Уравнение реакции бутана с бензолом

Содержание
  1. Бутан: способы получения и химические свойства
  2. Гомологический ряд бутана
  3. Строение бутана
  4. Изомерия бутана
  5. Структурная изомерия
  6. Химические свойства бутана
  7. 1. Реакции замещения
  8. 1.1. Галогенирование
  9. 1.2. Нитрование бутана
  10. 2. Дегидрирование бутана
  11. 3. Окисление бутана
  12. 3.1. Полное окисление – горение
  13. 3.2. Каталитическое окисление
  14. 4. Изомеризация бутана
  15. Получение бутана
  16. 1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)
  17. 2. Декарбоксилирование солей карбоновых кислот (реакция Дюма)
  18. 3. Гидрирование алкенов и алкинов
  19. 4. Синтез Фишера-Тропша
  20. 5. Получение бутана в промышленности
  21. Химические свойства
  22. 1. Реакции замещения в бензольном кольце
  23. 2. Реакции присоединения к бензолу
  24. 3. Замещение в боковой цепи гомологов бензола
  25. 4. Окисление гомологов бензола
  26. Бутан получение – Бутан получение — Найдите 3 способа получение Бутана.. Эт по химии… — 22 ответа
  27. Структурная изомерия
  28. Химические свойства бутана:
  29. Реакции замещения
  30. 1.1. Галогенирование
  31. 1.2. Нитрование бутана
  32. Бутан, формула, газ, характеристики:
  33. Дегидрирование бутана
  34. Физические свойства бутана:
  35. Окисление бутана
  36. 3.1. Полное окисление – горение
  37. 3.2. Каталитическое окисление
  38. Бутан, получение, свойства, химические реакции.
  39. Декарбоксилирование солей карбоновых кислот (реакция Дюма)
  40. Получение бутана. Химические реакции – уравнения получения бутана:
  41. Изомеры [ править ]
  42. Эффекты и проблемы со здоровьем [ править ]
  43. Применение и использование бутана:

Видео:Уравнивание реакций горения углеводородовСкачать

Уравнивание реакций горения углеводородов

Бутан: способы получения и химические свойства

Бутан C4H10 – это предельный углеводород, содержащий четыре атома углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, нерастворим в воде и не смешивается с ней.

Уравнение реакции бутана с бензолом

Видео:6.3. Ароматические углеводороды (бензол и его гомологи): Химические свойства. ЕГЭ по химииСкачать

6.3. Ароматические углеводороды (бензол и его гомологи): Химические свойства. ЕГЭ по химии

Гомологический ряд бутана

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4. , или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алкана Формула алкана
МетанCH4
ЭтанC2H6
ПропанC3H8
БутанC4H10
ПентанC5H12
ГексанC6H14
ГептанC7H16
ОктанC8H18
НонанC9H20
ДеканC10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.

Видео:Химические свойства бензола и его гомологов. 1 часть. 11 класс.Скачать

Химические свойства бензола и его гомологов. 1 часть. 11 класс.

Строение бутана

В молекулах алканов встречаются химические связи C–H и С–С.

Связь C–H ковалентная слабополярная, связь С–С – ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов – sp 3 :

Уравнение реакции бутана с бензолом

При образовании связи С–С происходит перекрывание sp 3 -гибридных орбиталей атомов углерода:

Уравнение реакции бутана с бензолом

При образовании связи С–H происходит перекрывание sp 3 -гибридной орбитали атома углерода и s-орбитали атома водорода:

Уравнение реакции бутана с бензолом

Четыре sp 3 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:

Уравнение реакции бутана с бензолом

Это соответствует тетраэдрическому строению.

Например, в молекуле бутана C4H10 атомы водорода располагаются в пространстве в вершинах тетраэдров, центрами которых являются атомы углерода. При этом углеродный скелет имеет зигзагообразное строение.

Уравнение реакции бутана с бензолом

Видео:ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и ПолучениеСкачать

ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и Получение

Изомерия бутана

Видео:6.1. Ароматические углеводороды (бензол и его гомологи): Строение, номенклатура, изомерияСкачать

6.1. Ароматические углеводороды (бензол и его гомологи):  Строение, номенклатура, изомерия

Структурная изомерия

Для бутана характерна структурная изомерия – изомерия углеродного скелета.

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Изомеры углеродного скелета отличаются строением углеродного скелета.

Например.

Для н-бутана (алкана с линейной цепью) существует изомер с разветвленным углеродным скелетом – изобутан

БутанИзобутан
Уравнение реакции бутана с бензоломУравнение реакции бутана с бензолом

Для бутана не характерна пространственная изомерия.

Видео:Как решать ОРГАНИЧЕСКИЕ ЦЕПОЧКИ? Основные типы химических реакцийСкачать

Как решать ОРГАНИЧЕСКИЕ ЦЕПОЧКИ? Основные типы химических реакций

Химические свойства бутана

Бутан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для бутана характерны реакции:

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для бутана характерны радикальные реакции.

Бутан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

Видео:РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

1. Реакции замещения

В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование

Бутан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании бутана образуется смесь хлорпроизводных.

Например, при хлорировании бутана образуются 1-хлорбутан и 2-хлорбутан:

Бромирование протекает более медленно и избирательно.

Избирательность бромирования: сначала замещается атом водорода у третичного атома углерода, затем атом водорода у вторичного атома углерода, и только затем первичный атом.

С третичный–Н > С вторичный–Н > С первичный–Н

Например, при бромировании пропана преимущественно образуется 2-бромбутан:

Хлорбутан может взаимодействовать с хлором и дальше с образованием дихлорбутана, трихлорбутана, тетрахлорбутана и т.д.

1.2. Нитрование бутана

Бутан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в бутане замещается на нитрогруппу NO2.

Например. При нитровании бутана образуется преимущественно 2-нитробутана:

Видео:29. Общая реакция горения для всех углеводородов. Как расставить коэффициенты реакции легкоСкачать

29. Общая реакция горения для всех углеводородов.  Как расставить коэффициенты реакции легко

2. Дегидрирование бутана

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

Например, п ри дегидрировании бутана преимущественно образуются бутен-2 (бутилен) или бутин-2.

При дегидрировании бутана под действием металлических катализаторов образуется смесь продуктов. Преимущественно образуется бутен-2:

Уравнение реакции бутана с бензолом

Если бутан нагревать в присутствии оксида хрома (III), преимущественно образуется бутадиен-1,3:

Уравнение реакции бутана с бензолом

Видео:Бензол. Строение и свойства | Химия ЕГЭ для 10 класса | УмскулСкачать

Бензол. Строение и свойства | Химия ЕГЭ для 10 класса | Умскул

3. Окисление бутана

Бутан – слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Бутан горит с образованием углекислого газа и воды. Реакция горения пропана сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении бутана в недостатке кислорода может образоваться угарный газ СО или сажа С.

3.2. Каталитическое окисление

  • Каталитическое окисление бутана – промышленный способ получения уксусной кислоты:

Уравнение реакции бутана с бензолом

Видео:6.2. Ароматические углеводороды (бензол и его гомологи): Способы получения. ЕГЭ по химииСкачать

6.2. Ароматические углеводороды (бензол и его гомологи): Способы получения. ЕГЭ по химии

4. Изомеризация бутана

Под действием катализатора и при нагревании неразветвленные алканы, содержащие не менее четырех атомов углерода в основной цепи, могут превращаться в более разветвленные алканы.

Например, н-бутан под действием катализатора хлорида алюминия и при нагревании превращается в изобутан:

Видео:Химические свойства бензола и его гомологов. 2 часть. 11 класс.Скачать

Химические свойства бензола и его гомологов. 2 часть. 11 класс.

Получение бутана

Видео:Химические свойства бензола и его гомологов. 3 часть. 11 класс.Скачать

Химические свойства бензола и его гомологов. 3 часть. 11 класс.

1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

Это один из лабораторных способов получения бутана. При этом происходит удвоение углеродного скелета.

Хлорэтан взаимодействует с натрием с образованием бутана:

Уравнение реакции бутана с бензолом

Видео:Химические реакции #БЕНЗОЛ химические свойства, реакции.Скачать

Химические реакции #БЕНЗОЛ химические свойства, реакции.

2. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии пентаноата натрия с гидроксидом натрия при сплавлении образуются бутан и карбонат натрия:

CH3–CH2–CH2– CH2 –COONa + NaOH CH3–CH2 – CH2 – CH3 + Na2CO3

Видео:Составление уравнений реакций горения. 11 класс.Скачать

Составление уравнений реакций горения. 11 класс.

3. Гидрирование алкенов и алкинов

Бутан можно получить из бутилена или бутина:

Уравнение реакции бутана с бензолом

При гидрировании бутена-1 или бутена-2 образуется бутан:

При полном гидрировании бутадиена-1,3 также образуется бутан:

Видео:Бензол. Механизм реакции электрофильного замещения. Нитрование бензола.Скачать

Бензол. Механизм реакции электрофильного замещения. Нитрование бензола.

4. Синтез Фишера-Тропша

Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

Это промышленный процесс получения алканов.

Из угарного газа и водорода можно получить бутан:

Видео:Химические свойства алканов. 1 часть. 10 класс.Скачать

Химические свойства алканов.  1 часть. 10 класс.

5. Получение бутана в промышленности

В промышленности бутан получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.

Видео:Ароматические углеводороды. Бензол | Органическая химия ЕГЭ, ЦТСкачать

Ароматические углеводороды. Бензол | Органическая химия ЕГЭ, ЦТ

Химические свойства

  • Строение, номенклатура, изомерия
  • Способы получения
  • Химические свойства

1. Реакции замещения в бензольном кольце

Первая группа реакций — реакции замещения. Мы говорили, что арены не имеют кратных связей в структуре молекулы, а содержат сопряженную систему из шести электронов, которая очень стабильна и придает дополнительную прочность бензольному кольцу. Поэтому в химических реакциях происходит в первую очередь замещение атомов водорода, а не разрушение бензольного кольца.

С реакциями замещения мы уже сталкивались при разговоре об алканах, но для них эти реакции шли по радикальному механизму, а для аренов характерен ионный механизм реакций замещения.

Первое химическое свойство — галогенирование. Замещение атома водорода на атом галогена — хлора или брома.

Реакция идет при нагревании и обязательно с участием катализатора. В случае с хлором это может быть хлорид алюминия или хлорид железа три. Катализатор поляризует молекулу галогена, в результате чего происходит гетеролитический разрыв связи и получаются ионы.

Уравнение реакции бутана с бензолом

Положительно заряженный ион хлора и вступает в реакцию с бензолом.

Если реакция происходит с бромом, то катализатором выступает бромид железа три или бромид алюминия.

Уравнение реакции бутана с бензолом

Важно отметить, что реакция происходит с молекулярным бромом, а не с бромной водой. С бромной водой бензол не реагирует.

У галогенирования гомологов бензола есть свои особенности. В молекуле толуола метильная группа облегчает замещение в кольце, реакционная способность повышается, и реакция идет в более мягких условиях, то есть уже при комнатной температуре.

Уравнение реакции бутана с бензолом

Важно отметить, что замещение всегда происходит в орто- и пара-положениях, поэтому получается смесь изомеров.

Второе свойство — нитрование бензола, введение нитрогруппы в бензольное кольцо.

Уравнение реакции бутана с бензолом

Образуется тяжелая желтоватая жидкость с запахом горького миндаля — нитробензол, поэтому реакция может быть качественной на бензол. Для нитрования используется нитрующая смесь концентрированной азотной и серной кислот. Реакция проводится при нагревании.

Напомню, что для нитрования алканов в реакции Коновалова использовалась разбавленная азотная кислота без добавления серной.

При нитровании толуола, также как и при галогенировании, образуется смесь орто- и пара- изомеров.

Уравнение реакции бутана с бензолом

Третье свойство — алкилирование бензола галогеналканами.

Уравнение реакции бутана с бензолом

Эта реакция позволяет ввести углеводородный радикал в бензольное кольцо и может считаться способом получения гомологов бензола. В качестве катализатора используется хлорид алюминия, способствующий распаду молекулы галогеналкана на ионы. Также необходимо нагревание.

Четвертое свойство — алкилирование бензола алкенами.

Уравнение реакции бутана с бензолом

Таким способом можно получить, например, кумол или же этилбензол. Катализатор — хлорид алюминия.

2. Реакции присоединения к бензолу

Вторая группа реакций — реакции присоединения. Мы говорили, что эти реакции не характерны, но они возможны при достаточно жестких условиях с разрушением пи-электронного облака и образованием шести сигма-связей.

Пятое свойство в общем списке — гидрирование, присоединение водорода.

Уравнение реакции бутана с бензолом

Температура, давление, катализатор никель или платина. Таким же образом способен реагировать толуол.

Шестое свойство — хлорирование. Обратите внимание, что речь идет именно о взаимодействии с хлором, поскольку бром в эту реакцию не вступает.

Уравнение реакции бутана с бензолом

Реакция протекает при жестком ультрафиолетовом облучении. Образуется гексахлорциклогексан, другое название гексахлоран, твердое вещество.

Важно помнить, что для бензола не возможны реакции присоединения галогеноводородов (гидрогалогенирование) и присоединение воды (гидратация).

3. Замещение в боковой цепи гомологов бензола

Третья группа реакций касается только гомологов бензола — это замещение в боковой цепи.

Седьмое свойство в общем списке — галогенирование по альфа-атому углерода в боковой цепи.

Уравнение реакции бутана с бензолом

Реакция происходит при нагревании или облучении и всегда только по альфа-углероду. При продолжении галогенирования, второй атом галогена снова встанет в альфа-положение.

4. Окисление гомологов бензола

Четвертая группа реакций — окисление.

Бензольное кольцо слишком прочное, поэтому бензол не окисляется перманганатом калия — не обесцвечивает его раствор. Это очень важно помнить.

Зато гомологи бензола окисляются подкисленным раствором перманганата калия при нагревании. И это восьмое химическое свойство.

Уравнение реакции бутана с бензолом

Получается бензойная кислота. Наблюдается обесцвечивание раствора. При этом, какой бы длинной не была углеродная цепь заместителя, всегда происходит ее разрыв после первого атома углерода и альфа-атом окисляется до карбоксильной группы с образованием бензойной кислоты. Оставшаяся часть молекулы окисляется до соответствующий кислоты или, если это только один атом углерода, до углекислого газа.

Уравнение реакции бутана с бензолом

Если гомолог бензола имеет больше одного углеводородного заместителя у ароматического кольца, то окисление происходит по тем же правилам — окисляется углерод, находящийся в альфа-положении.

Уравнение реакции бутана с бензолом

В данном примере получается двухосновная ароматическая кислота, которая называется фталевая кислота.

Особым образом отмечу окисление кумола, изопропилбензола, кислородом воздуха в присутствии серной кислоты.

Уравнение реакции бутана с бензолом

Это так называемый кумольный способ получения фенола. Как правило, сталкиваться с этой реакцией приходится в вопросах, касающихся получения фенола. Это промышленный способ.

Девятое свойство — горение, полное окисление кислородом. Бензол и его гомологи сгорают до углекислого газа и воды.

Запишем уравнение горения бензола в общем виде.

Уравнение реакции бутана с бензолом

По закону сохранения массы атомов слева должно быть столько же, сколько атомов справа. Потому что ведь в химических реакциях атомы никуда не деваются, а просто изменяется порядок связей между ними. Так вот молекул углекислого газа будет столько же, сколько и атомов углерода в молекуле арена, поскольку в состав молекулы входит один атом углерода. То есть n молекул CO2. Молекул воды будет в два раза меньше, чем атомов водорода, то есть (2n-6)/2, а значит n-3.

Атомов кислорода слева и справа одинаковое количество. Справа их 2n из углекислого газа, потому что в каждой молекуле два атома кислорода, плюс n-3 из воды, итого 3n-3. Слева атомов кислорода столько же — 3n-3, а значит молекул в два раза меньше, потому как в состав молекулы входят два атома. То есть (3n-3)/2 молекул кислорода.

Таким образом, мы составили уравнение сгорания гомологов бензола в общем виде.

Видео:Получение бензола и его гомологов. 1 часть. 11 класс.Скачать

Получение бензола и его гомологов. 1 часть. 11 класс.

Бутан получение – Бутан получение — Найдите 3 способа получение Бутана.. Эт по химии… — 22 ответа

– это предельный углеводород, содержащий четыре атома углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, нерастворим в воде и не смешивается с ней.

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4. , или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алканаФормула алкана
МетанCH4
ЭтанC2H6
ПропанC3H8
БутанC4H10
ПентанC5H12
ГексанC6H14
ГептанC7H16
ОктанC8H18
НонанC9H20
ДеканC10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.

В молекулах алканов встречаются химические связи C–H и С–С.

Связь C–H ковалентная слабополярная, связь С–С – ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов – sp3:

При образовании связи С–С происходит перекрывание sp3-гибридных орбиталей атомов углерода:

При образовании связи С–H происходит перекрывание sp3-гибридной орбитали атома углерода и s-орбитали атома водорода:

Четыре sp3-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109о 28′ друг к другу:

Это соответствует тетраэдрическому строению.

Например, в молекуле бутана C4H10 атомы водорода располагаются в пространстве в вершинах тетраэдров, центрами которых являются атомы углерода. При этом углеродный скелет имеет зигзагообразное строение.

Уравнение реакции бутана с бензолом

Видео:Химические свойства бутана| Получение бутана | Даниил Разуваев | ЭкзаменариумСкачать

Химические свойства бутана| Получение бутана | Даниил Разуваев | Экзаменариум

Структурная изомерия

Для бутана характерна структурная изомерия – изомерия углеродного скелета.

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Изомеры углеродного скелета отличаются строением углеродного скелета.

Например.
Для н-бутана (алкана с линейной цепью) существует изомер с разветвленным углеродным скелетом – изобутан
БутанИзобутан

Для бутана не характерна пространственная изомерия.

– предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для бутана характерны реакции:

  • разложения,
  • замещения,
  • окисления.

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для бутана характерны радикальные реакции.

Бутан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

Видео:Изомеры, гомологи, органическая химияСкачать

Изомеры, гомологи, органическая химия

Химические свойства бутана:

Бутан трудно вступает в химические реакции. В обычных условиях не реагирует с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.

Химические свойства бутана аналогичны свойствам других представителей ряда алканов. Поэтому для него характерны следующие химические реакции:

  1. 1. каталитическое дегидрирование бутана:

CH3-CH2-CH2-CH3 → CH2=CH-CH2-CH3 + H2 (kat = Pt, Ni, Al2O3, Cr2O3, повышенная to).

  1. 2. галогенирование бутана:

CH3-CH2-CH2-CH3 + Br2 → CH3-CHBr-CH2-CH3 + HBr (hv или повышенная to);

CH3-CH2-CH2-CH3 + I2 → CH3-CHI-CH2-CH3 + HI (hv или повышенная to).

Реакция носит цепной характер. Молекула брома или йода под действием света распадается на радикалы, затем они атакуют молекулы бутана, отрывая у них атом водорода, в результате этого образуется свободный бутил CH3-CH·-CH3, который сталкиваются с молекулами брома (йода), разрушая их и образуя новые радикалы йода или брома:

Br2 → Br·+ Br· (hv); – инициирование реакции галогенирования;

CH3-CH2-CH2-CH3 + Br· → CH3-CH·-CH2-CH3 + HBr; – рост цепи реакции галогенирования;

CH3-CH·-CH2-CH3 + Br → CH3-CHBr-CH2-CH3 + Br·;

CH3-CH·-CH2-CH3 + Br· → CH3-CHBr-CH2-CH3; – обрыв цепи реакции галогенирования.

Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование бутана проходит поэтапно – за один этап замещается не более одного атома водорода.

CH3-CH2-CH2-CH3 + Br2 → CH3-CHBr-CH2-CH3 + HBr (hv или повышенная to);

CH3-CHBr-CH2-CH3 + Br2 → CH3-CBr2-CH2-CH3 + HBr (hv или повышенная to);

Галогенирование будет происходить и далее, пока не будут замещены все атомы водорода.

  1. 3. нитрование бутана:

См. нитрование этана.

  1. 4. окисление (горение) бутана:

При избытке кислорода:

2C4H10 + 13O2 → 8CO2 + 10H2O.

При нехватке кислорода вместо углекислого газа (СО2) получается оксид углерода (СО), при еще меньшем количестве кислорода выделяется мелкодисперсный углерод сажа (в различном виде, в т.ч. в виде графена, фуллерена и пр.) либо их смесь.

  1. 5. сульфохлорирование бутана:

C4H10 + SO2 + Cl2 → C4H9-SO2Cl + … (hv).

  1. 6. сульфоокисление бутана:

2C4H10 + 2SO2 + О2 → 2C4H9-SO2ОН (повышенная to).

Реакции замещения

В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование

Бутан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании бутана образуется смесь хлорпроизводных.

Например, при хлорировании бутана образуются 1-хлорбутан и 2-хлорбутан:
CH3-CH2-CH2-CH3 + Cl2 → CH3-CH2-CH2-CH2Cl + HCl

CH3-CH2-CH2-CH3 + Cl2 → CH3-CH2-CHCl-CH3 + HCl

Бромирование протекает более медленно и избирательно.

Избирательность бромирования: сначала замещается атом водорода у третичного атома углерода, затем атом водорода у вторичного атома углерода, и только затем первичный атом.
С третичный–Н > С вторичный–Н > С первичный–Н
Например, при бромировании пропана преимущественно образуется 2-бромбутан:
CH3-CH2-CH2-CH3 + Br2 → CH3-CH2-CHBr-CH3 + HBr

Хлорбутан может взаимодействовать с хлором и дальше с образованием дихлорбутана, трихлорбутана, тетрахлорбутана и т.д.

1.2. Нитрование бутана

Бутан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в бутане замещается на нитрогруппу NO2.

Например. При нитровании бутана образуется преимущественно 2-нитробутана:

CH3-CH2-CH2-CH3 + HNO3 → CH3-CH2-CHNO2-CH3 + H2O

Уравнение реакции бутана с бензолом Уравнение реакции бутана с бензолом Уравнение реакции бутана с бензолом

Бутан, формула, газ, характеристики:

Бутан – органическое вещество класса алканов, состоящий из четырех атомов углерода и десяти атомов водорода. Название происходит от корня «бут-» (французское название масляной кислоты – acide butyrique) и суффикса «-ан» (что означает принадлежность к алканам).

Химическая формула бутана C4H10. Имеет два изомера н-бутан и изобутан. В химии название «бутан» используется в основном для обозначения н-бутана. Такое же название имеет смесь н-бутана и его изомера изобутана.

Рациональная формула н-бутана CH3-CH2-CH2-CH3, изобутана CH(CH3)3.

Строение молекулы н-бутана:

Строение молекулы изобутана:

Уравнение реакции бутана с бензолом

Бутан – бесцветный газ, без вкуса, со специфическим характерным запахом.

В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе. Для выделения из природного и попутного нефтяного газа производят их очистку и сепарацию газа.

Образуется также при крекинге нефтепродуктов., в т.ч. сланцевой нефти.

Также содержится в сланцевом газе и сжиженном газе (сжиженном природном газе).

Пожаро- и взрывоопасен.

Мало растворяется в воде и других полярных растворителях. Зато растворяется в некоторых неполярных органических веществах (метанол, ацетон, бензол, тетрахлорметан, диэтиловый эфир и другие).

Малотоксичен, но оказывает вредное воздействие на человека – на нервную систему (отравление, рвота, возможен летальный исход), обладает наркотическими свойствами, может вызвать удушье и сердечную аритмию, вызывает дисфункцию лёгочно-дыхательного аппарата. Класс опасности четвертый.

Дегидрирование бутана

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

Например, при дегидрировании бутана преимущественно образуются бутен-2 (бутилен) или бутин-2.

При дегидрировании бутана под действием металлических катализаторов образуется смесь продуктов. Преимущественно образуется бутен-2:

Если бутан нагревать в присутствии оксида хрома (III), преимущественно образуется бутадиен-1,3:

Физические свойства бутана:

Наименование параметра:Значение:
Цветбез цвета
Запахспецифический характерный запах
Вкусбез вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.)газ
Плотность (состояние вещества – жидкость, при 0 °C), кг/м3601,2
Плотность (состояние вещества – газ, при 0 °C), кг/м32,672
Температура плавления н-бутана, °C-138,4
Температура плавления изобутана, °C-159,6
Температура кипения н-бутана, °C-0,5
Температура кипения изобутана, °C-11,7
Температура самовоспламенения, °C372
Критическая температура*, °C152,01
Критическое давление, МПа3,797
Критический удельный объём, м3/кг228
Взрывоопасные концентрации смеси газа с воздухом, % объёмныхот 1,4 до 9,3
Удельная теплота сгорания, МДж/кг45,8
Молярная масса, г/моль58,12

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Окисление бутана

– слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Бутан горит с образованием углекислого газа и воды. Реакция горения пропана сопровождается выделением большого количества теплоты.

2C4H10 + 13O2 → 8CO2 + 10H2O + Q

Уравнение сгорания алканов в общем виде:

CnH2n+2 + (3n+1)/2O2 → nCO2 + (n+1)H2O + Q

При горении бутана в недостатке кислорода может образоваться угарный газ СО или сажа С.

3.2. Каталитическое окисление

  • Каталитическое окисление бутана – промышленный способ получения уксусной кислоты:

Бутан, получение, свойства, химические реакции.

Бутан, C4H10 – органическое вещество класса алканов. В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе. Образуется также при крекинге нефтепродуктов.

Бутан, формула, газ, характеристики

Физические свойства бутана

Химические свойства бутана

Химические реакции – уравнения получения бутана

Применение и использование бутана

Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии пентаноата натрия с гидроксидом натрия при сплавлении образуются бутан и карбонат натрия:

CH3–CH2–CH2–CH2–COONa + NaOH CH3–CH2–CH2–CH3 + Na2CO3

Получение бутана. Химические реакции – уравнения получения бутана:

Так как бутан в достаточном количестве содержится в природном газе, попутном нефтяном газе и выделяется при крекинге нефтепродуктов, его не получают искусственно. Его выделяют при очистке и сепарации из природного газа, ПНГ и нефти при перегонке.

Бутан в лабораторных условиях получается в результате следующих химических реакций:

  1. 1. гидрирования непредельных углеводородов, например, бутена:

CH3-CH2-CH=CH2 + H2 → CH3-CH2-CH2-CH3 (kat = Ni, Pt или Pd, повышенная to).

  1. 2. восстановления галогеналканов:

C4H9I + HI → C4H10 + I2 (повышенная to);

C4H9Br + H2 → C4H10 + HBr.

  1. 3. взаимодействия галогеналканов с металлическим щелочным металлом, например, натрием (реакция Вюрца):

2C2H5Br + 2Na → CH3-CH2-CH2-CH3 + 2NaBr;

2C2H5Cl + 2Na → CH3-CH2-CH2-CH3 + 2NaCl.

Суть данной реакции в том, что две молекулы галогеналкана связываются в одну, реагируя с щелочным металлом.

  1. 4. щелочного плавления солей одноосновных органических кислот:

C4H9-COOH + NaOH → C4H10 + Na2CO3 (повышенная to);

C4H9-COONa + NaOH → C4H10 + NaHCO3.

Изомеры [ править ]

Основная статья: C4H10

Распространенное имябутан нормальныйнеразветвленный бутанн
-бутан
изобутани
-бутан
Название ИЮПАКбутанметилпропан
Молекулярная диаграмма
Схема скелета

Вращение вокруг центральной С-С связи производит два различных конформаций ( транс

Эффекты и проблемы со здоровьем [ править ]

Вдыхание бутана может вызвать эйфорию , сонливость , потерю сознания , асфиксию , сердечную аритмию , колебания артериального давления и временную потерю памяти при злоупотреблении непосредственно из контейнера под высоким давлением и может привести к смерти от удушья и фибрилляции желудочков . Он попадает в кровоток и в течение нескольких секунд вызывает интоксикацию. [17] Бутан является наиболее распространенным летучим веществом в Великобритании и был причиной 52% смертей, связанных с растворителями, в 2000 году. [18]Распыляя бутан прямо в горло, струя жидкости может быстро охладиться до -20 ° C (-4 ° F) за счет расширения, вызывая длительный ларингоспазм . [19] Синдром « внезапной смерти сниффера », впервые описанный Бассом в 1970 году, [20] является наиболее частой причиной смерти, связанной с растворителями, приводя к 55% известных смертельных случаев. [19]

Применение и использование бутана:

– в качестве топлива в смеси с пропаном в быту для приготовления пищи, транспортных средствах, в отопительных приборах и т.п.;

– н-бутан используется как сырьё в химической и нефтехимической промышленности для получения бутилена, 1,3-бутадиена, компонентов бензинов с высоким октановым числом, для производства других химических веществ;

– в пищевой промышленности как пищевая добавка E943a и E943b (изобутан), последний используется в качестве пропеллента;

Поделиться или сохранить к себе: