холодильнике, вода стекала потом в резервуар, из которого через трубу спускалась в канаву. Одновременно из мазута выходил воздух и другие газы. Они также попадали через холодильник в резервуар и по трубе отводились в нефтепровод.

Явление разложения черного золота было замечено давно, но при обыкновенной перегонке черного золота такое разложение было нежелательным, поэтому здесь и использовался перегретый пар, который способствовал испарению черного золота без разложения. Нефтеперерабатывающая промышленность прошла в своем развитии через несколько этапов. Вначале (с 60 — х гг. XIX в. и вплоть до начала XX в.) нефтепереработка носила ярко выраженный керосиновый характер, то есть основным товаром переработки нефти являлся керосин, который оставался в течение полувека основным источником света. На русских нефтеперерабатывающих заводах, к примеру, образующиеся в ходе перегонки более легкие фракции рассматривались как отходы: их сжигали в ямах или сбрасывали в водоемы.

После того как мазут избавлялся от воды, растворенного в нем воздуха и газов, он был готов к крекингу. Топку усиливали, и температура в котле медленно повышалась до 345 градусов. При этом начиналось испарение легких углеводородов, которые даже в холодильнике оставались в газообразном состоянии. Они попадали в резервуар, а затем через трубу (выходной кран которой был закрыт) в газопровод, трубу и обратно в резервуар. Так как эти легкие газообразные фракции не находили выхода, давление внутри установки начинало повышаться. Когда оно достигало 5 атм, легкие углеводороды уже не могли улетучиваться из главного котла. Эти сжатые газы поддерживали одинаковое давление в котле, холодильнике и резервуаре. Между тем под влиянием высокой температуры происходил процесс расщепления тяжелых углеводородов, которые превращались в более легкие, то есть в бензин. При температуре порядка 250 градусов они испарялись, попадали в холодильник и здесь конденсировались. Из холодильника бензин перетекал в резервуар и по трубе, а потом поступал в специальные уплотненные котлы. Здесь при пониженном давлении из бензина испарялись растворенные в нем легкие газообразные углеводороды. Эти газы постепенно удалялись из котлов, а полученный сырой бензин сливался в специальные баки.

По мере испарения легких фракций с повышением температуры содержимое в котле становилось все более упорным по отношению к теплоте. Работа прерывалась как только более половины его содержимого превращалось в бензин и проходило через холодильник. (Это количество было легко рассчитать благодаря счетчику жидкости.) После этого соединение с газопроводом прерывалось, а кран газопровода, соединенный с компрессором, открывался, и газ медленно улетучивался в компрессор низкого давления (одновременно закрывался нефтепровод, прерывая связь установки с полученным бензином). Топку гасили, и когда содержимое котла остывало, его сливали. Затем котел очищали от коксового налета и приготавливали к следующему запуску.

Метод крекинга, разработанный Бартоном, положил начало новому этапу в нефтеперерабатывающей промышленности. Благодаря ему удалось повысить в несколько раз выход таких ценных нефтепродуктов, как бензин и ароматические углеводороды.

Однако интенсивное развитие автомобильного транспорта расставило другие акценты. Если в США в 1913 году насчитывалось 1 млн 250 тыс. автомобилей, то в 1917 году — около 5 млн, 1918 году — 6,25 млн, а в 1922 году — уже 12 млн. Бензин, который в XIX веке очень мало находил применения и являлся почти что ненужным отбросом, постепенно сделался главной целью перегонки. С 1900 по 1912 год мировое потребление бензина возросло в 115 раз. Между тем при перегонке даже богатой легкими фракциями черного золота на бензин приходилось всего около 1/5 от общего объема выхода. Тогда и возникла идея подвергать тяжелые фракции, выделившиеся после первичной перегонки, крекингу и получать из них тем самым более легкие бензиновые фракции. Вскоре было установлено, что исходным сырьем для крекинга могут служить не только тяжелые фракции (солярка или мазут), но и кровь земли. Оказалось также, что крекинг — бензин превосходит по качеству тот, что получен путем обычной перегонки, так как имеет в своем составе такие углеводороды, которые плавно сгорают в цилиндрах двигателя без взрывов (детонации). Двигатель, работающий на таком бензине, не стучит и служит дольше.

Что же происходит при термическом крекинге? Под воздействием высокой температуры длинные молекулы, например алканов С20, разлагаются на более короткие — от С2 до С18. Углеводороды С8 — С10 — это бензиновая фракция, С15 -дизельная. При этом одновременно происходит перераспределение процентного содержания углерода и водорода в сырье и продуктах.

С изобретением крекинга глубина нефтепереработки увеличилась. Выход светлых составляющих, из которых затем можно приготовить бензин, керосин, дизтопливо (соляр) повысился с 40-45 до 55-60%. Но главное даже не в этом. Новая технология позволила повнимательнее присмотреться к мазуту, использовать его в качестве сырья для производства масел.

Крекинг проводят нагреванием нефтяного сырья или одновременным воздействием на него высокой температуры и Катализаторов.

В первом случае процесс применяют для получения бензинов (низкооктановые компоненты автомобильных топлив) и газойлевых (компоненты флотских мазутов, газотурбинных и печных топлив) фракций, высокоароматизированного нефтяного сырья в производстве технического углерода (сажи), а также альфа-олефинов (термический крекинг); котельных, а также автомобильных и дизельных топлив (висбрекинг); нефтяногококса, а также углеводородных газов, бензинов и керосино-газойлевых фракций; этена, пропена, а также ароматических углеводородов (пиролиз нефтяного сырья).

Во втором случае процесс используют для получения базовых компонентов высокооктановых бензинов, газойлей, углеводородных газов (каталитический крекинг); бензиновых фракций, реактивных и дизельных топлив, нефтяных масел, а также сырья для процессов пиролиза нефтяных фракций и каталитического риформинга (гидрокрекинг).

Используют также другие виды пиролитического расщепления сырья, например процесс получения этена и ацетилена действием электрического разряда в метане (электрокрекинг), осуществляемый при 1000-1300 °C и 0,14 МПа в течение 0,01-0,1 с.

Крекинг является одним из основных методов получения моторных топлив (в частности, бензинов) и может осуществляться как чисто термический процесс — термический крекинг, так и в присутствии Катализаторов — каталитический крекинг. Реакции распада при термическом крекинге обычно рассматриваются как цепные, протекающие по свободнорадикальному механизму. Продукты термического крекинга, осуществляемого обычно при 470-540°С и давлении 4-6 Мн/м2 (40-60 am), содержат много непредельных углеводородов, нестабильны при хранении, бензины из этих продуктов мало восприимчивы к тетраэтилсвинцу и требуют дальнейшей переработки путём риформинга. Термический крекинг подвергают низкосортные виды тяжёлого остаточного нефтяного сырья. Термический крекинг низкого давления, проводимый при 500- 600°С и под давлением несколько десятых долей Мн/м2 (несколько am), называется также коксованием и применяется для превращения тяжёлых продуктов, например гудронов, в более лёгкие (выход 60-70%), используемые для дальнейшей переработки в моторные топлива. Наряду с этим получают до 20% кокса, применяемого в различных целях, например при изготовлении электродов (для дуговых печей, гальванических элементов). Высокотемпературный (650-750°С) крекинг низкого давления, называемый также пиролизом, проводят под давлением, близким к атмосферному; этим способом перерабатывают тяжёлое остаточное нефтяное сырьё в газ, содержащий до 50% непредельных углеводородов (этен, пропен и др.), и ароматические соединения; полученные продукты служат главным образом химическим сырьём. Термические крекинг обычно осуществляют в трубчатых печах или в реакторах с твёрдым циркулирующим теплоносителем, в качестве которого может быть использован образующийся кокс.

Каталитический крекинг, проводимый в присутствии Катализаторов — синтетических или природных алюмосиликатов (активированные глины, например монтмориллонит), служит для получения основным компонента высококачественного моторного бензина с октановым числом до 85, используемого в автотранспорте и авиации. При этом получают также керосино-газойлевые фракции, пригодные в качестве дизельного или реактивного топлива. Процесс осуществляют при 450-520°С, под давлением 0,2-0,3 Мн/м2 (2-3 am) в реакционных колоннах с неподвижным или непрерывно циркулирующим Катализатором. И в том и в другом случае катализатор нуждается в регенерации, т. к. при крекинге на нём накапливаются углеродистые отложения (кокс), дезактивирующие катализатор. Кокс удаляют выжиганием.

При каталитическом крекинге распад гораздо быстрее, чем при термическом. Кроме того, в этом случае происходит изомеризация с образованием насыщенных углеводородов. В результате выход лёгких продуктов больше, чем при термическом крекинге, а получаемый бензин содержит много изопарафинов и мало непредельных углеводородов, что обусловливает его высокое качество. Сырьём для каталитического крекинга служит обычно газойль, из которого получают 30-40% бензина (с содержанием изопарафинов до 50%), 45-55% каталитического газойля, 10-20% газа (в т. ч. 6-9% C4H10-бутиленовой фракции, являющейся химическим сырьём) и 3-6% кокса.

Для переработки средних и тяжёлых нефтяных дистиллятов с большим содержанием сернистых и смолистых соединений, непригодных поэтому для переработки чисто каталитическим способом, большое распространение получил каталитический крекинг в присутствии водорода, так называемый гидрокрекинг. Он осуществляется при температурах 350-450°С, давлении водорода 3-14 Мн/м2 (30-140 am) и расходе водорода 170-350 M3 на 1M3 сырья. Катализаторами служат окислы или сульфиды молибдена и никеля, молибдат кобальта и др. на крекирующих носителях, например на алюмосиликатах. Применение водорода обеспечивает эффективное гидрирование на Катализаторе высокомолекулярных и сернистых соединений с их последующим распадом на крекирующем компоненте. Благодаря этому выход светлых продуктов повышается до 70% (в пересчёте на нефть) и сильно снижается содержание в продуктах серы и непредельных углеводородов. Получаемые моторные топлива (бензин, реактивное и дизельное топлива) отличаются высоким качеством.

Значительное применение для получения непредельных углеводородов, используемых как химическое сырьё, находит крекинг с водяным паром. Исходными продуктами служат различные виды нефтяного сырья — от газов переработки нефти до остатков после перегонки нефтепродуктов. Крекинг проводят при 650-800°С в присутствии Катализаторов, наприме

🎬 Видео

Тесты по химии. Крекинг. А31 ЦТ 2011Скачать

Тесты по химии. Крекинг. А31 ЦТ 2011

Каталитический крекинг нефтиСкачать

Каталитический крекинг нефти

Каталитический крекингСкачать

Каталитический крекинг

Получение алканов. Реакция Вюрца (механизм + сложные случаи). ЕГЭ по химии.Скачать

Получение алканов. Реакция Вюрца (механизм + сложные случаи). ЕГЭ по химии.

Каталитический крекинг нефтиСкачать

Каталитический крекинг нефти

Химические свойства алканов | Химия ЕГЭ для 10 класса | УмскулСкачать

Химические свойства алканов | Химия ЕГЭ для 10 класса | Умскул

Химические свойства алканов. 1 часть. 10 класс.Скачать

Химические свойства алканов.  1 часть. 10 класс.

Химия с нуля — Химические свойства АлкеновСкачать

Химия с нуля — Химические свойства Алкенов

Доронин В.П. Каталитический крекинг нефтяного сырья.процесс и катализаторы для негоСкачать

Доронин В.П. Каталитический крекинг нефтяного сырья.процесс и катализаторы для него

Технологическая схема установки термического крекингаСкачать

Технологическая схема установки термического крекинга

А26 ЦТ 2020. Каталитический крекинг. Тесты по химииСкачать

А26 ЦТ 2020. Каталитический крекинг. Тесты по химии

Установка каталитического крекингаСкачать

Установка каталитического крекинга

7 ВАЖНЕЙШИХ РЕАКЦИЙ, которые тебе нужно знать (Алкины)Скачать

7 ВАЖНЕЙШИХ РЕАКЦИЙ, которые тебе нужно знать (Алкины)

Переработка тяжелой нефти, Термокаталитический крекинг (разгонка) нефтешламаСкачать

Переработка тяжелой нефти, Термокаталитический крекинг (разгонка) нефтешлама
Поделиться или сохранить к себе: