Уравнение реакции алкена с перекисью водорода

Уравнение реакции алкена с перекисью водорода

4.5. Окисление алкенов

Реакции окисления алкенов целесообразно подразделить на две большие группы: реакции, в которых сохраняется углеродный скелет и реакции окислительной деструкции углеродного скелета молекулы по двойной связи. К первой группе реакций относятся эпоксидирование, а также гидроксилирование, приводящее к образованию вицинальных диолов (гликолей). В случае циклических алкенов при гидроксилировании образуются вицинальные транс— или цис-диолы. Другая группа включает озонолиз и реакции исчерпывающего окисления алкенов, приводящие к образованию различного рода карбонильных соединений и карбоновых кислот.

4.5.а. Реакции окисления алкенов с сохранением углеродного скелета

1. Эпоксидирование (реакция Н.А. Прилежаева, 1909 г)

Ациклические и циклические алкены при взаимодействии с перкислотами (надкислотами) RCOOOH в неполярной, индифферентной среде образуют эпоксиды (оксираны), поэтому сама реакция носит название реакции эпоксидирования.

Уравнение реакции алкена с перекисью водорода

Согласно современной номенклатуре ИЮПАК — трехчленный цикл с одним атомом кислорода носит название оксиран.

Эпоксидирование алкенов следует рассматривать как синхронный, согласованный процесс, в котором не участвуют ионные интермедиаты типа гидроксильного катиона ОН+ . Другими словами, эпоксидирование алкенов представляет собой процесс син-присоединения одного атома кислорода по двойной связи с полным сохранением конфигурации заместителей при двойной связи.

Уравнение реакции алкена с перекисью водорода

Уравнение реакции алкена с перекисью водорода

Для эпоксидирования был предложен механизм, характерный для согласованных процессов.

Уравнение реакции алкена с перекисью водорода

Т. к. атака двойной связи атомом кислорода надкислоты равновероятна с обеих сторон плоскости двойной связи, образующиеся оксираны представляют собой либо мезо-формы, либо смеси энантиомеров. В качестве эпоксидирующих агентов используются следующие перкислоты: пербензойная, м-хлорпербензойная, моноперфталевая, перуксусная, трифторперуксусная и пермуравьиная. Перкислоты ароматического ряда применяют в виде индивидуальных реагентов, тогда как перкислоты алифатического ряда — СН3СО3Н, CF3CO3H и НСО3Н не выделяют в индивидуальном виде, а используют после их образования при взаимодействии 30% или 90%-ного пероксида водорода и соответствующей карбоновой кислоты. Пербензойную и м-хлорпербензойную кислоты получают окислением соответственно бензойной и м-хлорбензойной кислот 70%-ной перекисью водорода в растворе метансульфокислоты или из хлорангидридов этих кислот и перекиси водорода.

Уравнение реакции алкена с перекисью водорода

Уравнение реакции алкена с перекисью водорода

Моноперфталевую кислоту получают подобным методом из фталевого ангидрида и 30%-ной перекиси водорода.

Уравнение реакции алкена с перекисью водорода

Первоначально для получения оксиранов (эпоксидов) использовались пербензойная или моноперфталевая кислоты:

Уравнение реакции алкена с перекисью водорода

В настоящее время для эпоксидирования чаще всего используют м-хлорпербензойную кислоту. В отличие от других перкислот она стабильна при хранении в течение длительного времени (до 1 года) и абсолютно безопасна при обращении. Выходы оксиранов, полученных при окислении ациклических и циклических алкенов м-хлорпербензойной кислотой в растворе хлористого метилена, хлороформа или диоксана, обычно довольно высоки.

Уравнение реакции алкена с перекисью водорода

Уравнение реакции алкена с перекисью водорода

Уравнение реакции алкена с перекисью водорода

Перкислоты часто генерируют прямо в реакционной смеси из 90% перекиси водорода и карбоновой кислоты в хлористом метилене.

Уравнение реакции алкена с перекисью водорода

Уравнение реакции алкена с перекисью водорода

Алкены с двойной связью, сопряженной с карбонильной группой или другим акцепторным заместителем, малоактивны и для их окисления лучше использовать более сильные окислители, такие как трифторперуксусная кислота, получаемая из ангидрида трифторуксусной кислоты и 90%-ной перекиси водорода в хлористом метилене. Простейший оксиран — окись этилена получают в промышленности окислением этилена кислородом в присутствии серебра, как катализатора.

Уравнение реакции алкена с перекисью водорода

Трехчленное кольцо оксиранов легко раскрывается под действием самых разнообразных нуклеофильных реагентов. Эти реакции подробно будут обсуждаться в разделе, посвященном ациклическим и циклическим простым эфирам. Здесь же будет рассматриваться только гидролиз оксиранов. Гидролиз оксиранов катализируется как кислотами, так и основаниями. В обоих случаях образуются вицинальные диолы, т. е. гликоли. При кислотном катализе в первой стадии происходит протонирование атома кислорода оксирана с образованием циклического оксониевого катиона, который раскрывается в результате нуклеофильной атаки молекулы воды:

Уравнение реакции алкена с перекисью водорода

Ключевой стадией в раскрытии кольца, определяющей скорость всего процесса, является нуклеофильная атака водой на протонированную форму оксирана. С точки зрения механизма этот процесс аналогичен раскрытию бромониевого иона при нуклеофильной атаке бромид-иона или другого нуклеофильного агента. С этих позиций стереохимическим результатом должно быть образование транс-гликолей при расщеплении циклических эпоксидов. Действительно, при кислотно-катализируемом гидролизе циклогексеноксида или циклопентеноксида образуются исключительно транс-1,2-диолы.

Уравнение реакции алкена с перекисью водорода

Таким образом, двухстадийный процесс эпоксидирования алкена с последующим кислотным гидролизом эпоксида суммарно соответствует реакции анти-гидроксилирования алкенов.

Обе стадии анти-гидроксилирования алкенов можно совместить, если алкен обрабатывать водной 30-70%-ной перекисью водорода в муравьиной или трифторуксусной кислоте. Обе эти кислоты являются достаточно сильными для того, чтобы вызвать раскрытие оксиранового цикла.

Уравнение реакции алкена с перекисью водорода

Раскрытие оксиранового кольца, катализируемое основанием, также приводит к образованию циклических транс-гликолей.

Уравнение реакции алкена с перекисью водорода

Следовательно, двухстадийный процесс эпоксидирования алкенов с последующим щелочным гидролизом эпоксидов также является реакцией анти-гидроксилирования алкенов.

Некоторые соли и оксиды переходных металлов в высших степенях окисления являются эффективными реагентами син-гидроксилирования двойной связи алкена, когда обе гидроксильные группы присоединяются с одной и той же стороны двойной связи. Окисление алкенов перманганатом калия — один из старейших методов син-гидроксилирования двойной связи — продолжает широко использоваться, несмотря на свойственные ему ограничения. Цис-1,2-циклогександиол был впервые получен В.В. Марковниковым в 1878 году гидроксилированием циклогексена водным раствором перманганата калия при 0 0 С.

Уравнение реакции алкена с перекисью водорода

Этот метод в дальнейшем получил развитие в работах русского ученого Е.Е. Вагнера, поэтому син-гидроксилирование алкенов под действием водного раствора перманганата калия носит название реакции Вагнера. Перманганат калия является сильным окислителем, способным не только гидроксилировать двойную связь, но и расщеплять образующийся вицинальный диол. Для того, чтобы по возможности избежать дальнейшего расщепления гликолей, необходимо тщательно контролировать условия реакции. Выходы гликолей при этом обычно невелики (30-60%). Наилучшие результаты достигаются при гидроксилировании алкенов в слабощелочной среде (рН

8 9) при 0-5 0 С разбавленным 1%-ным водным раствором KMnO4.

Уравнение реакции алкена с перекисью водорода

Уравнение реакции алкена с перекисью водорода

Первоначально при окислении алкенов перманганатом калия образуется циклический эфир марганцевой кислоты, который немедленно гидролизуется до вицинального диола.

Уравнение реакции алкена с перекисью водорода

Циклический эфир марганцевой кислоты как интермедиат не был выделен, однако его образование следует из экспериментов с меченым 18 О перманганатом калия: оба атома кислорода в гликоле оказываются мечеными при окислении алкена KMn 18 O4. Это означает, что оба атома кислорода переходят от окислителя, а не из растворителя — воды, что находится в хорошем соответствии с предлагаемым механизмом.

Другой метод син-гидроксилирования алкенов под действием оксида осмия (VIII) OsO4 был предложен Р. Криге в 1936 году. Тетраоксид осмия представляет собой бесцветное, летучее, кристаллическое вещество, хорошо растворимое в эфире, диоксане, пиридине и др. органических растворителях. При взаимодействии тетраоксида осмия с алкенами в эфире или диоксане образуется черный осадок циклического эфира осмиевой кислоты — осмат, который легко может быть изолирован в индивидуальном виде. Присоединение OsO4 к двойной связи заметно ускоряется в растворе в пиридине. Разложение осматов до вицинальных гликолей достигается действием водного раствора гидросульфита натрия или сероводородом.

Уравнение реакции алкена с перекисью водорода

Выходы продуктов син-гидроксилирования алкенов в этом методе значительно выше, чем при использовании перманганата в качестве окислителя. Важным достоинством метода Криге является отсутствие продуктов окислительного расщепления алкенов, характерного для перманганатного окисления.

Уравнение реакции алкена с перекисью водорода

Уравнение реакции алкена с перекисью водорода

Тетраоксид осмия очень дорогой и труднодоступный реагент, к тому же он токсичен. Поэтому оксид осмия (VIII) используется при синтезе малых количеств трудно доступных веществ с целью получения наиболее высокого выхода диола. С целью упрощения син-гидроксилирования алкенов под действием OsO4 была разработана методика, позволяющая использовать лишь каталитические количества этого реагента. Гидроксилирование алкенов осуществляется с помощью перекиси водорода в присутствии OsO4, например:

Уравнение реакции алкена с перекисью водорода

В заключение этого раздела приведем стереохимические отношения между алкеном цис— или транс-конфигурации и конфигурацией образующегося вицинального диола, который может быть цис— или транс-изомером, эритро— или трео-формой, мезо— или D,L-формой в зависимости от заместителей в алкене:

Уравнение реакции алкена с перекисью водорода

Аналогичные стереохимические отношения наблюдаются и в других реакциях син— или анти-присоединения по кратной связи водорода, галогенводородов, воды, галогенов, гидридов бора и др. реагентов.

Уравнение реакции алкена с перекисью водорода Уравнение реакции алкена с перекисью водорода

Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору

Видео:Галилео. Эксперимент. Разложение перекиси водородаСкачать

Галилео. Эксперимент. Разложение перекиси водорода

Химические свойства алкенов

Алкены – это непредельные (ненасыщенные) нециклические углеводороды, в молекулах которых присутствует одна двойная связь между атомами углерода С=С.

Наличие двойной связи между атомами углерода очень сильно меняет свойства углеводородов.

Видео:ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и ПолучениеСкачать

ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и Получение

Химические свойства алкенов

Алкены – непредельные углеводороды, в молекулах которых есть одна двойная связь. Строение и свойства двойной связи определяют характерные химические свойства алкенов.

Двойная связь состоит из σ-связи и π-связи. Рассмотрим характеристики одинарной связи С-С и двойной связи С=С:

Энергия связи, кДж/мольДлина связи, нм
С-С3480,154
С=С6200,133

Можно примерно оценить энергию π-связи в составе двойной связи С=С:

Таким образом, π-связь — менее прочная, чем σ-связь. Поэтому алкены вступают в реакции присоединения, сопровождающиеся разрывом π-связи. Присоединение к алкенам может протекать по ионному и радикальному механизмам.

Для алкенов также характерны реакции окисления и изомеризации. Окисление алкенов протекает преимущественно по двойной связи, хотя возможно и жесткое окисление (горение).

Видео:Химия с нуля — Химические свойства АлкеновСкачать

Химия с нуля — Химические свойства Алкенов

1. Реакции присоединения

Для алкенов характерны реакции присоединения по двойной связи С=С, при которых протекает разрыв пи-связи в молекуле алкена.

1.1. Гидрирование

Алкены реагируют с водородом при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt, Pd и др.).

Например, при гидрировании бутена-2 образуется бутан.

Уравнение реакции алкена с перекисью водорода

Реакция протекает обратимо. Для смещения равновесия в сторону образования бутана используют повышенное давление.

1.2. Галогенирование алкенов

Присоединение галогенов к алкенам происходит даже при комнатной температуре в растворе (растворители — вода, CCl4).

При взаимодействии с алкенами красно-бурый раствор брома в воде (бромная вода) обесцвечивается. Это качественная реакция на двойную связь.
Например, при бромировании пропилена образуется 1,2-дибромпропан, а при хлорировании — 1,2-дихлорпропан.

Уравнение реакции алкена с перекисью водорода

Уравнение реакции алкена с перекисью водорода

Реакции протекают в присутствии полярных растворителей по ионному (электрофильному) механизму.

1.3. Гидрогалогенирование алкенов

Алкены присоединяют галогеноводороды. Реакция идет по механизму электрофильного присоединения с образованием галогенопроизводного алкана.

Например, при взаимодействии этилена с бромоводородом образуется бромэтан.

Уравнение реакции алкена с перекисью водорода

При присоединении полярных молекул к несимметричным алкенам образуется смесь изомеров. При этом выполняется правило Марковникова.

Правило Марковникова: при присоединении полярных молекул типа НХ к несимметричным алкенам водород преимущественно присоединяется к наиболее гидрогенизированному атому углерода при двойной связи.
Например, при присоединении хлороводорода HCl к пропилену атом водорода преимущественно присоединяется к атому углерода группы СН2=, поэтому преимущественно образуется 2-хлорпропан.

Уравнение реакции алкена с перекисью водорода

1.4. Гидратация

Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.

Например, при взаимодействии этилена с водой образуется этиловый спирт.

Уравнение реакции алкена с перекисью водорода

Гидратация алкенов также протекает по ионному (электрофильному) механизму.

Для несимметричных алкенов реакция идёт преимущественно по правилу Марковникова.

Например, при взаимодействии пропилена с водой образуется преимущественно пропанол-2.

Уравнение реакции алкена с перекисью водорода

1.5. Полимеризация

Полимеризация — это процесс многократного соединения молекул низкомолекулярного вещества (мономера) друг с другом с образованием высокомолекулярного вещества (полимера).

nM → Mn (M – это молекула мономера)

Например, при полимеризации этилена образуется полиэтилен, а при полимеризации пропилена — полипропилен.

Уравнение реакции алкена с перекисью водорода

Уравнение реакции алкена с перекисью водорода

Видео:7 ВАЖНЕЙШИХ РЕАКЦИЙ, которые тебе нужно знать (Алкины)Скачать

7 ВАЖНЕЙШИХ РЕАКЦИЙ, которые тебе нужно знать (Алкины)

2. Окисление алкенов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

2.1. Каталитическое окисление

Каталитическое окисление протекает под действием катализатора.

Взаимодействие этилена с кислородом в присутствии солей палладия протекает с образованием этаналя (уксусного альдегида)

Уравнение реакции алкена с перекисью водорода

Взаимодействие этилена с кислородом в присутствии серебра протекает с образованием эпоксида

Уравнение реакции алкена с перекисью водорода

2.2. Мягкое окисление

Мягкое окисление протекает при низкой температуре в присутствии перманганата калия. При этом раствор перманганата обесцвечивается.

В молекуле алкена разрывается только π-связь и окисляется каждый атом углерода при двойной связи.

При этом образуются двухатомные спирты (диолы).

Уравнение реакции алкена с перекисью водорода

Например, этилен реагирует с водным раствором перманганата калия при низкой температуре с образованием этиленгликоля (этандиол-1,2)

Уравнение реакции алкена с перекисью водорода

2.2. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) происходит полный разрыв двойной связи С=С и связей С-Н у атомов углерода при двойной связи. При этом вместо разрывающихся связей образуются связи с кислородом.

Так, если у атома углерода окисляется одна связь, то образуется группа С-О-Н (спирт). При окислении двух связей образуется двойная связь с атомом углерода: С=О, при окислении трех связей — карбоксильная группа СООН, четырех — углекислый газ СО2.

Поэтому можно составить таблицу соответствия окисляемого фрагмента молекулы и продукта:

Окисляемый фрагмент KMnO4, кислая среда KMnO4, H2O, t
>C=>C=O>C=O
-CH=-COOH-COOK
CH2=CO2K2CO3

При окислении бутена-2 перманганатом калия в среде серной кислоты окислению подвергаются два фрагмента –CH=, поэтому образуется уксусная кислота:

Уравнение реакции алкена с перекисью водорода

При окислении метилпропена перманганатом калия в присутствии серной кислоты окислению подвергаются фрагменты >C= и CH2=, поэтому образуются углекислый газ и кетон:

Уравнение реакции алкена с перекисью водорода

При жестком окислении алкенов в нейтральной среде образующаяся щелочь реагирует с продуктами реакции окисления алкена, поэтому образуются соли (кроме реакций, где получается кетон — кетон со щелочью не реагирует).

Например, при окислении бутена-2 перманганатом калия в воде при нагревании окислению подвергаются два фрагмента –CH=, поэтому образуется соль уксусной кислоты – ацетат калия:

Уравнение реакции алкена с перекисью водорода

Например, при окислении метилпропена перманганатом калия в воде при нагревании окислению подвергаются фрагменты >C= и CH2=, поэтому образуются карбонат калия и кетон:

Уравнение реакции алкена с перекисью водорода

Взаимодействие алкенов с хроматами или дихроматами протекает с образованием аналогичных продуктов окисления.

2.3. Горение алкенов

Алкены, как и прочие углеводороды, горят в присутствии кислорода с образованием углекислого газа и воды.

В общем виде уравнение сгорания алкенов выглядит так:

Например, уравнение сгорания пропилена:

3. Замещение в боковой цепи

Алкены с углеродной цепью, содержащей более двух атомов углерода, могут вступать в реакции замещения в боковой цепи, как алканы.

Уравнение реакции алкена с перекисью водорода

При взаимодействии алкенов с хлором или бромом при нагревании до 500 о С или на свету происходит не присоединение, а радикальное замещение атомов водорода в боковой цепи. При этом хлорируется атом углерода, ближайший к двойной связи.

Например, при хлорировании пропилена на свету образуется 3-хлорпропен-1

Уравнение реакции алкена с перекисью водорода

4. Изомеризация алкенов

При нагревании в присутствии катализаторов (Al2O3) алкены вступают в реакцию изомеризации. При этом происходит либо перемещение двойной связи, либо изменение углеродного скелета. При изомеризации из менее устойчивых алкенов образуются более устойчивые. Как правило, двойная связь перемещается в центр молекулы.

Видео:Поджигаем спичку марганцовкой и перекисью водорода #shortsСкачать

Поджигаем спичку марганцовкой и перекисью водорода #shorts

Химические свойства алкенов

Вы будете перенаправлены на Автор24

Алкены химически активны. Их химические свойства во многом определяются наличием двойной связи. Для алкенов наиболее характерны реакции электрофильного присоединения и реакции радикального присоединения. Реакции нуклеофильного присоединения обычно требуют наличие сильного нуклеофила и для алкенов не типичны. Алкены легко вступают в реакции окисления, присоединения а также способны к алильному радикальному замещению.

Видео:Выделение кислорода при помощи химической реакции (добавим перекись водорода к перманганату калия)Скачать

Выделение кислорода при помощи химической реакции (добавим перекись водорода к перманганату калия)

Реакции присоединения

Гидрирование Присоединение водорода (реакция гидрирования) к алкенам проводят в присутствии катализаторов. Чаще всего используют измельченные металлы — платину, никель, палладий и др. В результате образуются соответствующие алканы (насыщенные углеводороды).

$CH_2=CH_2 + H2 → CH_3–CH_3$

Присоединение галогенов. Алкены легко при обычных условиях вступают в реакции с хлором и бромом с образованием соответствующих дигалогеналканов, в которых атомы галогена находятся у соседних атомов углерода.

При взаимодействии алкенов с бромом наблюдается обесцвечивание желто-бурой окраски брома. Это одна из старейших и самых простых качественных реакций на ненасыщенные углеводороды, поскольку аналогично реагируют также алкины и алкадиены.

$CH_2=CH_2 + Br_2 → CH_2Br–CH_2Br$

Присоединение галогеноводородов. При взаимодействии этиленовых углеводородов с галогеноводородами ($HCl$, $HBr$) образуются галогеналканы, направление реакции зависит от строения алкенов.

В случае этилена или симметричных алкенов реакция присоединения происходит однозначно и ведет к образованию только одного продукта:

$CH_2=CH_2 + HBr → CH_3–CH_2Br$

В случае несимметричных алкенов возможно образование двух разных продукта реакции присоединения:

На самом деле в основном образуется только один продукт реакции. Закономерность направлении прохождения таких реакций установил российский химик В.В. Марковников в 1869 Она носит название правило Марковникова. При взаимодействии галогеноводородов с несимметричными алкенами атом водорода присоединяется по месту разрыва двойной связи в наиболее гидрированного атома углерода, то есть до того, что соединен с большим количеством атомов водорода.

Данное правило Марковников сформулировал на основе экспериментальных данных и только значительно позже оно получило теоретическое обоснование. Рассмотрим реакцию пропилена с хлористым водородом.

Одной из особенностей $p$-связи является его способность легко поляризоваться. Под влиянием метильной группы (положительный индуктивный эффект + $I$) в молекуле пропена электронная плотность $p$-связи смещается к одному из атомов углерода (= $CH_2$). Вследствие этого на нем возникает частичный отрицательный заряд ($delta -$). На другом атоме углерода двойной связи в соответствии возникает частичный положительный заряд ($delta +$).

Такое распределение электронной плотности в молекуле пропилена определяет место будущей атаки протоном. Это — атом углерода метиленовой группы (= $CH_2$), который несет частичный отрицательный заряд $delta-$. А хлор, соответственно, атакует атом углерода с частичным положительным зарядом $delta+$.

Как следствие, основным продуктом реакции пропилена с хлористым водородом является 2-хлорпропан.

Гидратация алкенов происходит в присутствии минеральных кислот и подчиняется правилу Марковникова. Продуктами реакции являются спирты

$CH_2=CH_2 + H_2O → CH_3–CH_2–OH$

Присоединение алканов к алкенам в присутствии кислотного катализатора ($HF$ или $H_2SO_4$) при низких температурах приводит к образованию углеводородов с большей молекулярной массой и часто используется в промышленности для получения моторного топлива

$R–CH_2=CH_2 + R’–H → R–CH_2–CH_2–R’$

Видео:Эксперименты с ПЕРЕКИСЬЮСкачать

Эксперименты с ПЕРЕКИСЬЮ

Реакции окисления

Окисление алкенов может происходить в зависимости от условий и видов окислительных реагентов как с разрывом двойной связи, так и с сохранением углеродного скелета:

Окисление перманганатом калия $KM_nO_4$ (реакция Е. Вагнера)

При окисления алкенов слабым раствором $KM_nO_4$ в слабощелочной среде образуются гликоли

$3CH_2=CH_2 + 2KM_nO_4 + 4H_2O → 3HO–CH_2–CH_2–OH + 2KOH + 2M_nO_2$

Данная реакция имеет стереоселективный характер, так как обусловлена образованием на промежуточных стадиях сложных цикличних эфиров.

Окисление пероксидом водорода в присутствии осмий (VIII) оксида

Продуктом данной реакции аналогично реакции Вагнера будет гликоль

$ CH_2=CH_2 + HO–OH → HO–CH_2–CH_2–OH$

Окисление органическими пероксидами (реакция М. Прилежаева)

Реакция М. Прилежаева — это синтез окиси этилена окислением олефинов гидропероксидами кислот, или надкислотами такими как надмуравьиная $HCOOH$, надбензойная $C_6H_5COOH$ и тому подобные.

Реакцию проводят смешиванием реагентов растворенных в инертном растворителе (гексан, бензол, хлороформ и др.) При температуре от -10 ° C до 60 ° C.

Окисление молекулярным кислородом

При окислении алкенов кислородом без катализатора происходит разрыв $beta$-связи $C-H$ с образованием гидропероксидов, которые раскладываются на спирты и альдегиды. Если использовать катализатор $Ag$, то продуктами реакции будут окись этилена (органические оксиды)

Реакция алкенов с озоном является наиболее важным методом окислительного расщепления алкенов по двойной связи. Ее используют для определения строения алкена. Данная реакция идет селективно по двойной связи с образованием пероксида водорода, альдегидов или кетонов.

В условиях реакции образованные альдегиды способны окисляться до соответствующих карбоновых кислот.

Окисление в присутствии солей палладия

Во время окисления алкенов в присутствии солей палладия $Pd$ (II) и воды образуются карбонильные соединения (альдегиды или кетоны). Например, этилен окисляется до этаналя. Данная реакция протекает в кислой среде и является промышленным способом добывания ацетальдегида

$2CH_2=CH_2 + O_2 → 2CH_3COH$

Готовые работы на аналогичную тему

Видео:Реакция ПЕРЕКИСИ ВОДОРОДА и МАРГАНЦОВКИ. Химические опыты. Chemical experiment. Домашние опытыСкачать

Реакция ПЕРЕКИСИ ВОДОРОДА и МАРГАНЦОВКИ. Химические опыты. Chemical experiment. Домашние опыты

Реакции полимеризации

Молекулы алкенов способны присоединяться при определенных условиях друг к другу с раскрытием $pi$-связей и образования димеров, триммеров или высокомолекулярных соединений — полимеров. Полимеризация алкенов может протекать как по свободнорадикальному, так и катионно-анионому механизму. Как инициаторы полимеризации применяют кислоты, перекиси, металлы и др. Реакцию полимеризации осуществляют также под действием температуры, облучения, давления. Типичным примером является полимеризация этилена с образованием полиэтилена

Видео:Реакция ОКСИДА ВАНАДИЯ и ПЕРЕКИСИ ВОДОРОДА. Опыты по химии дома. Chemical emxperiments.Скачать

Реакция ОКСИДА ВАНАДИЯ и ПЕРЕКИСИ ВОДОРОДА. Опыты по химии дома. Chemical emxperiments.

Реакции замещения

Реакции замещения для алкенов не являются характерными. Однако при высоких температурах (свыше 400 ° C) реакции радикального присоединения, что носят обратимый характер, и подавляются. В этом случае становится возможным провести замещение атома водорода, находящегося в аллильном положении при сохранении двойной связи

$CH_2=CH–CH_3 + Cl_2 – CH_2=CH–CH_2Cl + HCl$

🎦 Видео

Опыты по химии. Каталитическое разложение пероксида водородаСкачать

Опыты по химии. Каталитическое разложение пероксида водорода

МНОГО КИСЛОРОДА - Реакция Перекиси Водорода И Перманганата КалияСкачать

МНОГО КИСЛОРОДА - Реакция Перекиси Водорода И Перманганата Калия

2.3. Алкены: Химические свойстваСкачать

2.3. Алкены: Химические свойства

МАГИЯ в Химии — Способы Получения АлкеновСкачать

МАГИЯ в Химии — Способы Получения Алкенов

Надванадиевая кислота - HVO4. Реакция Метаванадата Натрия , Перекиси Водорода и Соляной кислоты.Скачать

Надванадиевая кислота - HVO4. Реакция Метаванадата Натрия , Перекиси Водорода и Соляной кислоты.

ПЕРОКСИД ВОДОРОДА | Химические свойства перекиси водорода | ПЕРЕКИСЬ | Химические реакции | ХимияСкачать

ПЕРОКСИД ВОДОРОДА | Химические свойства перекиси водорода | ПЕРЕКИСЬ | Химические реакции | Химия

Разложение ПЕРЕКИСИ ВОДОРОДАСкачать

Разложение ПЕРЕКИСИ ВОДОРОДА

ЙОДИД КАЛИЯ и ПЕРЕКИСЬ ВОДОРОДАСкачать

ЙОДИД КАЛИЯ и ПЕРЕКИСЬ ВОДОРОДА

Химические свойства алкеновСкачать

Химические свойства алкенов

Реакция перекиси водорода с марганцовкойСкачать

Реакция перекиси водорода с марганцовкой

Реакция перманганата калия с перекисью водородаСкачать

Реакция перманганата калия с перекисью водорода
Поделиться или сохранить к себе: