В данной статье рассмотрим, как происходит окисление глюкозы. Углеводы представляют собой соединения полигидроксикарбонильного типа, а также их производные. Характерные признаки – наличие альдегидных или кетонной групп и не меньше двух групп гидроксильных.
По своей структуре углеводы подразделяются на моносахариды, полисахариды, олигосахариды.
- Моносахариды
- Олигосахариды
- Полисахариды
- Функции углеводов в организме человека
- Гликолиз
- Механизм гликолиза
- Стадия №1 реакции окисления глюкозы
- Стадия №2 — полное окисление глюкозы
- Анаэробный путь глюкозного окисления
- Образование коферментов
- Видоизмененные формы гликолиза
- Заключение
- Полное окисление глюкозы. Энергетический баланс полного окисления глюкозы
- Уравнение реакции полного окисления глюкозы
- Специфические свойства
- Реакции с участием альдегидной группы глюкозы (свойства глюкозы как альдегида)
- Реакции глюкозы с участием гидроксильных групп (свойства глюкозы как многоатомного спирта)
- Реакции с участием полуацетального гидроксила
- Реакции окисления
- 🎥 Видео
Видео:Аэробный и анаэробный гликолиз. Реакции катаболизма глюкозы. Расчет выхода АТФ в гликолизеСкачать
Моносахариды
Моносахариды являются наиболее простыми углеводами, которые не могут быть подвергнуты гидролизу. В зависимости от того, какая группа присутствует в составе – альдегидная или кетонная, выделяют альдозы (к ним относятся галактоза, глюкоза, рибоза) и кетозы (рибулоза, фруктоза).
Видео:Окислительное декарбоксилирование пирувата.Скачать
Олигосахариды
Олигосахариды представляют собой углеводы, которые имеют в своем составе от двух до десяти остатков моносахаридного происхождения, соединенных посредством гликозидных связей. В зависимости от количества остатков моносахаридов различают дисахариды, трисахариды и так далее. Что при окислении глюкозы образуется? Об этом будет рассказано позднее.
Видео:Уравнивание реакций горения углеводородовСкачать
Полисахариды
Полисахариды представляют собой углеводы, которые содержат более чем десять моносахаридных остатков, соединенных между собой гликозидными связями. Если в составе полисахарида содержатся одинаковые моносахаридные остатки, то он называется гомополисахаридом (к примеру, крахмал). Если же такие остатки разные – то гетерополисахаридом (к примеру, гепарин).
Какое значение имеет окисление глюкозы?
Видео:8 класс. ОВР. Окислительно-восстановительные реакции.Скачать
Функции углеводов в организме человека
Углеводы выполняют следующие основные функции:
- Энергетическая. Самая главная функция углеводов, так как они служат основным источником энергии в организме. В результате их окисления удовлетворяется более половины энергетической потребности человека. В результате окисления одного грамма углеводов высвобождается 16,9 кДж.
- Резервная. Гликоген и крахмал являются формой накопления питательных веществ.
- Структурная. Целлюлоза и некоторые другие полисахаридные соединения образуют в растениях прочный остов. Также они, в комплексе с липидами и белками, являются составляющей всех клеточных биомембран.
- Защитная. Для кислых гетерополисахаридов отведена роль биологического смазочного материала. Они выстилают поверхности суставов, которые соприкасаются и трутся друг об друга, слизистые носа, пищеварительных путей.
- Антигоагулянтная. Такой углевод, как гепарин, имеет важное биологическое свойство, а именно – препятствует свертыванию крови.
- Углеводы представляют собой источник углерода, необходимый для синтеза белков, липидов и нуклеиновых кислот.
Для организма главным источником углеводов являются пищевые углеводы – сахароза, крахмал, глюкоза, лактоза). Глюкоза может быть синтезирована в самом организме из аминокислот, глицерина, лактата и пирувата (глюконеогенез).
Видео:Суммарное уравнение полного расщепления глюкозы. ЕГЭ Биология. ЕГЭ 2022.Скачать
Гликолиз
Гликолиз представляет собой одну из трех возможных форм процесса окисления глюкозы. В этом процессе происходит выделение энергии, запасаемой впоследствии в АТФ и НАДН. Одна ее молекула распадается на две молекулы пирувата.
Процесс гликолиза происходит под действием разнообразных ферментативных веществ, то есть катализаторов биологической природы. Самым главным окислителем является кислород, но стоит отметить, что процесс гликолиза может осуществляться и при отсутствии кислорода. Подобный вид гликолиза называется анаэробным.
Гликолиз анаэробного типа является ступенчатым процессом окисления глюкозы. При таком гликолизе окисление глюкозы происходит не полностью. Таким образом, при окислении глюкозы образуется лишь одна молекула пирувата. С точки зрения энергетической выгоды анаэробный гликолиз менее выгоден, чем аэробный. Однако если в клетку поступит кислород, то может произойти превращение анаэробного гликолиза в аэробный, который представляет собой полное окисление глюкозы.
Видео:РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать
Механизм гликолиза
В процессе гликолиза происходит распад шестиуглеродной глюкозы на две молекулы трехуглеродного пирувата. Весь процесс разделен на пять подготовительных этапов и еще пять, в течение которых в АТФ запасается энергия.
Таким образом, гликолиз протекает на двух стадиях, каждая из которых делится на пять этапов.
Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать
Стадия №1 реакции окисления глюкозы
- Первый этап. На первом этапе происходит фосфорилирование глюкозы. Активирование сахарида происходит путем фосфолирирования по шестому углеродному атому.
- Второй этап. Происходит процесс изомеризации глюкозы-6-фосфата. На данном этапе глюкоза обращается во фруктозу-6-фосфат под действием каталитического фосфоглюкоизомераза.
- Третий этап. Фосфорилирование фруктозы-6-фосфата. На данном этапе происходит образование фруктозо-1,6-дифосфата (называемого также альдолазой) под воздействием фосфофруктокиназы-1. Она участвует в сопровождении фосфорильной группы от аденозинтрифосфорной кислоты до молекулы фруктозы.
- Четвертый этап. На данном этапе происходит расщепление альдолазы. В результате образуются две молекулы триозофосфата, в частности кетозы и эльдозы.
- Пятый этап. Изомеризация триозофосфатов. На данном этапе происходит отправка глицеральдегид-3-фосфата на следующие этапы глюкозного расщепления. При этом происходит переход дигидроксиацетонфосфата в форму глицеральдегид-3-фосфата. Данный переход осуществляется под действием ферментов.
- Шестой этап. Процесс окисления глицеральдегид-3-фосфата. На данном этапе происходит окисление молекулы и ее последующее фосфорилирование до дифосфоглицерата-1,3.
- Седьмой этап. Данный этап предполагает перенос из 1,3-дифосфоглицерата фосфатной группы на АДФ. В конечном результате этого этапа образуется 3-фосфоглицерат и АТФ.
Видео:[биохимия] — ГЛИКОЛИЗСкачать
Стадия №2 — полное окисление глюкозы
- Восьмой этап. На данном этапе осуществляется переход 3-фосфоглицерата в 2-фосфоглицерат. Процесс перехода осуществляется под действием такого фермента, как фосфоглицератмутаза. Данная химическая реакция окисления глюкозы протекает при обязательном наличии магния (Mg).
- Девятый этап. На данном этапе происходит дегидратация 2-фосфоглицерата.
- Десятый этап. Происходит перенос фосфатов, полученных в результате протекания предыдущих этапов, в ФЕП и АДФ. Осуществляется перенос на АДФ фосфоэнулпировата. Такая химическая реакция возможна при наличии ионов магния (Mg) и калия (K).
В аэробных условиях весь процесс доходит до СО2 и Н2О. Уравнение окисления глюкозы выглядит так:
Таким образом, в клетке не происходит накопления НАДН в процессе образования из глюкозы лактата. Это означает, что такой процесс представляет собой анаэробный, и он может протекать в отсутствии кислорода. Именно кислород – конечный акцептор электронов, которые передаются НАДН в дыхательную цепь.
В процессе подсчета энергетического баланса гликолитической реакции необходимо учитывать, что каждая ступень второй стадии повторяется два раза. Из этого можно сделать вывод о том, что на первой стадии тратится две АТФ-молекулы, а при протекании второй стадии образуется 4 АТФ-молекулы путем фосфорилирования субстратного типа. Это значит, что в результате окисления каждой молекулы глюкозы клетка накапливает две АТФ-молекулы.
Мы рассмотрели окисление глюкозы кислородом.
Видео:Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать
Анаэробный путь глюкозного окисления
Аэробным окислением называют процесс окисления, при котором происходит выделение энергии и который протекает в присутствии кислорода, выступающего конечным акцептором водорода в цепи дыхания. Донором молекул водорода выступает восстановленная форма коферментов (ФАДН2, НАДН, НАДФН), которые образуются при промежуточной реакции субстратного окисления.
Процесс окисления глюкозы аэробного дихотомического типа представляет собой основной путь катаболизма глюкозы в человеческом организме. Такой тип гликолиза может осуществляться во всех тканях и органах человеческого организма. Результатом этой реакции является расщепление молекулы глюкозы до воды и углекислого газа. Выделенная энергия при этом будет аккумулирована в АТФ. Этот процесс можно условно разделить на три этапа:
- Процесс превращения молекулы глюкозы в пару молекул пировиноградной кислоты. Реакция происходит в клеточной цитоплазме и представляет собой специфический путь глюкозного распада.
- Процесс образования ацетил-КоА в результате окислительного декарбоксилирования пировиноградной кислоты. Данная реакция протекает в клеточных митохондриях.
- Процесс окисления ацетил-КоА в цикле Кребса. Реакция протекает в клеточных митохондриях.
На каждой стадии данного процесса образуются восстановленные формы коферментов, окисляющихся посредством ферментных комплексов дыхательной цепи. В результате образуется АТФ при окислении глюкозы.
Видео:Окислительно-восстановительные реакции. Видеоурок по химии 9 классСкачать
Образование коферментов
Коферменты, которые образуются на втором и третьем этапе аэробного гликолиза, будут окисляться непосредственно в митохондриях клеток. Параллельно с этим НАДН, которой образовался в клеточной цитоплазме при протекании реакции первого этапа аэробного гликолиза, не имеет способности к проникновению сквозь мембраны митохондрий. Водород переносится с цитоплазматического НАДН в клеточные митохондрии посредством челночных циклов. Среди таких циклов можно выделить основной – малат-аспартатный.
Затем при помощи цитоплазматического НАДН происходит восстановление оксалоацетата в малат, который, в свою очередь, проникает в клеточную митохондрию и затем окисляется с восстановлением митохондриальной НАД. Оксалоацетат возвращается в цитоплазму клетки в виде аспартата.
Видео:Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.Скачать
Видоизмененные формы гликолиза
Протекание гликолиза дополнительно может сопровождаться выделением 1,3 и 2,3-бифосфоглицератов. При этом 2,3-бифосфоглицерат под воздействием биологических катализаторов может возвращаться в процесс гликолиза, а затем изменять свою форму на 3-фосфоглицерат. Данные ферменты играют разнообразные роли. К примеру, 2,3-бифосфоглицерат, находящийся в гемоглобине, способствует переходу кислорода в ткани, способствуя при этом диссоциации и понижению сродства кислорода и эритроцитов.
Видео:Окисление и восстановление в клеточном дыхании (видео 3) | Клеточное дыхание | БиологияСкачать
Заключение
Многие бактерии могут изменять формы протекания гликолиза на его различных этапах. При этом возможно сокращение их общего количества или видоизменение этих этапов в результате воздействия различных ферментных соединений. Некоторые из анаэробов имеют способность к другим способам разложения углеводов. Большая часть термофилов имеет всего два гликолизных фермента, в частности енолазу и пируваткиназу.
Мы рассмотрели, как протекает окисление глюкозы в организме.
Видео:Общая схема полного окисления 1 молекулы глюкозы. ЕГЭ Биология. ЕГЭ 2022.Скачать
Полное окисление глюкозы. Энергетический баланс полного окисления глюкозы
Окисление глюкозы до СО2 и Н2О (аэробный распад). Аэробный распад глюкозы можно выразить суммарным уравнением:
С6Н12О6 + 6 О2 → 6 СО2 + Н2О + 2820 кДж/моль.
Этот процесс включает несколько стадий (рис. 7-33).
Аэробный гликолиз — процесс окисления глюкозы с образованием двух молекул пирувата;
Общий путь катаболизма, включающий превращение пирувата в ацетил-КоА и его дальнейшее окисление в цитратом цикле;
ЦПЭ на кислород, сопряжённая с реакциями дегидрирования, происходящими в процессе распада глюкозы.
Гликолиз — это катаболический путь обмена веществ в цитоплазме; он, по-видимому, протекает почти во всех организмах и клетках независимо от того, живут они в аэробных или анаэробных условиях. Баланс гликолиза простой: в аэробных условиях молекула глюкозы деградирует до двух молекул пирувата. Кроме того, образуются по две молекулы АТФ и НАДН + H + (аэробный гликолиз). В анаэробных условиях пируват претерпевает дальнейшие превращения, обеспечивая при этом регенерацию НАД + (см. с. 148). При этом образуются продукты брожения, такие, как лактат или этанол (анаэробный гликолиз). В этих условиях гликолиз является единственным способом получения энергии для синтеза АТФ из АДФ и неорганического фосфата.
Рис. 7-33. Аэробный распад глюкозы. 1-10- реакции аэробного гликолиза; 11 — малат-аспартатный челночный механизм транспорта водорода в митохондрии; 2 (в кружке) — стехиометрический коэффициент.
Выход АТФ при аэробном распаде глюкозы до конечных продуктов
В результате гликолиза образуется пируват, который далее окисляется до СО2 и Н2О в ОПК, описанном в разделе 6. Теперь можно оценить энергетическую эффективность гликолиза и ОПК, которые вместе составляют процесс аэробного распада глюкозы до конечных продуктов (табл. 7-4).
Таким образом, выход АТФ при окислении 1 моль глюкозы до СО2 и Н2О составляет 38 моль АТФ.
В процессе аэробного распада глюкозы происходят 6 реакций дегидрирования. Одна из них протекает в гликолизе и 5 в ОПК (см. раздел 6). Субстраты для специфических NAD-зависимых дегидрогеназ: глицеральдегид-3-фосфат, жируват, изоцитрат, α-кетоглутарат, малат. Одна реакция дегидрирования в цитратном цикле под действием сукцинатдегидрогеназы происходит с участием кофермента FAD. Общее количество АТФ, синтезированное путём окислительного фофорилирования, составляет 17 моль АТФ на 1 моль глицеральдегидфосфата. К этому необходимо прибавить 3 моль АТФ, синтезированных путём субстратного фосфорилирования (две реакции в гликолизе и одна в цитратном цикле).
Учитывая, что глюкоза распадается на 2 фос-фотриозы и что стехиометрический коэффициент дальнейших превращений равен 2, полученную величину надо умножить на 2, а из результата вычесть 2 моль АТФ, использованные на первом этапе гликолиза.
…
Основное физиологическое назначение катаболизма глюкозы заключается в использовании энергии, освобождающейся в этом процессе для синтеза АТФ.
Энергия, выделяющаяся в процессе полного распада глюкозы до СО2 и Н2О, составляет 2880 кДж/моль.
3.Механизм реакции трансаминирования. Все трансаминазы (как и декарбоксилазы аминокислот) содержат один и тот же кофермент – пиридоксальфосфат. Для реакцийтрансаминирования характерен общий механизм. Специфичность трансаминаз обеспечивается белковым компонентом. Ферменты трансаминирования катализируют перенос NH2-группы не на α-кетокислоту, а сначала на кофермент пиридоксаль-фосфат. Образовавшееся промежуточное соединение (шиффово основание) подвергается внутримолекулярным превращениям (лабилизация α-водо-родного атома, перераспределение энергии связи), приводящим к освобождению α-кетокислоты и пиридоксаминфосфата; последний на второй стадии реакции реагирует с любой другой α-кетокислотой, что через те же стадии образования промежуточных соединений (идущих в обратном направлении) приводит к синтезу новойаминокислоты и освобождению пиридоксальфосфата. Опуская промежуточные стадии образования шиф-фовых оснований, обе стадии реакции трансаминирования можно представить в виде общей схемы:
В связи с тем что во всех пиридоксалевых ферментах (включая транс-аминазы) карбонильная группа кофермента (—СНО) оказалась связанной с ε-аминогруппой лизина белковой части, в классический механизм реакции трансаминирования А.Е. Браунштейн и Э. Снелл внесли следующее дополнение. Оказалось, что взаимодействие между субстратом, т.е. L-амино-кислотой (на рисунке – аспартат), и пиридоксальфосфатомпроисходит не путем конденсации с выделением молекулы воды, а путем реакции замещения, при которой NH2-группа субстрата вытесняет ε-NН2-группу лизина в молекуле ферментного белка, что приводит к формированию пиридоксальфосфатного комплекса.
Существование представленного механизма реакции трансаминирова-ния доказано разнообразными методами, включая методы спектрального анализа по идентификации промежуточных альдиминных и кетиминных производных пиридоксальфосфата.
Видео:9:50 Анаэробное окисление глюкозыСкачать
Уравнение реакции полного окисления глюкозы
Химические свойства глюкозы, как и других альдоз, обусловлены присутствием в ее молекуле: а)альдегидной группы; б) спиртовых гидроксилов; в) полуацетального (гликозидного) гидроксила.
Специфические свойства
1. Брожение (ферментация) моносахаридов
Важнейшим свойством моносахаридов является их ферментативное брожение, т.е. распад молекул на осколки под действием различных ферментов. Брожению подвергаются в основном гексозы в присутствии ферментов, выделяемых дрожжевыми грибками, бактериями или плесневыми грибками. В зависимости от природы действующего фермента различают реакции следующих видов:
1) Спиртовое брожение
2) Молочнокислое брожение
(образуется в организмах высших животных при мышечных сокращениях).
3) Маслянокислое брожение
4) Лимоннокислое брожение
Реакции с участием альдегидной группы глюкозы (свойства глюкозы как альдегида)
1. Восстановление (гидрирование) с образованием многоатомного спирта
В ходе этой реакции карбонильная группа восстанавливается и образуется новая спиртовая группа:
Cорбит содержится во многих ягодах и фруктах, особенно много сорбита в плодах рябины.
2. Окисление
1) Окисление бромной водой
Качественные реакции на глюкозу как альдегид!
Протекающие в щелочной среде при нагревании реакции с аммиачным раствором Ag2O (реакция серебряного зеркала») и с гидроксидом меди (II) Cu (OH)2 приводят к образованию смеси продуктов окисления глюкозы.
2) Реакция серебряного зеркала
Соль этой кислоты – глюконат кальция – известное лекарственное средство.
Видеоопыт «Качественная реакция глюкозы с аммиачным раствором оксида серебра (I)»
3) Окисление гидроксидом меди (II)
В ходе этих реакций альдегидная группа – СНО окисляется до карбоксильной группы – СООН.
Реакции глюкозы с участием гидроксильных групп (свойства глюкозы как многоатомного спирта)
1. Взаимодействие с Cu (ОН)2 с образованием глюконата меди (II)
Качественная реакция на глюкозу как многоатомный спирт!
Подобно этиленгликолю и глицерину, глюкоза способна растворять гидроксид меди (II), образуя растворимое комплексное соединение синего цвета:
Прильём к раствору глюкозы несколько капель раствора сульфата меди (II) и раствор щелочи. Осадка гидроксида меди не образуется. Раствор окрашивается в ярко-синий цвет.
В данном случае глюкоза растворяет гидроксид меди (II) и ведет себя как многоатомный спирт, образуя комплексное соединение.
Видеоопыт «Качественная реакция глюкозы с гидроксидом меди (II)»
2. Взаимодействие с галогеналканами с образованием простых эфиров
Являясь многоатомным спиртом, глюкоза образует простые эфиры:
Реакция происходит в присутствии Ag2O для связывания выделяющегося при реакции НI.
3. Взаимодействие с карбоновыми кислотами или их ангидридами с образованием сложных эфиров.
Например, с ангидридом уксусной кислоты:
Реакции с участием полуацетального гидроксила
1. Взаимодействие со спиртами с образованием гликозидов
Гликозиды – это производные углеводов, у которых гликозидный гидроксил замещен на остаток какого-либо органического соединения.
Содержащийся в циклических формах глюкозы полуацетальный (гликозидный) гидроксил является очень реакционноспособным и легко замещается на остатки различных органических соединений.
В случае глюкозы гликозиды называются глюкозидами. Связь между углеводным остатком и остатком другого компонента называется гликозидной.
Гликозиды построены по типу простых эфиров.
При действии метилового спирта в присутствии газообразного хлористого водорода атом водорода гликозидного гидроксила замещается на метильную группу:
В данных условиях в реакцию вступает только гликозидный гидроксил, спиртовые гидроксильные группы в реакции не участвуют.
Гликозиды играют чрезвычайно важную роль в растительном и животном мире. Существует огромное число природных гликозидов, в молекулах которых с атомом С (1) глюкозы остатки самых различных соединений.
Реакции окисления
Более сильный окислитель – азотная кислота НNO3 – окисляет глюкозу до двухосновной глюкаровой (сахарной) кислоты:
В ходе этой реакции и альдегидная группа – СНО и первичная спиртовая группа — СН2ОН окисляются до карбоксильных – СООН.
Видеоопыт «Окисление глюкозы кислородом воздуха в присутствии метеленового голубого»
🎥 Видео
Составление уравнений реакций горения. 11 класс.Скачать
Биохимия 8. Дихотомическое окисление глюкозы. ГлюконеогенезСкачать
Решение задач на энергетический обмен.Скачать
Лекция 4.2 Аэробный этап гликолиза. Декарбоксилирование пировиноградной кислоты. Цикл Кребса.Скачать
Шноль С. Э. - Введение в биоорганическую химию - Анаэробные реакцииСкачать
Биохимия 9.Апотомическое окисление глюкозыСкачать