Задача 1021.
Сравнить отношение цинка, кадмия и ртути к разбавленным и концентрированным кислотам: а) соляной; б) серной; в) азотной. Написать уравнения соответствующих реакций.
Решение:
Цинк, кадмий и ртуть – металлы, образующие подгруппу цинка. Активность их понижается от Zn к Hg. Цинк – амфотерен: легко растворяется в кислотах, а при нагревании – в щелочах. Кадмий в щелочах не растворяется, а в кислотах -менее энергично, чем цинк. Ртуть взаимодействует только с кислотами, которые являются сильными окислителями.
Отношение цинка, кадмия и ртути к разбавленным и концентрированным кислотам:
а) Отношение цинка, кадмия и ртути к соляной кислоте.
Соляная кислота взаимодействует с металлами, стоящими в электрохимическом ряду металлов до водорода с образованием соли и выделением газообразного водорода:
1) Цинк легко растворяется в соляной кислоте:
2) Кадмий значительно хуже, чем цинк растворяется в соляной кислоте:
3) Ртуть не растворяется в соляной кислоте, она растворяется в царской водке:
б) Отношение цинка, кадмия и ртути к серной кислоте.
1) Взаимодействие серной кислоты с металлами проходит различно в зависимости от её концентрации. Разбавленная серная кислота окисляет своим ионом водорода. Из-за этого она взаимодействует только с теми металлами, которые стоят в ряду напряжений до водорода, например Zn и Cd:
Ртуть не взаимодействует с разбавленной серной кислотой (в ряду напряжений металлов ртуть находится после водорода; нормальный потенциал Hg / Hg 2+ = +0,85 B).
2) Концентрированная серная кислота является окислителем за счёт серы. Она окисляет металлы, стоящие в ряду напряжений до серебра включительно. Продукты её восстановления могут быть различными в зависимости от активности металла и от условий (концентрация кислоты, температура).
При взаимодействии серной кислоты с более активными металлами продуктами восстановления могут быть как SO2, так и свободная сера и сероводород. Так, при взаимодействии с цинком могут протекать реакции:
Взаимодействие серной кислоты с кадмием протекает труднее, чем с цинком:
3Cd + 4 H 2 SO 4 = 3 ZnSO 4 + S + 4H2O
При растворении ртути в горячей концентрированной серной кислоте в зависимости от избытка ртути или кислоты образуются соли одновалентной или двухвалентной ртути:
а) Отношение цинка, кадмия и ртути к азотной кислоте.
C металлами, стоящими в ряду напряжений левее водорода азотная кислота реагирует по разному в зависимости от концентрации, например с цинком и кадмием:
3Zn + 8HNO3(30%) = 3 Zn(NO 3 ) 2 + 2NO ↑ + 4H 2 O
Реакции азотной кислоты с кадмием протекают аналогично, как и с цинком только труднее.
Все приведенные выше уравнения отражают только доминирующий ход реакции. Это означает, что в данных условиях продуктов данной реакции больше, чем продуктов других реакций, например, при взаимодействии цинка с азотной кислотой (массовая доля азотной кислоты в растворе 0,3) в продуктах будет содержаться больше всего NO, но также будут содержаться (только в меньших количествах) и NO2, N2O, N2 и NH4NO3.
Единственная общая закономерность при взаимодействии азотной кислоты с металлами: чем более разбавленная кислота и чем активнее металл, тем глубже восстанавливается азот:
увеличение концентрации кислоты ← NO2, NO, N2O, N2, NH4NO3 → увеличение активности металла.
При растворении ртути в разбавленной азотной кислоте образуется нитрат ртути (II):
При избытке ртути образуется нитрат ртути (I):
Ртуть легко растворяется в концентрированной азотной кислоте – образуется нитрат ртути (II):
Видео:Взаимодействие металлов с соляной кислотойСкачать
Хлорид кадмия
Хлорид кадмия | |
---|---|
Систематическое наименование | Хлорид кадмия II |
Традиционные названия | Хлористый кадмий |
Хим. формула | CdCl2 |
Состояние | бесцветные кристаллы |
Молярная масса | 183,32 г/моль |
Плотность | 4,047 г/см³ |
Температура | |
• плавления | 564; 568,5 °C |
• кипения | 964; 968; 975 °C |
Энтальпия | |
• образования | -390,8 кДж/моль |
Растворимость | |
• в воде | 90,0 0 ; 113,4 20 ; 104,4 80 ; 147 100 г/100 мл |
• в этаноле | 1,5 г/100 мл |
Рег. номер CAS | 10108-64-2 |
PubChem | 24947 |
Рег. номер EINECS | 233-296-7 |
SMILES | |
RTECS | EV0175000 |
ChEBI | 35456 |
Номер ООН | 2570 |
ChemSpider | 23035 |
Предельная концентрация | 0,2 мг/м³ |
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. |
Хлорид кадмия II — неорганическое соединение, соль металла кадмия и соляной кислоты с формулой CdCl2, бесцветные кристаллы, гигроскопичен, хорошо растворимые в воде, образует кристаллогидраты.
Видео:Zn + 2HCl → ZnCl2 + H2 | Реакция цинка и соляной кислотыСкачать
Содержание
- 1 Получение
- 2 Физические свойства
- 3 Химические свойства
- 4 Применение
Видео:Реакция цинка с соляной кислотой. Химический опытСкачать
Получение
- Растворение металлического кадмия в соляной кислоте:
Cd + 2 HCl → τ CdCl2 + H2 ↑
- Реакция между простыми веществами:
Cd + Cl2 → 450−500oC CdCl2
- Растворение оксида кадмия в соляной кислоте:
CdO + 2 HCl → CdCl2 + H2O
- Реакция оксида кадмия и газообразным хлором:
2 CdO + 2 Cl2 → 500−600oC 2 CdCl2 + O2
Видео:Соляная кислота. Свойства и особенности. То чего вы не знали.Скачать
Физические свойства
Хлорид кадмия II образует бесцветные кристаллы гексагональной сингонии, пространственная группа R 3 m, параметры ячейки a = 0,385 нм, c = 1,746 нм, Z = 3.
В растворе образуется аутокомплекс Cd[CdCl4]. Водные растворы имеют кислую реакцию из-за гидролиза.
В расплаве хлорида кадмия растворяется металлический кадмий (≈15 мол.% кадмия при 600°С).
Образует кристаллогидраты состава CdCl2•n H2O, где n = 1, 2, 2½, 4 и 5, основные хлориды CdCl2•n Cd(OH)2, где n = 1, 2 и 4, аддукты вида CdCl2•B, где B — пиридин, α-пиколин, анилин, толуидин, фенилгидразин или пропилендиамин.
Видео:Взаимодействие цинка с соляной кислотой I ЕГЭ по химииСкачать
Химические свойства
- Безводную соль получают нагреванием кристаллогидрата:
CdCl2 ⋅ 2,5 H2O → 120−170oC CdCl2 + 2,5 H2O
- С хлористым водородом и хлоридами щелочных металлов образует комплекс:
CdCl2 + 2 HCl → H2[CdCl4] CdCl2 + 2 KCl → K2[CdCl4] ↓
- Реагирует с горячей концентрированной серной кислотой:
CdCl2 + H2SO4 → 100oC CdSO4 + 2 HCl ↑
- Реагирует с щелочами:
CdCl2 + 2 NaOH → Cd(OH)2 + 2 NaCl
Видео:Химия 8 класс Взаимодействие карбоната натрия и соляной кислотыСкачать
Уравнение реакции кадмия с соляной кислотой
Кадмий был открыт в 1817 немецким химиком Фридрихом Штромейером ( Stromeyer Friedrich ) (17761835).
При проверке оксида цинка , вырабатываемого одной из шенебекских фабрик, появилось подозрение, что он содержит примесь мышьяка. При растворении препарата в кислоте и пропускании через раствор сероводорода выпадал желтый осадок, похожий на сульфиды мышьяка, однако более тщательная проверка показала, что этого элемента нет. Для окончательного заключения образец подозрительного оксида цинка и другие цинковые препараты (в том числе карбонат цинка) с этой же фабрики послали Фридриху Штромейеру, занимавшему с 1802 кафедру химии в Геттингенском университете и должность генерального инспектора ганноверских аптек.
Прокалив карбонат цинка, Штромейер получил оксид, но не белый, как это должно было быть, а желтоватый. Он предположил, что окраска вызвана примесью железа, однако оказалось, что железа нет. Штромейер полностью проанализировал цинковые препараты и установил, что желтая окраска появилась благодаря новому элементу. Он получил название в честь цинковой руды, в которой был найден: греческое слово kadmeia , «кадмиевая земля» древнее название смитсонита ZnCO 3. Это слово, по преданию, происходит от имени финикийца Кадма, который будто бы первым нашел цинковый камень и подметил его способность придавать меди (при выплавке ее из руды) золотистый цвет. Так же звали героя древнегреческой мифологии: по одной из легенд, Кадм победил в тяжелом поединке Дракона и на его землях построил крепость Кадмею, вокруг которой затем вырос семивратный город Фивы.
Распространенность кадмия в природе и его промышленное извлечение. Содержание кадмия в земной коре составляет 1,6·10 5 %. Он близок по распространенности к сурьме (2·10 5 %) и в два раза более распространен, чем ртуть (8·10 6 %). Для кадмия характерна миграция в горячих подземных водах вместе с цинком и другими химическими элементами, склонными к образованию природных сульфидов. Он концентрируется в гидротермальных отложениях. Вулканические породы содержат до 0,2 мг кадмия на кг, среди осадочных пород наиболее богаты кадмием глины до 0,3 мг/кг, в меньшей степени известняки и песчаники (около 0,03 мг/кг). Среднее содержание кадмия в почве 0,06 мг/кг.
У кадмия есть собственные минералы гринокит CdS , отавит CdCO 3, монтепонит CdO . Однако своих месторождений они не образуют. Единственным промышленно значимым источником кадмия являются руды цинка, где он содержится в концентрации 0,015%. Кадмий накапливается также в галените (до 0,02%), халькопирите (до 0,12%), пирите (до 0,02%), станните (до 0,2%). Общие мировые ресурсы кадмия оцениваются в 20 млн. т, промышленные в 600 тыс. т.
Характеристика простого вещества и промышленное получение металлического кадмия. Кадмий серебристое твердое вещество с голубоватым блеском на свежей поверхности, мягкий, ковкий, тягучий металл, хорошо прокатывается в листы, легко поддается полированию. Подобно олову палочки кадмия при сгибании издают треск. Плавится при 321,1° С, кипит при 766,5° С, плотность 8,65 г/см 3 , что позволяет отнести его к тяжелым металлам.
В сухом воздухе кадмий устойчив. Во влажном воздухе он быстро тускнеет, а при нагревании легко взаимодействует с кислородом, серой, фосфором и галогенами. С водородом, азотом, углеродом, кремнием и бором кадмий не реагирует.
Пары кадмия взаимодействуют с парами воды с выделением водорода. Кислоты растворяют кадмий с образованием солей этого металла. Кадмий восстанавливает нитрат аммония в концентрированных растворах до нитрита аммония. Он окисляется в водном растворе катионами некоторых металлов, например меди( II ) и железа( III ). С растворами щелочей, в отличие от цинка, кадмий не взаимодействует.
Основные источники кадмия промежуточные продукты цинкового производства. Осадки металлов, полученные после очистки растворов сульфата цинка действием цинковой пыли, содержат 212% кадмия. Во фракциях, образующихся при дистилляционном получении цинка, содержится 0,71,1% кадмия, а во фракциях, полученных при ректификационной очистке цинка до 40% кадмия. Кадмий извлекают и из пыли свинцовых и медеплавильных заводов (она может содержать до 5% и 0,5% кадмия, соответственно). Пыль обычно обрабатывают концентрированной серной кислотой, а затем сульфат кадмия выщелачивают водой.
Из растворов сульфата кадмия действием цинковой пыли осаждают кадмиевую губку, затем ее растворяют в серной кислоте и очищают раствор от примесей действием оксида цинка или карбоната натрия, а также методами ионного обмена. Металлический кадмий выделяют электролизом на алюминиевых катодах либо восстановлением цинком.
Для удаления цинка и свинца металлический кадмий переплавляют под слоем щелочи. Расплав обрабатывают алюминием, чтобы удалить никель, и хлоридом аммония, чтобы избавиться от таллия. Применяя дополнительные методы очистки, можно получить кадмий с содержанием примесей 10 5 % по массе.
В год производится около 20 тыс. т кадмия. Объем его производства в большой степени связан с масштабами производства цинка.
Важнейшей областью применения кадмия является производство химических источников тока. Кадмиевые электроды используются в батареях и аккумуляторах. Отрицательные пластины никель-кадмиевых аккумуляторов изготовлены из железных сеток с губчатым кадмием в качестве активного агента. Положительные пластины покрыты гидроксидом никеля. Электролитом служит раствор гидроксида калия. На основе кадмия и никеля изготавливают и компактные аккумуляторы для управляемых ракет, только в этом случае в качестве основы устанавливают не железные, а никелевые сетки.
Процессы, протекающие в никель-кадмиевом щелочном аккумуляторе, можно описать суммарным уравнением:
Cd + 2NiO(OH) + 2H2O Cd(OH)2 + 2Ni(OH)2
Никель-кадмиевые щелочные аккумуляторы более надежны, чем свинцовые (кислотные). Эти источники тока отличаются высокими электрическими характеристиками, стабильностью работы, длительным сроком эксплуатации. Их можно зарядить всего за один час. Однако никель-кадмиевые аккумуляторы нельзя подзаряжать без полной предварительной разрядки (в этом отношении они уступают металлогидридным аккумуляторам).
Кадмий широко используется для нанесения антикоррозионных покрытий на металлы, особенно в случаях их контакта с морской водой. Кадмируются наиболее важные детали кораблей, самолетов, а также различные изделия, предназначенные для работы в условиях тропического климата. Раньше железо и другие металлы кадмировали погружением изделий в расплавленный кадмий, сейчас кадмиевое покрытие наносят электролитически.
У кадмиевых покрытий есть некоторые преимущества по сравнению с цинковыми: они более устойчивы к коррозии, их легче сделать ровными и гладкими. Высокая пластичность таких покрытий обеспечивает герметичность резьбовых соединений. К тому же кадмий, в отличие от цинка, устойчив в щелочной среде.
Однако у кадмирования есть свои проблемы. При электролитическом нанесении кадмия на стальную деталь в металл может проникнуть содержащийся в электролите водород. Он вызывает у высокопрочных сталей так называемую водородную хрупкость, приводящую к неожиданному разрушению металла под нагрузкой. Для предотвращения этого явления в кадмиевые покрытия вводят добавку титана.
Кроме того, кадмий токсичен. Поэтому, хотя кадмированную жесть применяют довольно широко, для изготовления кухонной утвари и тары для пищевых продуктов использовать ее запрещено.
Примерно десятая часть мирового производства кадмия расходуется на производство сплавов. Кадмиевые сплавы используют главным образом как антифрикционные материалы и припои. Сплав, содержащий 99% кадмия и 1% никеля, применяют для изготовления подшипников, работающих в автомобильных, авиационных и судовых двигателях в условиях высоких температур. Поскольку кадмий недостаточно стоек к действию кислот, в том числе и содержащихся в смазочных материалах органических кислот, иногда подшипниковые сплавы на основе кадмия покрывают индием.
Легирование меди небольшими добавками кадмия позволяет делать более износостойкими провода на линиях электрического транспорта. Медь с добавкой кадмия почти не отличается по электропроводности от чистой меди, но заметно превосходит ее прочностью и твердостью.
Кадмий входит в легкоплавкого сплава Вуда (Wood’s metal), содержащего 50% висмута, 25% свинца, 12,5% олова, 12,5 % кадмия. Сплав Вуда можно расплавить в кипящей воде. Любопытно, что первые буквы компонентов сплава Вуда образуют аббревиатуру ВОСК. Он был изобретен в 1860 не очень известным английским инженером Б.Вудом ( B . Wood ). Часто это изобретение ошибочно приписывают его однофамильцу знаменитому американскому физику Роберту Уильямсу Вуду , который родился лишь спустя восемь лет. Легкоплавкие сплавы кадмия используют как материал для получения тонких и сложных отливок, в автоматических противопожарных системах, для спайки стекла с металлом. Припои, содержащие кадмий, довольно устойчивы к температурным колебаниям.
Резкий скачок спроса на кадмий начался в 1940-е и был связан с применением кадмия в атомной промышленности выяснилось, что он поглощает нейтроны и из него стали делать регулирующие и аварийные стержни атомных реакторов. Способность кадмия поглощать нейтроны строго определенных энергий используется при исследовании энергетических спектров нейтронных пучков.
Соединения кадмия. Кадмий образует бинарные соединения, соли и многочисленные комплексные, в том числе металлоорганические, соединения. В растворах молекулы многих солей, в частности галогенидов, ассоциированы. Растворы имеют слабокислотную среду вследствие гидролиза. При действии растворов щелочей, начиная с рН 78, осаждаются основные соли.
Оксид кадмия CdO получают при взаимодействии простых веществ или прокаливанием гидроксида либо карбоната кадмия. В зависимости от «термической истории» он может быть зеленовато-желтым, коричневым, красным или почти черным. Это частично обусловлено размером частиц, но в большей степени является результатом дефектов кристаллической решетки. Выше 900° С оксид кадмия летуч, а при 1570° С полностью возгоняется. Он обладает полупроводниковыми свойствами.
Оксид кадмия легко растворяется кислотах и плохо в щелочах, легко восстанавливается водородом (при 900° С), монооксидом углерода (выше 350° С), углеродом (выше 500° С).
Оксид кадмия используют в качестве материала электродов. Он входит в состав смазочных масел и шихты для получения специальных стекол. Оксид кадмия катализирует ряд реакций гидрогенизации и дегидрогенизации.
Гидроксид кадмия Cd ( OH )2 выпадает в виде белого осадка из водных растворов солей кадмия( II ) при добавлении щелочи. При действии очень концентрированных растворов щелочей он превращается в гидроксокадматы, такие как Na 2[ Cd ( OH )4]. Гидроксид кадмия реагирует с аммиаком с образованием растворимых комплексов:
Кроме того, гидроксид кадмия переходит в раствор под действием цианидов щелочных элементов. Выше 170° С он разлагается до оксида кадмия. Взаимодействие гидроксида кадмия с пероксидом водорода в водном растворе приводит к образованию пероксидов разнообразного состава.
Применяют гидроксид кадмия для получения других соединений кадмия, а также как аналитический реагент. Он входит в состав кадмиевых электродов в источниках тока. Кроме того, гидроксид кадмия используется в декоративных стеклах и эмалях.
Фторид кадмия CdF 2 мало растворим в воде (4,06% по массе при 20° С), не растворим в этаноле. Его можно получить действием фтора на металл или фтороводорода на карбонат кадмия.
Фторид кадмия используется в качестве оптического материала. Он входит в состав некоторых стекол и люминофоров, а также твердых электролитов в химических источниках тока.
Хлорид кадмия CdCl 2 хорошо растворим в воде (53,2% по массе при 20° С). Его ковалентный характер обусловливает сравнительно низкую температуру плавления (568,5° С), а также растворимость в этаноле (1,5% при 25° С).
Хлорид кадмия получают при взаимодействии кадмия с концентрированной соляной кислотой или хлорированием металла при 500° С.
Хлорид кадмия является компонентом электролитов в кадмиевых гальванических элементах и сорбентов в газовой хроматографии. Он входит в состав некоторых растворов в фотографии, катализаторов в органическом синтезе, флюсов для выращивания полупроводниковых кристаллов. Его используют как протраву при крашении и печатании тканей. Из хлорида кадмия получают кадмиеорганические соединения.
Бромид кадмия CdBr 2 образует чешуйчатые кристаллы с перламутровым блеском. Он очень гигроскопичен, хорошо растворим в воде (52,9% по массе при 25° С), метаноле (13,9% по массе при 20° С), этаноле (23,3% по массе при 20° С).
Получают бромид кадмия бромированием металла или действием бромоводорода на карбонат кадмия.
Бромид кадмия служит катализатором в органическом синтезе, является стабилизатором фотоэмульсий и компонентом вирирующих составов в фотографии.
Иодид кадмия CdI 2 образует блестящие кристаллы в виде листочков, у них слоистая (двумерная) кристаллическая структура. Известно до 200 политипов иодида кадмия, различающихся последовательностью расположения слоев с гексагональной и кубической плотнейшей упаковкой.
В отличие от других галогенов, иодид кадмия не гигроскопичен. Он хорошо растворяется в воде (46,4% по массе при 25° С). Получают иодид кадмия иодированием металла при нагревании или в присутствии воды, а также действием иодоводорода на карбонат или оксид кадмия.
Иодид кадмия служит катализатором в органическом синтезе. Он является компонентом пиротехнических составов и смазочных материалов.
Сульфид кадмия CdS был, вероятно, первым соединением этого элемента, которым заинтересовалась промышленность. Он образует кристаллы от лимонно-желтого до оранжево-красного цвета. Сульфид кадмия обладает полупроводниковыми свойствами.
В воде это соединение практически не растворяется. К действию растворов щелочей и большинства кислот он также устойчив.
Получают сульфид кадмия взаимодействием паров кадмия и серы, осаждением из растворов под действием сероводорода или сульфида натрия, реакциями между кадмий- и сераорганическими соединениями.
Сульфид кадмия важный минеральный краситель, раньше его называли кадмиевой желтью.
В малярном деле кадмиевая желть впоследствии стала применяться шире. В частности, ею красили пассажирские вагоны, потому что, помимо прочих достоинств, эта краска хорошо противостояла паровозному дыму. Как красящее вещество сульфид кадмия использовали также в текстильном и мыловаренном производствах. Соответствующие коллоидные дисперсии применяли для получения цветных прозрачных стекол.
В последние годы чистый сульфид кадмия вытесняется более дешевыми пигментами кадмопоном и цинкокадмиевым литопоном. Кадмопон смесь сульфида кадмия и сульфата бария. Его получают, смешивая две растворимые соли сульфат кадмия и сульфид бария. В результате образуется осадок, содержащий две нерастворимые соли:
CdSO4 + BaS = CdS Ї + BaSO4 Ї
Цинкокадмиевый литопон содержит еще и сульфид цинка. При изготовлении этого красителя в осадок выпадают одновременно три соли. Литопон кремового цвета или цвета слоновой кости.
С добавками селенида кадмия, сульфида цинка, сульфида ртути и других соединений сульфид кадмия дает термически устойчивые пигменты с яркой окраской от бледно-желтой до темно-красной.
Сульфид кадмия придает пламени синюю окраску. Это его свойство используют в пиротехнике.
Кроме того, сульфид кадмия применяется как активная среда в полупроводниковых лазерах. Он случит в качестве материала для изготовления фотоэлементов, солнечных батарей, фотодиодов, светодиодов, люминофоров.
Селенид кадмия CdSe образует темно-красные кристаллы. Он не растворяется в воде, разлагается соляной, азотной и серной кислотами. Получают селенид кадмия сплавлением простых веществ или из газообразных кадмия и селена, а также осаждением из раствора сульфата кадмия под действием селеноводорода, реакцией сульфида кадмия с селенистой кислотой, взаимодействием между кадмий- и селенорганическими соединениями.
Селенид кадмия является люминофором. Он служит в качестве активной среды в полупроводниковых лазерах, является материалом для изготовления фоторезисторов, фотодиодов, солнечных батарей.
Селенид кадмия является пигментом для эмалей, глазурей и художественных красок. Селенидом кадмия окрашивают рубиновое стекло. Именно он, а не оксид хрома, как в самом рубине, сделал рубиново-красными звезды московского Кремля.
Теллурид кадмия CdTe может иметь окраску от темно-серой до темно-коричневой. Он не растворяется в воде, но разлагается концентрированными кислотами. Его получают взаимодействием жидких или газообразных кадмия и теллура.
Обладающий полупроводниковыми свойствами теллурид кадмия используют как детектор рентгеновского и g -излучения, а теллурид ртути-кадмия нашел широкое применение (особенно в военных целях) в ИК детекторах для тепловидения.
При нарушении стехиометрии или введении примесей (например, атомов меди и хлора), теллурид кадмия приобретает светочувствительные свойства. Это используется в электрофотографии.
Кадмиеорганические соединения CdR2 и CdRX (R = CH3, C2H5, C6H5 и другие углеводородные радикалы, Х галогены, OR, SR и др.) обычно получают из соответствующих реактивов Гриньяра. Они термически менее устойчивы, чем их цинковые аналоги, однако в целом менее реакционноспособны (обычно не воспламеняются на воздухе). Их наиболее важной областью применения является получение кетонов из хлорангидридов кислот.
Биологическая роль кадмия. Кадмий обнаруживается в организмах практически всех животных (у наземных около 0,5 мг на 1 кг массы, а у морских от 0,15 до 3 мг/кг). Вместе с тем его относят к наиболее токсичным тяжелым металлам.
Кадмий сосредотачивается в организме преимущественно в почках и печени, при этом содержание кадмия в организме к старости повышается. Он накапливается в виде комплексов с белками, которые участвуют в ферментативных процессах. Попадая в организм извне, кадмий оказывает ингибирующее действие на целый ряд ферментов, разрушая их. Его действие основано на связывании группы SH цистеиновых остатков в белках и ингибировании SH-ферментов. Он может также ингибировать действие цинксодержащих ферментов, замещая цинк. Из-за близости ионных радиусов кальция и кадмия, он может замещать кальций в костной ткани.
Люди отравляются кадмием, употребляя воду, загрязненную кадмиесодержащими отходами, а также овощи и зерновые, растущие на землях, расположенных вблизи от нефтеперегонных заводов и металлургических предприятий. Особой способностью накапливать кадмий отличаются грибы. По некоторым сведениям, содержание кадмия в грибах может достигать единиц, десятков и даже 100 и более миллиграммов на кг собственной массы. Соединения кадмия есть среди вредных веществ, находящихся в табачном дыме (одна сигарета содержит 12 мкг кадмия).
Классическим примером хронического отравления кадмием является заболевание, впервые описанное в Японии в 1950-е и получившее название «итай-итай». Болезнь сопровождалась сильными болями в поясничной области, болью в мышцах. Появлялись и характерные признаки необратимого поражения почек. Были зафиксированы сотни смертельных исходов «итай-итай». Заболевание приняло массовый характер в силу высокой загрязненности окружающей среды в Японии в то время и специфики питания японцев преимущественно рисом и морепродуктами (они способны накапливать кадмий в высоких концентрациях). Исследования показали, что заболевшие «итай-итай» потребляли до 600 мкг кадмия в сутки. В дальнейшем в результате мероприятий по охране окружающей среды, частота и острота синдромов, подобных «итай-итай» заметно снизилась.
В США была обнаружена зависимость между содержанием кадмия в атмосфере и частотой смертельных случаев от сердечно-сосудистых заболеваний.
Считают, что без вреда для здоровья в организм человека в сутки может поступать около 1 мкг кадмия на 1 кг собственного веса. В питьевой воде кадмия не должно содержаться более 0,01 мг/л. Противоядием при отравлении кадмием является селен, однако употребление продуктов, богатых этим элементом, приводит к понижению содержания серы в организме, и в этом случае кадмий снова становится опасным.
🎬 Видео
Взаимодействие соды с соляной кислотойСкачать
Взаимодействие карбоната кальция с соляной кислотой I ЕГЭ по химииСкачать
Реакция карбоната кальция и соляной кислотыСкачать
Взаимодействие мрамора с соляной кислотойСкачать
Качественная реакция ионов свинца с соляной кислотойСкачать
Химия 9 класс (Урок№10 - Галогены. Хлор. Хлороводород. Соляная кислота и её соли.)Скачать
Реакция МАГНИЯ и СОЛЯНОЙ КИСЛОТЫ. Получение ХЛОРИДА МАГНИЯ MgCI2. Опыты по химии дома. ЭкспериментыСкачать
Реакция Хлората Натрия и Соляной Кислоты. Реакция NaClO3 и HCl. Выделение Хлора.Скачать
Получение ХЛОРА. Реакция СОЛЯНОЙ КИСЛОТЫ и ПЕРМАНГАНАТА КАЛИЯ. Химические опыты. Chemical experimentСкачать
Молибденова Синь - Mo5O14 * H2O. Реакция Парамолибдата Аммония, Цинка и Соляной кислоты.Скачать
РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать
Взаимодействие металлов с кислотами. 8 класс.Скачать
Свойства соляной кислоты. Интересные реакции с ней. [ChemistryToday]Скачать
Получение соляной кислотыСкачать