ОСНОВНЫЕ ЗАВИСИМОСТИ И РАСЧЕТНЫЕ ФОРМУЛЫ
I. Способы выражения состава фаз двухкомпонентных систем жидкость — газ (пар) представлены в табл. 6.Ϊ.
Обозначение концентрации компонента А
В газовой или паровой фазе
Мольная доля,………………………………………….
Массовая доля, …………………………………………….
Относительная мольная концентрация, …………………….
Относительная массовая концентрация, …………………………
Объёмная мольная концентрация, ………………………..
Объёмная массовая концентрация, ………………………
Формулы для пересчета концентраций (в жидкой фазе) даны в табл. 6.2. Для газовой (паровой) фазы справедливы те же соотношения, но с заменой обозначений x на у, X на Y, Сх на Су.
2. Концентрация компонента в газовой фазе может быть выражена также через его парциальное давление. На основании уравнений Клапейрона и Дальтона мольная (объемная) доля у любого компонента смеси идеальных газов равняется:
где ρ – парциальное давление компонента газовой смеси; П = pа + pB + рC + … — общее давление смеси газов или паров, равное сумме парциальных давлений всех компонентов.
Выражение концентрации компонента А
MA, MB, Mср – мольные массы компонентов и смеси, кг/кмоль; Мсм = МА х + МВ + (1 – х); ρ – плотность смеси, кг/м3. Для смеси идеальных газов:
3. Законы межфазного равновесия для идеальных растворов.
где р* – парциальное давление компонента в газовой фазе над равновесной с газом жидкостью; х – мольная доля компонента в жидкости; Ε – коэффициент Генри, зависящий от температуры и от природы газа и жидкости.
Подставляя в уравнение (6.2) значение р* = у*П по уравнению (6.1), получаем:
= mx (6.3)
где у* – мольная доля компонента в газовой фазе, равновесной с жидкостью; m = Е/П – безразмерный коэффициент (коэффициент распределения), постоянный для данной системы газ – жидкость при t = const и Π = const.
Если, применительно к двухфазной трехкомпонентной системе (газовая фаза: А + В, жидкая фаза: А + С), подставить в уравнение равновесия (6.3) значения х и для компонента А, выраженные через его относительные концентрации X и , (табл. 6.2), получим:
(6.4) (6.5)
где МА – мольная масса распределенного между фазами компонента А; Мв – то же второго компонента бинарной газовой смеси;
4 Aic — то же второго компонента бянарной жидкой смеси.
При малых концентрациях распределенного компонента в газе и в жидкости, когда Y* 1 – коэффициент избытка поглотителя; Lмин – теоретически минимальный расход поглотителя, определяемый графическим (см. рис. 6.3) или аналитическим путем
(6.30)
Степенью поглощения (или извлечения) называется величина
(6.30a)
12. Средняя движущая сила в абсорбере с непрерывным контактом фаз.
В общем уравнении массопе-редачи
Рис. 6.3. Рабочая и равновесная лилии абсорбера:
AS – рабочая линия при расходе поглотителя L, АС – рабочая линия при расходе поглотителя Lмин;OC – равновесная линия
(где F – поверхность массопередачи в абсорбере, м2; М – расход поглощаемого компонента, кг/с; – коэффициент массопередачи, ) средняя движущая сила определяется следующим образом.
Если в пределах от (рис. 6.3) линия равновесия прямая, то
(6.32)
где – концевые движущие силы; – в низу абсорбера при на верху абсорбера при
Когда отношение находится в пределах
0.5 ≤ ≤ 2
среднюю движущую силу в абсорбере можно рассчитывать по более простой формуле: (6.33)
Если же линия равновесия не прямая, то
(6.34)
Величину интеграла в знаменателе последнего уравнения находят графическим построенном или методом графического интегрирования. Другой метод расчета при криволинейной линии равновесия: разбивают равновесную линию на участки, принимаемые приближенно за отрезки прямых, и для каждого участка в отдельности определяют среднюю движущую силу по уравнению (6.32) или (6.33).
При расчетах абсорберов движущую силу часто выражают в единицах давления – см. пример 6 9.
13. Определение диаметра насадочного абсорбера.
Диаметр абсорбционной колонны D (в м) рассчитывают по уравнению расхода для газового потока:
(6.35)
где V – расход газа, проходящего через абсорбер, м3/с; ω – скорость газа, отнесенная к полному поперечному сечению колонны (фиктивная), м/с.
Скорость газа ω находят следующим путем.
Сначала рассчитывают фиктивную скорость газа ω3 в точке захлебывания (инверсии) по уравнению (при ρж >> ρг):
(6.36)
Здесь σ – удельная поверхность насадки, м2/м3; g – ускорение свободного падения, м/с2; Vсв – свободный объем насадки, м3/м3; ρг и ρж – плотности газа и жидкости, кг/м3; μж – динамический коэффициент вязкости жидкости, мПа·с; L и G – массовые расходы жидкости и газа, кг/с; А = 0,022 для насадки из колец или спиралей.
Затем определяют рабочую скорость газа ω (фиктивную), принимая для абсорберов, работающих в пленочном режиме
(6.37)
Фиктивная скорость газа в насадочных колоннах, работающих при так называемом оптимальном гидродинамическом режиме (режиме начала подвисания), может быть определена из уравнения:
(6.38)
(6.38 а)
ω/Vсв – скорость газа в свободном сечении насадки, м/с,
(6.38 б)
μг – динамический коэффициент вязкости газа, Па·с.
14. Определение высоты насадочного абсорбера.
а) Через высоту единицы переноса (ВЕП).
Поверхность контакта фаз в абсорбере при пленочном режиме работы:
(6.39)
где Hн – высота слоя насадки, м; S = πD2/4 – площадь поперечного сечения колонны, м2, D – диаметр колонны, м; σ – удельная поверхность сухой насадки, м2/м3, ψ – коэффициент смоченности насадки, безразмерный.
Высота слоя насадки:
где G – постоянный по высоте колонны расход инертного газа, кг/с или кмоль/с; Кy – средний коэффициент массопередачи,; – высота единицы переноса, м; – общее число единиц переноса.
Из уравнения (6.34) следует:
(6.41)
При прямолинейной равновесной зависимости среднюю движущую силу рассчитывают по уравнению (6.32) или (6.33), при криволинейной равновесной зависимости число единиц переноса пои находят графическим построением или методом графического интегрирования – см. пример 6.10.
Объемным коэффициентом массопередачи Ky v называют величину
(6.42)
где а = σψ – удельная смоченная (активная) поверхность насадки, м2/м3; при ψ = 1 а = σ.
Применяя объемный коэффициент массопередачи, получаем для высоты единицы переноса:
(6.43)
б) Через высоту, эквивалентную теоретической тарелке (ВЭТТ).
Высота слоя насадки Hн может быть рассчитана также по уравнению:
где hэ – высота, эквивалентная теоретической тарелке (ВЭТТ) или теоретической ступени (ВЭТС), м (определяется по экспериментальным данным); nт – число теоретических тарелок (ступеней изменения концентрации).
Рис. 6.4. Графическое определение числа ступеней изменения концентрации (теоретических тарелок) в абсорбере.
Число теоретических тарелок – ступеней изменения концентрации в абсорбере определяют обычно графическим путем (рис. 6.4). На этом рисунке АВ – рабочая линия, построенная по уравнению (6.27) или (6.28), ОС – равновесная линия.
15. Критериальные формулы для расчета коэффициентов массоотдачи в насадочных абсорберах с неупорядоченной насадкой (навалом) при пленочном режиме.
а) Для газовой фазы:
(6.45)
где βг – коэффициент массоотдачи для газа,; Dг– коэффициент диффузии поглощаемого компонента в газе, м2/с, Остальные обозначения – см. формулы (6.36) и (6.39).
Уравнение (6.45) справедливо при значениях Reг от 01.01.010.
б) Для жидкой фазы:
(6.46)
βж – коэффициент массоотдачи для жидкости, м/с; – так называемая приведенная толщина жидкой пленки, м; Dж – коэффициент диффузии поглощаемого компонента в жидкости, м2/с; L – массовый расход жидкости, кг/с.
Выражение для критерия Reж получено следующим путем.
Обозначения – см. уравнения (6.36) и (6.39).
Омываемый жидкостью периметр сечения абсорбера находим из уравнения (6.39):
(6.47)
Скорость течения пленки жидкости через насадку:
(6.48)
где δ – средняя толщина пленки, м.
Эквивалентный диаметр жидкой пленки:
(6.49)
Подставляя эти значения в выражение для критерия Reж, получаем:
(6.50)
16. Определение диаметра и высоты тарельчатой абсорбционной колонны проводится так же, как и для тарельчатых ректификационных колонн – см. гл. 7. Диаметр тарельчатого абсорбера рассчитывают по уравнениям (7.16) и (7.17). Высоту тарельчатой части абсорбера Нт определяют по уравнению (7.18). Требуемое число тарелок находят графически с применением кинетических зависимостей для расчета коэффициентов массопередачи или ВЕП. При приближенных расчетах для определения числа тарелок находят графически число ступеней изменения концентрации (рис. 6.4) и затем число тарелок η по уравнению (7.19).
Пример 6.1. Жидкая смесь содержит 58,8% (мол.) толуола и 41,2% (мол.) четыреххлористого углерода (ч. х. у). Определить относительную массовую концентрацию толуола и его объемную массовую концентрацию (в кг/м3).
Решение. Относительная массовая концентрация толуола:
где Мтол – мольная масса толуола (92 кг/кмоль); Мч. х.у – то же четыреххлористого углерода (154 кг/кмоль); х – мольная доля толуола. Имеем:
Чтобы рассчитать объемную массовую концентрацию толуола , необходимо знать плотность смеси ρсм. Для расчета плотности предварительно найдем массовую долю толуола .
Плотность толуола ρтол = 870 кг/м3, плотность четыреххлористого углерода ρч. х.у = =1630 кг/м3.
Считая, что изменение объема при смешении не происходит, т. е. объем смеси равен сумме объемов компонентов, находим объем 1 кг смеси
откуда плотность смеси
1160 кг/м3
Можно рассчитать ρсм и так:
Объемная массовая концентрация толуола:
=535 кг/м3
Пример 6.2. Воздух атмосферного давления при температуре 34°С насыщен водяным паром. Определить парциальное давление воздуха, объемный и массовый % пара в воздушно-паровой смеси и его относительную массовую концентрацию, считая оба компонента смеси идеальными газами. Атмосферное давление 745 мм рт. ст. Определить также плотность воздушно-паровой смеси, сравнить ее с плотностью сухого воздуха.
Решение. При t = 34°С давление насыщенного водяного пара составляет 39,9 мм рт. ст. Эго давление является парциальным давлением водяного пара ρп в
воздушно-паровой смеси, а парциальное давление воздуха равняется:
705 мм рт. ст.
Мольная (объемная) доля водяного пара в смеси:
у = ρп/П = 39,9/745 = 0,0535
Массовая доля пара:
Относительная массовая концентрация:
Плотность воздушно-паровой смеси рассчитываем как сумму плотностей компонентов, взятых каждая при своем парциальном давлении:
Можно рассчитать плотность смеси иначе.
Мольная масса смеси:
28,4 кг/кмоль
Плотность смеси при Π = 745 мм рт. ст. и t = 34°С:
Плотность сухого воздуха при тех же давлении и температуре:
Пример 6.3. При температуре 25°С приведены в соприкосновение: воздух атмосферного давления, содержащий 14% (об.) ацетилена (С2Н2), и вода, содержащая растворенный ацетилен в количестве: а) 0,29·10-3 кг на 1 кг воды; б) 0,153·10-3 кг на 1 кг воды. Определить: 1) из какой фазы в какую будет переходить ацетилен; 2) движущую силу этого процесса перехода в начальный момент времени (в относительных мольных концентрациях). Атмосферное давление 765 мм рт. ст. Равновесные концентрации ацетилена в газовой и в жидкой фазах определяются законом Генри.
Решение. Закон Генри [уравнение (6.2)]:
При t = 25°С коэффициент Генри Ε = 1,01·106 мм рт. ст.
Парциальное давление ацетилена в воздухе по уравнению (6.1):
ρ = yΠ = 0,14 · 765= 107 мм рт. ст.
а) Мольная доля ацетилена в воде при = 0,29·10-3 кг ацетилена/ кг воды (табл. 6.2):
Ответы на вопросы примера могут быть получены двумя путями.
I. В условиях равновесия парциальное давление ацетилена в газовой фазе над жидкостью с х = 0,2·10-3 по закону Генри должно составлять:
р* = Еx = 1,01 · 106 · 0.2 ·10-3 = 202 мм рт. ст.
Имеющееся в действительности над этой жидкостью парциальное давление ацетилена меньше: ρ = 107 мм pт. ст. Чтобы в процессе массопередачи система газ – жидкость приближалась к состоянию равновесия, парциальное давление ацетилена в газовой фазе должно увеличиваться, т. е. он будет переходить из воды в воздух.
Движущая сила этого процесса перехода (отклонение от состояния равновесия) в начальный момент времени будет равна: в единицах парциального давления ацетилена
∆р = р* – ρ = 202 – 107 = 95 мм рт. ст.
в мольных долях
в относительных мольных концентрациях
II. В условиях равновесия с газовой фазой, в которой парциальное давление ацетилена равняется 107 мм рт. ст., вода по закону Генри должна иметь концентрацию ацетилена (в мольных долях):
Имеющаяся в действительности мольная доля ацетилена в воде больше: х = 0,2·10-3. Для того чтобы в процессе массоперехода система приближалась к состоянию равновесия, мольная
доля ацетилена в воде должна уменьшаться, т. е. ацетилен будет переходить из воды в воздух.
Движущая сила этого процесса перехода в начальный момент времени (считая ее по концентрации в жидкой фазе):
в мольных долях
в относительных мольных концентрациях
Так как в данном примере х и х* оба много меньше единицы, то в знаменателях последнего уравнения ими можно пренебречь и
б) Мольная доля ацетилена в воде:
Перехода ацетилена из одной фазы в другую не будет, так как соприкасающиеся фазы находятся в равновесии:
Пример 6.4. В массообменном аппарате, работающем под давлением рабс = 3,1кгс/см2, коэффициенты массоотдачи имеют следующие значения:. Равновесные составы газовой и жидкой фаз характеризуются законом Генри = 0,08·106х;. Определить: а) коэффициенты массопередачи К. у и Кх, б) во сколько раз диффузионное сопротивление жидкой фазы отличается от диффузионного сопротивления газовой фазы.
Решение. Приведем уравнение равновесия к виду у* = mх:
Находим коэффициенты массопередачи:
Кх/Кy = 13,9/0,396 = 35,1 = m
Отношение диффузионных сопротивлений жидкой и газовой
фаз при движущей силе Δy:
Такое же отношение будет и при движущей силе Δx.
Диффузионное сопротивление жидкой фазы в 1.71 раза больше сопротивления газовой фазы.
Пример 6.5. В массообменном аппарате – абсорбере коэффициент массопередачи. Инертный газ (не переходящий в жидкость) – азот. Давление рабс в аппарате 760 мм рт. ст., температура 20 °С. Определить значения коэффициента массопередачи Kу в следующих единицах: 1) ;
2) ; 3) .
Решение. Напишем равенства:
где М – мольный расход переходящего в жидкость компонента, кмоль/ч.
В данном примере Π = П0 и
По уравнению (6.1):
(где W — массовый расход переходящего компонента, кг/ч) находим:
Здесь Mк и Ми. г – мольные массы переходящего компонента и инертного газа. При малых значениях у:
Пример 6.6. Вычислить коэффициент диффузии сероводорода в воде при 40 °С.
Решение. Сначала вычислим коэффициент диффузии при 20 °С по формуле (6.22):
Для сероводорода Для воды
ол = 2·3,7+25,6 = 33,0 (табл. 6.3) μ = 1 сП = I мПа·с
МА = 34 υВ=2·3,7 + 7,4 =
Подставляем эти значения в формулу (6.22):
Вычисляем температурный коэффициент b по формуле (6.24):
Искомый коэффициент диффузии по формуле (6.23) равняется:
D40 = 1,93 · 10-9 [1 + 0,02 (40 – 20)] = 2,7 · 10-9 м2/с
Для сравнения рассчитаем коэффициент диффузии сероводорода в воде при 40 °С по формуле (6.25):
Здесь 0,656 сП – динамический коэффициент вязкости воды при 40 °С.
Пример 6.7. Определить расход серной кислоты для осушки воздуха при следующих данных. Производительность скруббера 500 м3/ч (считая на сухой воздух при нормальных условиях). Начальное содержание влаги в воздухе 0,016 кг/кг сухого воздуха, конечное содержание 0,006 кг/кг сухого воздуха. Начальное содержание воды в кислоте 0,6 кг/кг моногидрата, конечное содержание 1,4 кг/кг моногидрата. Осушка воздуха производится при атмосферном давлении.
Решение. Массовый расход воздуха:
G=500 · 1,293 = 646 кг/ч
где 1,293 кг/м3 – плотность воздуха при нормальных условиях. По уравнению (6.26) расход серной кислоты (моногидрата)
Пример 6.8. Скруббер для поглощения паров ацетона из воздуха орошается водой в количестве 3000 кг/ч. Средняя температура в скруббере 20°С. Через скруббер пропускается под атмосферным давлением смесь воздуха с парами ацетона, содержащая 6% (об.) ацетона. Чистого воздуха в этой смеси содержится 1400 м3/ч (считая на нормальные условия). В скруббере улавливается 98% ацетона.
Уравнение линии равновесия;
где X и Υ* выражены в киломолях ацетона на 1 кмоль второго компонента, т. е. воды или воздуха.
Найти диаметр и высоту скруббера, заполненного керамическими кольцами размером 25 × 25 × 3 мм. Скорость газа принять на 25% меньше скорости захлебывания.
Коэффициент массопередачи Кy = 0,4 кмоль ацетона/(м2 · ч×). Коэффициент смоченности насадки принять равным единице.
Решение. Количество поглощаемого ацетона:
где сп = 0,98 – степень поглощения,
Начальная концентрация ацетона в воде, подаваемой на верх скруббера, Хв = 0.
Конечная концентрация ацетона в воде, вытекающей внизу из скруббера:
Начальная концентрация ацетона в воздухе внизу при входе в скруббер:
Конечная концентрация ацето-
на в воздухе, выходящем из скруббера:
По этим точкам на диаграмме Y-X (рис. 6.5) нанесена
Рис. 6.5 рабочая линия по уравнению Y* = 1.68X
Находим движущую силу абсорбции в низу скруббера:
Значение находим по уравнению равновесной линии для Yн соответствующего низу скруббера:
Движущая сила абсорбции на верху скруббера:
Средняя движущая сила:
Требуемую поверхность массопередачи находим по уравнению:
Объём слоя керамических колец, необходимый для создания найденной поверхности, при ψ=1:
где σ = 204 м2/м3 – удельная поверхность насадки.
Определим сечение скруббера.
По уравнению (6.36) вычисляем фиктивную скорость газа в точке инверсии, пренебрегая небольшим содержанием ацетона в жидкости и газе.
Значения входящих в уравнения величин:
Подставляем эти значения в формулу (6.36):
откуда ωз = 1.56 м/с.
По условию берём рабочую фиктивную скорость газа ω на 25 % меньше:
Площадь поперечного сечения скруббера:
Отсюда диаметр скруббера
Требуемая высота насадки:
Пример 6.9. Определить коэффициент массопередачи в водяном скруббере при поглощении из газа двуокиси углерода по следующим данным. В скруббер поступает 5000 м3/ч газовой смеси, считая при атмосферном давлении и при рабочей температуре. На скруббер подаётся 650 м3/ч чистой воды. Начальное содержание двуокиси углерода в газе 28.4 %(об.), конечное (в вверху скруббера) 0.2 % (об.). Давление в скруббере pабс.=16.5 кгс/см2.Температура 15°С. В нижнюю часть скруббера загружено 3 тонны керамических колец 50×50×5 мм. Выше загружено 17 тонн колец 35×35×4 мм. Коэффициент смоченности считать равным единице.
Решение. Вычислим суммарную поверхность всех колец. Поверхность колец
где ρ1 = 530 кг/м3 – насыпная плотность насадки из колец 50×50×5 мм; σ1 = 87,5 м2/м3 – удельная поверхность насадки .
Аналогично вычисляем поверхность колец 35×35×4 мм:
Суммарная поверхность всех колец:
F =f 1+f2 =495+4717 = 5212 м2
Определим количество двуокиси углерода, поглощенной водой.
Начальное количество двуокиси углерода в газе (в низу скруббера) :
Количество двуокиси углерода в выходящем газе (в верху скруббера) :
Здесь 1,976 кг/м3 – тность СО2 при нормальных условиях; 44 кг/кмоль –мольная масса СО2.
Находим движущую силу процесса абсорбции в низу скруббера.
Парциальное давление двуокиси углерода на входе в скруббер:
рн = Пyн = 0,284 · 1620 = 460 кПа
где 1620 = 16,5·98,1 кПа –общее давление в скруббере.
Мольная доля СО2 в воде, вытекающей из скруббера:
Коэффициент Генри Е для двуокиси углерода при 15 °С равен 0,93·106 мм рт. ст., или 0,124·106 кПа; отсюда парциальное давление двуокиси углерода в газе, равновесном с жидкостью, вытекающей из скруббера [уравнение (6.2)]:
= 206 кПа
Движущая сила процесса абсорбции в низу скруббера:
= 460 — 206 = 254 кПа
Определяем движущую силу процесса абсорбции на верху скруббера.
Парциальное давление двуокиси углерода в газе, выходящем вверху из скруббера:
рв = Пyв = 1620 · 0,002 = 3,24 кПа
Так как вода на орошение скруббера подается чистая, то парциальное давление двуокиси углерода в равновесном с водой газе равно нулю; отсюда движущая сила процесса абсорбции на верху скруббера:
= 3,24 – 0 = 3,24 кПа
Средняя движущая сила для всего процесса:
Если коэффициент массопередачи отнести к разности давлений Δp, выраженной в мм рт. ст., то получим следующее его значение:
Пример 6.10. В скруббере аммиак поглощается водой из газа под атмосферным давлением. Начальное содержание аммиака в газе 0,03 кмоль/кмоль инертного газа. Степень извлечения равна 90%. Вода, выходящая из скруббера, содержит аммиака 0,02 кмоль/кмоль воды. Путем отвода теплоты в скруббере поддерживается постоянная температура.
Данные о равновесных концентрациях аммиака в жидкости и газе при температуре поглощения приведены в табл. 6.5.
Определить требуемое число единиц переноса n0y: 1) графическим построением; 2) методом графического интегрирования.
Решение. 1) По данным табл. 6.5 на рис. 6.6 построена равновесная линия АВ. На этом же графике нанесена рабочая линияCD. Она проходит через точку С с координатами ;Xв = 0, Yв = 0,03 ( 1 – 0,9) = 0,003 (верх скруббера) и точку D с координатами Хн = 0,02, Yн = 0,03 (низ скруббера).
Число единиц переноса n0y находим следующим путем. Отрезки ординат между рабочей и равновесной линиями разделены пополам; через середины их проведена вспомогательная пунктирная линия. Затем начиная от точки С, построение выполнено таким образом, что для каждой ступени ab = bc. Каждая из полученных ступеней представляет собой единицу переноса, т. е. каждой ступени соответствует такой участок аппарата, на котором изменение рабочей концентрации(Y1 – Y2)·равно средней движущей силе на этом участке (Y – Y*)ср.
Всего получено 5,82 ступени (последняя неполная ступень равна отношению отрезков Dd/ef = 0,82):
Как следует из графика, на нижнем участке кривой равновесия, где ее наклон меньше наклона рабочей линии, единица переноса меньше ступени изменения концентрации; на верхнем
участке равновесной линии, где ее наклон больше наклона рабочей линии, наблюдается обратная картина.
2) Для определения числа единиц переноса методом графического интегрирования по данным табл. 6.5 и рис. 6.6 составляем табл. 6.6.
По данным последней таблицы строим график 1/(Y – Y*) = f(Υ)–рис. 6.7. Подсчитываем па этом графике отмеченную штриховкой площадь (например, методом трапеций) (см. пример 4.21). Величина этой площади (5,83) дает значение интеграла , т. е.число единиц переноса n0y.
Рис. 6.7. Определение числа единиц переноса методом графического интегрирования (к примеру 6.10).
Пример 6.11. Определить теоретически минимальный расход жидкого поглотителя с мольной массой 224 кг/кмоль, необходимый для полного извлечения пропана и бутана из 1000 м3/ч (считая при нормальных условиях) газовой смеси. Содержание пропана в газе 15% (об.), бутана 10% (об.). Температура в абсорбере 30°С, абсолютное давление 3 кгс/см2 (294 кПа). Растворимости бутана и пропана в поглотителе характеризуются законом Рауля.
Решение Максимальная концентрация (мольная доля) пропана в поглотителе, вытекающем из скруббера (равновесная с входящим газом), определяется по уравнению (6.8):
где Рп = 981 кПа (10 кгс/см2) – давление насыщенного пара пропана при 30 °С.
Количество содержащегося в газовой смеси пропана, которое требуется поглощать:
Минимальный расход поглотителя для поглощения пропана определяется из уравнения:
Наибольшая возможная концентрация бутана в поглотителе, вытекающем внизу из скруббера:
где Рб = 265 кПа (2,7 кгс/см2) – давление насыщенного пара бутана при 30 °С.
Количество поглощаемого бутана:
Минимальный расход поглотителя для поглощения бутана:
Минимальный расход поглотителя для полного поглощения бутана значительно меньше, чем для поглощения пропана, следовательно, найденным выше количеством поглотикмоль/ч) бутан будет полностью уловлен.
Пример 6.12. Определить коэффициент массоотдачи для газовой фазы в насадочном абсорбере, в котором производится поглощение двуокиси серы из инертного газа (азота) под атмосферным давлением. Температура в абсорбере 20 °С, он работает в пленочном режиме. Скорость газа в абсорбере (фиктивная) 0,35 м/с. Абсорбер заполнен кусками кокса (σ = 42 м2/м3, Vсв = 0,58 м3/м3).
Решение. По уравнению (6.45):
Коэффициент диффузии Dr принимаем такой же, как в воздухе. Имеем:
Диффузионный критерий Нуссельта:
Пример 6.13. Из критериального уравнения (6.45) вывести расчетную формулу для определения высоты единицы переноса по газовой фазе.
Решение. Из уравнения (6.12)
в котором Ку, βу и βx выражены в кмоль/(м2·с), получаем
или в соответствии с уравнением (6.43) при ψ = 1
где G и L – мольные расходы газа и жидкости, кмоль/с; S – поперечное сечение абсорбера, м2; σ – удельная поверхность насадки, м2/м3; hy = G/(βySσ) – высота единицы переноса для газовой фазы, м; hx = L/(βxSσ) – то же для жидкой фазы, м.
В критериальном уравнении (6.45)
где коэффициент массоотдачи βг выражен в
Соотношение между βy и βг находим из уравнения:
(см. табл. 6.2)
фиктивная скорость газа, м/с.
Подставляя найденное значение βг в выражение для диффузионного критерия Нуссельта, получаем
и из уравнения (6.45)
Пример 6.14. В скруббере с насадкой из керамических колец 50×50×5 мм (навалом) производится поглощение двуокиси углерода водой из газа под давлением рабс = 16 кгс/см2 (1,57 МПа) при температуре 22 °С Средняя мольная масса газа 20,3 кг/кмоль, динамический коэффициент вязкости газа при рабочих условиях 1,31·10-5 Па·с, коэффициент диффузии СО2 в инертной части газа 1,7·10-6м2/с. Средняя фиктивная скорость газа в скруббере 0,041 м/с, плотность орошения (фиктивная скорость жидкости) 0,064 м3/(м2·с). Определить общую высоту единицы переноса h0y, принимая коэффициент смоченности насадки ψ равным единице.
Решение. Общая высота единицы переноса (см. предыдущий пример) :
Находим hy – высоту единицы переноса для газовой фазы
Характеристики насадки Vсв = 0,785 м3/м3 и σ = 87,5 м2/м3. Таким образом
Высота единицы переноса для газовой фазы:
Находим hx – высоту единицы переноса для жидкой фазы по формуле
полученной из уравнения (6.46) так же, как в предыдущем примере из уравнения (6.45) получено выражение для hy.
Значения физико-химических констант для воды при 22 °С: ρж = 1000 кг/м3; μж = 0,958·10-3 Па·с; Dж = 1,87·10-9м2/с.
Приведенная толщина жидкой пленки:
По условию плотность орошения:
Здесь Lm – массовый расход жидкости, кг/с.
Массовая плотность орошения:
Lm/S = 0,064ρж = 64 кг/(м2 · с)
По уравнению (6.50):
Высота единицы переноса для жидкой фазы:
hx = 119 · 4,55· 10-5·3·5120.5 = 0,91 м
Находим отношение мольных расходов газа и жидкости G/L. Из уравнения расхода для газа получаем:
G/S = ωρг/Мг = 0,041 · 13,4/20,3 = 0,0271 кмоль/(м2 · с)
G/L = 0,0271/3,56 = 0,00761
Коэффициент распределения m в уравнении (6.12):
= 97,3 – см. уравнение(6.3)
где коэффициент Генри Е = 1,144·106 мм рт. ст. (при 22°С). Общая высота единицы переноса:
= 0,205 + 97,3 · 0,00761 · 0,91 = 0,205 + 0,675 = 0,88 м
Пример 8.15. По данным примера 6.8 определить число единиц переноса в абсорбере с учетом обратного (продольного) перемешивания.
Решение. Число единиц переноса для условий идеального вытеснения, т. е. без учета обратного перемешивания, составляет:
Искомое число единиц переноса с учетом обратного перемешивания находим из уравнения
в котором поправка на обратное перемешивание равняется:
Значение критерия Ре´пр вычисляют по уравнению;
– модифицированные критерии Пекле для газа и жидкости; ωг и ωж – скорости потоков газа и жидкости, м/с; Ег и Еж – соответствующие коэффициенты обратного перемешивания, м2/с; Н – рабочая длина аппарата – высота слоя насадки, м.
По данным примера 6.8 находим:
Примем предварительно= 9. Тогда
Для определения скоростей газа и жидкости (ωг и ωж) необходимо найти доли поперечного сечения абсорбера, занимаемые каждым потоком в отдельности. Долю объема насадки δ, занятую жидкостью, рассчитаем по уравнению [6.2]:
Подставляя эти значения, находим:
Скорость течения жидкости в слое насадки:
Величины коэффициентов обратного перемешивания Еж и Ег находят опытным путем. Для ориентировочного их определения в насадочном абсорбере воспользуемся критериальными уравнениями.
Для жидкой фазы
Для газовой фазы:
В этих уравнениях:
где dн – номинальный размер элементов насадки, м.
Для жидкой фазы:
Коэффициент обратного перемешивания в жидкой фазе:
Для газовой фазы:
Коэффициент обратного перемешивания в газовой фазе:
Приведенный критерий Пекле:
Поправка на обратное перемешивание:
Число единиц переноса с учетом обратного перемешивания:
что близко к значению = 9, принятому в начале расчета.
6.1. Смешаны два равных объема бензола и нитробензола. Считая, что объем жидкой смеси равен сумме объемов компонентов, определить плотность смеси, относительную массовую концентрацию нитробензола и его объемную мольную концентрацию Сх
6.2. Состав жидкой смеси: хлороформа 20%, ацетона 40%, сероуглерода 40%. Проценты мольные. Определить плотность смеси, считая, что изменения объема при смешении не происходит.
6.3. Воздух насыщен паром этилового спирта. Общее давление воздушно-паровой смеси 600 мм рт. ст., температура 60°С. Принимая оба компонента смеси за идеальные газы, определить относительную массовую концентрацию этилового спирта в смеси и плотность смеси.
6.4. Газ состава : водород 26%, метан 60%, этилен 14% (проценты мольные) имеет давление рабс=30 кгс/см2 и температуру 20°С. Считая компоненты смеси идеальными газами, определить их объемные массовые концентрации (в кг/м3).
6.5. Показать, что в формуле
при любых значениях Мв и МА у не может быть отрицательным.
6.6. В условиях примера 6.3 (а) определить движущую силу процесса мас-соперехода в начальный момент времени по газовой и по жидкой фазе в объемных концентрациях, мольных и массовых.
6.7. Пар бинарной смеси хлороформ – бензол, содержащий 50% хлороформа и 50% бензола, вступает в контакт с жидкостью, содержащей 44% хлороформа и 56% бензола (проценты мольные). Давление атмосферное. Определить: а) из какой фазы в какую будут переходить хлороформ и бензол; б) движущую силу процесса массопередачи по паровой и по жидкой фазе на входе пара в жидкость (в мол. долях).
6.8. Смесь воздуха с паром четыреххлористого углерода, сжатая до абсолютного давления 10 кгс/см2, охлаждается в трубчатом водяном холодильнике. При 40°С начинается конденсация четыреххлористого углерода. Определить: а) массовый процент его в воздухе в начальной смеси и б) степень выделения из газовой смеси после охлаждения ее до 27°С.
6.9. Газовая смесь, содержащая 0,8% (об.) октана, сжимается компрессором до рабс–5 кгс/см3 и затем охлаждается до 25°С. Определить степень выделения октана. Как изменится степень выделения, если охладить сжатую газовую смесь холодильным рассолом до 0°С?
6.10. Рассчитать коэффициенты молекулярной диффузии под атмосферным давлением: а) пара бензола в паре толуола при температуре 100°С; б) пара этилового спирта в водяном паре при температуре 92°С.
6.11. Определить коэффициент массопередачи в орошаемом водой абсорбере, в котором βy, = 2,76·10-3 кмоль/(м2·ч·кПа), а βх = 1,17·10-4 м/с. Давление в аппарате рабс = = 1,07 кгс/см2. Уравнение линии равновесия в мольных долях: у* = 1,02х.
6.12.Определить среднюю движущую силу и общее число единиц переноса п0у при поглощении из газа паров бензола маслом. Начальная концентрация. бензола в газе 4% (об.); улавливается 80% бензола. Концентрация бензола в масле, вытекающем из скруббера, 0,02 кмоль бензола/кмоль чистого масла. Масло, поступающее в скруббер, бензола не содержит. Уравнение равновесной линии в относительных мольных концентрациях:
Движущую силу выразить в единицах концентрации Y (кмоль бензола/кмоль инертного газа),
6.13.В скруббере поглощается водой двуокись серы из инертного газа (азота) под атмосферным давлением (760 мм рт. ст.). Начальное содержание двуокиси серы в газе 5% (об.). Температура воды 20°С, ее расход на 20% больше теоретически минимального. Извлекается из газа 90% SO2. Определить: 1) расход воды на поглощение 1000 кг/ч сернистого газа; 2) среднюю движущую силу процесса; 3)общее число единиц переноса n0y. Линия равновесия может быть принята за прямую; координаты двух ее точек: 1) парциальное давление SO2 в газовой фазе ρ = 39мм рт. ст., = 0,007 кг SO2/кг воды; 2) ρ =26 мм рт. ст., = 0,005 кг SO2/кг воды.
6.14. В насадочном абсорбере производится поглощение пара метилового спирта водой из газа под атмосферным давлением при средней температуре 27°С. Содержание метилового спирта в газе, поступающем в скруббер, 100 г на 1м3 инертного газа (считая объем газа при рабочих условиях). На выходе из скруббера вода имеет концентрацию 67% от максимально возможной, т. е. от равновесной с входящим газом. Уравнение растворимости метилового спирта в воде в относительных мольных концентрациях: Y* = 1,15X. Извлекается водой 98% от исходного количества спирта. Коэффициент массопередачи:
Расход инертного газа 1200 м3/ч (при рабочих условиях). Абсорбер заполнен насадкой из керамических колец с удельной поверхностью 190 м2/м3. Коэффициент смачивания насадки ψ = 0,87. Фиктивная скорость газа в абсорбере ω= 0,4 м/с. Определить расход воды и требуемую высоту слоя насадки.
6.15. В скруббер диаметром 0,5 м подается 550 м3/ч (при 760 мм рт. ст. и20°С) воздуха, содержащего 2,8% (об.) аммиака, который поглощается водой под атмосферным давлением. Степень извлечения аммиака 0,95. Расход воды на 40% больше теоретически минимального. Определить 1) расход воды; 2) общее число единиц переноса n0y 3) высоту слоя насадки из керамических колец 50×50×5 мм. Коэффициент массопередачи:
Данные о равновесных концентрациях жидкости и газа взять из примера 6.10. Коэффициент смоченности насадки ψ= 0,9.
6.16. Вывести формулу для определения высоты единицы переноса в насадочном абсорбере для жидкой фазы hх из критериального уравнения (6.46).
6.17. Воздух с примесью аммиака пропускается через орошаемый водой скруббер, заполненный насадкой из колец с удельной поверхностью 89,5 м2/м3. Свободный объем насадки 0,79 м3/м3. Температура абсорбции 28°С, абсолютное давление 1 кгс/см3. Среднее содержание аммиака в газовой смеси 5,8% (об.). Массовая скорость газа, отнесенная к полному сечению скруббера, 1,1кг/(м2·с). Определить коэффициент массоотдачи для газа, считая, что скруббер работает при пленочном режиме.
6.18. Рассчитать коэффициент массоотдачи от жидкой фазы в насадочном абсорбере, в котором производится поглощение двуокиси углерода водой при температуре 20°С. Плотность орошения 60 м3/(м2·ч). Насадка – керамические кольца 35×35×4 мм навалом. Коэффициент смоченности насадки ψ = 0,86.
6.19. Определить коэффициент массоотдачи для газа в скруббере при поглощении пара бензола из коксового газа по следующим данным: насадка хордовая из реек 12,5×100 мм с расстоянием между рейками b = 25 мм (для такой насадки dэ = 2b = 0,05 м); скорость газа, считая на полное сечение скруббера, 0,95 м/с; плотность газа 0,5 кг/м3; динамический коэффициент вязкости газа 0,013 мПа·с; коэффициент диффузии бензола в газе 16·10-6 м2/с. Режим считать пленочным.
6.20. Определить диаметр и высоту тарельчатого абсорбера для поглощения водой аммиака из воздушно-аммиачной смеси при атмосферном давлении и температуре 20°С. Начальное содержание аммиака в газовой смеси 7% (об.). Степень извлечения 90%. Расход инертного газа (воздуха) 10 000 м3/ч (при рабочих условиях). Линию равновесия считать прямой, ее уравнение в относительных массовых концентрациях: =0.61 Скорость газа в абсорбере (фиктивная) 0,8 м/с. Расстояние между тарелками 0,6 м. Средний к. п.д. тарелок 0,62. Коэффициент избытка поглотителя φ = 1,3.
6.21. По условиям предыдущей задачи определить. 1) высоту насадочного абсорбера с насадкой из керамических колец 50×50×5 мм, приняв hэ – высоту слоя насадки, эквивалентную теоретической тарелке (ВЭТТ), равной 0,85 м; 2) величину коэффициента массопередачи в этом насадочном абсорбере,считая коэффициент смоченности насадки ψ равным 0,9.
6.22. По данным контрольных задач 6.20 и 6.21 определить высоту слоя насадки через общее число единиц переноса n0у и высоту единицы переноса (ВЕП) h0y.
6.23. Абсорбер для улавливания паров бензола из парогазовой смеси орошается поглотительным маслом с мольной массой 260 кг/кмоль. Среднее давление в абсорбере рабс = 800 мм рт, ст., температуре 40 °С. Расход парогазовой смеси 3600 м3/ч (при рабочих условиях). Концентрация бензола в газовой смеси на входе в абсорбер 2% (об.); извлекается 95% бензола. Содержание бензола в поглотительном масле, поступающем в абсорбере после регенерации, 0,2% (мол.). Расход поглотительного масла в 1,5 раз больше теоретически минимального. Для расчета равновесных составов принять, что растворимость бензола в масле определяется законом Рауля. При концентрациях бензола в жидкости до X = 0,1 кмоль бензола/кмоль масла равновесную зависимость Y* = f(Х) считать прямолинейной
Определить:·1) расход поглотительного масла в кг/ч; 2) концентрацию бензола в поглотительном масле, выходящем из абсорбера; 3) диаметр и высоту насадочного абсорбера при скорости газа в нем (фиктивной) 0,5 м/с и высоте единицы переноса (ВЕП) h0y = 0,9 м; 4) высоту тарельчатого абсорбера при среднем к. п.д. тарелок 0,67 и расстоянии между тарелками 0,4 м
6.24. В насадочном абсорбере диаметром 1 м двуокись серы поглощается водой из воздуха. Начальное содержание SO2 в поступающей смеси 7% (об.). Степень поглощения 0,9. На выходе из абсорбера вода содержит 0.0072 кг SΟ2/кг воды. Коэффициент массопередачи в абсорбере Насадка из керамических колец 50×50×5 мм Коэффициент смоченности насадки ψ = 1. Высота единицы переноса h0y=1,17 м. Определить расход воды в абсорбере.
6.25. В абсорбере под атмосферным давлением при температуре 20°С поглощается из парогазовой смеси 300кг бензола в 1 ч. Начальное содержание пара бензола в парогазовой смеси 4%(об.). Степень извлечения бензола 085. Жидкий поглотитель, поступающий в абсорбер после регенерации, содержит 0,0015 кмоль бензола /кмоль поглотителя. Фиктивная скорость газа в абсорбере 0,9 м/с. Уравнение линии равновесия: Y* = 0,2 Х, где Y* и X выражены соответственно в кмоль бензола /кмоль инертного газа и кмоль бензола /кмоль поглотителя. Коэффициент избытка поглотителя φ = 1,4. Определить диаметр абсорбера и концентрацию бензола в поглотителе, выходящем из абсорбера.
Видео:❄️ Семинар 7. Ректификация - уравнения балансов, метод Мак-Кеба и ТилеСкачать
Решение задач по ПАХТ из задачника Павлова Романкова Носкова РАЗДЕЛ 6
Я профессионально решаю задачи по ПАХТ
Решение задач по ПАХТ из задачника Павлова Романкова Носкова Заказать
быстрый переход к решению задачи по номеру задачи
6.1. Смешаны два равных объема бензола и нитробензола. Считая, что объем жидкой смеси равен сумме объемов компонентов, определить плотность смеси, относительную массовую концентрацию X нитробензола и его объемную мольную концентрацию Сх.
6.2. Состав жидкой смеси: хлороформа 20%, ацетона 40%, сероуглерода 40%. Проценты мольные. Определить плотность смеси, считая, что изменения объема при смешении не происходит.
6.3. Воздух насыщен паром этилового спирта. Общее давление воздушно-паровой смеси 600 мм рт. ст., температура 60 °С. Принимая оба компонента смеси за идеальные газы, определить относительную массовую концентрацию V этилового спирта в смеси и плотность смеси.
6.4. Газ состава: водород 26%, метан 60%, этилен 14% (проценты мольные) имеет давление ра6с = 30 кгс/см 2 и температуру 20 °С. Считая компоненты смеси идеальными газами, определить их объемные массовые концентрации Сy (в кг/м 3 ).
6.5. Показать, что в формуле при любых значениях Мв и МА у не может быть отрицательным.
6.6. В условиях примера 6.3 (а) определить движущую силу процесса массоперехода в начальный момент времени по газовой и по жидкой фазе в объемных концентрациях, мольных и массовых.
6.7. Пар бинарной смеси хлороформ — бензол, содержащий 50% хлороформа и 50% бензола, вступает в контакт с жидкостью, содержащей 44% хлороформа и 56% бензола (проценты мольные). Давление атмосферное. Определить: а) из какой фазы в какую будут переходить хлороформ и бензол; б) движущую силу процесса массопередачи по паровой и по жидкой фазе на входе пара в жидкость (в мол. долях). Данные о равновесных составах см. в табл. ХLVII.
6.8. Смесь воздуха с паром четырех хлор истого углерода, сжатая до абсолютного давления 10 кгс/см 2 , охлаждается в трубчатом водяном холодильнике. При 40 °С начинается конденсация четыреххлористого углерода. Определить: а) массовый процент его в воздухе в начальной смеси и б) степень выделения из газовой смеси после охлаждения ее до 27 °С. Давление насыщенного пара четыреххлористого углерода — см. рис. XIV или XXIV.
6.9. Газовая смесь, содержащая 0,8% (об.) октана, сжимается компрессором до рабс = 5 кгс/см 2 и затем охлаждается до 25 °С. Определить степень выделения октана. Как изменится степень выделения, если охладить сжатую газовую смесь холодильным рассолом до 0 °С? Давление насыщенного пара октана — см. рис. XIV, точка 31.
6.10. Рассчитать коэффициенты молекулярной диффузии под атмосферным давлением: а) пара бензола в паре толуола при температуре 100 °С; б) пара этилового спирта в водяном паре при температуре 92 °С.
6.11. Определить коэффициент массопередачи в орошаемом водой абсорбере, в котором βу = 2,76·10 -3 кмоль/(м 2 -ч-кПа), а βx = 1,17·10 -4 м/с. Давление в аппарате рабо = 1,07 кгс/см*. Уравнение линии равновесия в мольных долях: у* = 102x.
6.12. Определить среднюю движущую силу и общее число единиц переноса поу при поглощении из газа паров бензола маслом. Начальная концентрация бензола в газе 4%(об.); улавливается 80% бензола. Концентрация бензола в масле, вытекающем из скруббера, 0,02 кмоль бензола/кмоль чистого масла. Масло, поступающее в скруббер, бензола не содержит. Уравнение равновесной линии в относительных мольных концентрациях: у* = 0,126х. Движущую силу выразить в единицах концентрации Y (кмоль бензола/кмоль инертного газа).
6.13. В скруббере поглощается водой диоксид серы из инертного газа (азота) под атмосферным давлением (760 мм рт. ст.). Начальное содержание диоксида серы в газе 5% (об.). Температура воды 20 °С, ее расход на 20% больше теоретически минимального. Извлекается из газа 90% SО2. Определить: 1) расход воды на поглощение 1000 кг/ч сернистого газа; 2) среднюю движущую силу процесса; 3) общее число единиц переноса nоу. Линия равновесия может быть принята за прямую; координаты двух ее точек: 1) парциальное давление SО2 в газовой фазе р = 39 мм рт. ст., X = 0,007 кг SО.2/кг воды; 2) р = 26 мм рт. ст., X = 0,005 кг SО2/кг воды.
6.14. В насадочном абсорбере производится поглощение пара метилового спирта водой из газа под атмосферным давлением при средней температуре 27 °С. Содержание метилового спирта в газе, поступающем в скруббер, 100 г на 1 м 3 инертного газа (считая объем газа при рабочих условиях). На выходе из скруббера вода имеет концентрацию 67% от максимально возможной, т. е. от равновесной с входящим газом. Уравнение растворимости метилового спирта в воде в относительных мольных концентрациях: Y* = 1,15X. Извлекается водой 98% от исходного количества спирта. Коэффициент массопередачи: KX = 0,5 кмоль спирта /(м 2 ·ч кмоль спирта/кмоль воды). Расход инертного газа 1200 м 3 /ч (при рабочих условиях). Абсорбер заполнен насадкой из керамических колец с удельной поверхностью 190 м 2 /м 3 . Коэффициент смачивания насадки φ = 0,87. Фиктивная скорость газа в абсорбере ω = 0,4 м/с. Определить расход воды и требуемую высоту слоя насадки.
6.15. В скруббер диаметром 0,5 м подается 550 м 3 /ч (при 760 мм рт. ст. и 20 °С) воздуха, содержащего 2,8% (об.) аммиака, который поглощается водой под атмосферным давлением. Степень извлечения аммиака 0,95. Расход воды на 40% больше теоретически минимального. Определить: 1) расход воды; 2) общее число единиц переноса nоу; 3) высоту слоя насадки из керамических колец 50X50X5 мм. Коэффициент массопередачи: Ку = 0,001 кмоль аммиака/(м 2 -с кмоль аммиака/кмоль воздуха). Данные о равновесных концентрациях жидкости и газа взять из примера 6.10. Коэффициент смоченности насадки φ = 0,9.
6.16. Вывести формулу для определения высоты единицы переноса в насадочном абсорбере для жидкой фазы hх из критериального уравнения (6.46).
6.17. Воздух с примесью аммиака пропускается через орошаемый водой скруббер, заполненный насадкой из колец с удельной поверхностью 89,5 м 2 /м 3 . Свободный объем насадки 0,79 м 3 /м 3 . Температура абсорбции 28 °С, абсолютное давление 1 кгс/см а . Среднее содержание аммиака в газовой смеси 5,8% (об.). Массовая скорость газа, отнесенная к полному сечению скруббера, 1,1 кг/(м 2 -с). Определить коэффициент массоотдачи для газа, считая, что скруббер работает при пленочном режиме.
6.18. Рассчитать коэффициент массоотдачи от жидкой фазы в насадочном абсорбере, в котором производится поглощение диоксида углерода водой при температуре 20 °С. Плотность орошения 60 м 3 /(м 2 -ч). Насадка — керамические кольца 35х35х4 мм навалом. Коэффициент смоченности насадки φ = 0,86.
6.19. Определить коэффициент массоотдачи для газа в скруббере при поглощении пара бензола из коксового газа по следующим данным: насадка хордовая из реек 12,5X100 мм с расстоянием между рейками b = 25 мм (для такой насадки 4dэ = 2b = 0,05 м); скорость газа, считая на полное сечение скруббера, 0,95 м/с; плотность газа 0,5 кг/м 3 ; динамический коэффициент вязкости газа 0,013 мПа с; коэффициент диффузии бензола в газе 16-10 -8 м 2 /с. Режим считать пленочным.
6.20. Определить диаметр и высоту тарельчатого абсорбера для поглощения водой аммиака из воздушно-аммиачной смеси при атмосферном давлении и температуре 20 °С. Начальное содержание аммиака в газовой смеси 7% (об.). Степень извлечения 90%. Расход инертного газа (воздуха) 10000 м 3 /ч (при рабочих условиях). Линию равновесия считать прямой, ее уравнение в относительных массовых концентрациях: Y* = 0,61X. Скорость газа в абсорбере (фиктивная) 0,8 м/с. Расстояние между тарелками 0,6 м. Средний к. п. д. тарелок 0,62. Коэффициент избытка поглотителя φ = 1.3.
6.21. По условиям предыдущей задачи определить: 1) высоту насадочного абсорбера с насадкой из керамических колец 50ХХ50х5 мм, приняв hу — высоту слоя насадки, эквивалентную теоретической тарелке (ВЭТТ), равной 0,85 м; 2) величину коэффициента массопередачи в этом насадочном абсорбере К.у кг аммиака /(м 2 -с кмоль аммиака/кмоль воздуха) насадки гр равным 0,9.
6.22. По данным контрольных задач 6.20 и 6.21 определить высоту слоя насадки через общее число единиц переноса nоу и высоту единицы переноса (ВЕП) h0у.
6.23. Абсорбер для улавливания паров бензола из парогазовой смеси орошается поглотительным маслом с мольной массой 260 кг/кмоль. Среднее давление в абсорбере рабс = 800 мм рт. ст., температура 40 °С. Расход парогазовой смеси 3600 м 3 /ч (при рабочих условиях). Концентрация бензола в газовой смеси на входе в абсорбер 2% (об.) извлекается 95% бензола. Содержание бензола в поглотительном масле, поступающем в абсорбер после регенерации, 0,2% (мол.). Расход поглотительного масла в 1,5 раза больше теоретически минимального. Для расчета равновесных составов принять, что растворимость бензола в м:асле определяется законом Рауля. При концентрациях бензола в жидкости до X = 0,1 кмоль бензола/кмоль масла равновесную зависимость Y* =f(X) считать прямолинейной.
Определить: 1) расход поглотительного масла в кг/ч; 2) концентрацию бензола в поглотительном масле, выходящем из абсорбера; 3) диаметр и высоту насадочного абсорбера при скорости газа в нем (фиктивной) 0,5 м/с и высоте единицы переноса (ВЕП) hоу = 0,9 м; 4) высоту тарельчатого абсорбера при среднем к. п. д. тарелок 0,67 и расстоянии между тарелками 0,4 м.
6.24. В насадочном абсорбере диаметром 1 м диоксид серы поглощается водой из воздуха. Начальное содержание SО2 в поступающей смеси 7% (об.). Степень поглощения 0,9. На выходе из абсорбера вода содержит 0,0072 кг SО2/кг воды. Коэффициент массопередачи в абсорбере К.у = 0,005 кг SО2 /(м 2 -с кмоль SО2/кмоль воздуха)Насадка из керамических колец 50x50x5 мм. Коэффициент смоченкости насадки φ = 1. Высота единицы переноса hоу = 1,17 м. Определить расход воды в абсорбере.
6.25. В абсорбере под атмосферным давлением при температуре 20 °С поглощается из парогазовой смеси 300 кг бензола в 1 ч. Начальное содержание пара бензола в парогазовой смеси 4% (об.). Степень извлечения бензола 0,85. Жидкий поглотитель, поступающий в абсорбер после регенерации, содержит 0,0015 кмоль бензола/кмоль поглотителя. Фиктивная скорость газа в абсорбере 0,9 м/с. Уравнение линии равновесия: Y* =0,2Х, где Y* и X выражены соответственно в кмоль бензола/кмоль инертного газа и кмоль бензола/кмоль поглотителя. Коэффициент избытка поглотителя φ = 1,4. Определить диаметр абсорбера и концентрацию бензола в поглотителе, выходящем из абсорбера.
Барабанные сушилки широко применяются в химической промышленности для сушки сыпучих, мелкокусковых и зернистых материалов. В таких сушилках тепло передается от сушильного агента непосредственно высушиваемому материалу внутри сушильного барабана, т.е. барабанные сушилки относятся к конвективным.
Барабанные сушилки отличаются высокой производительностью. Устанавливаются они либо в начале технологическо
Видео:Практическое занятие по расчёту абсорбцииСкачать
Видео:Массообменные процессы. Часть 1. Уровень: начальныйСкачать
Поиск, обзор и навигация
Магазин работ
ПиАХТ
Чертежи
Видео:⚗️ Ректификация. Газовые смеси, фазовое равновесие, диаграммы состояния.Скачать
Раздел 5 (Решение задач Романков, Флисюк)
Видео:Фазовые равновесия | ФизхимияСкачать
Основа массопередачи. Абсорбция
Задача 5.1 (задачник Романков, Флисюк) Определить плотность смеси равных объемов бензола и нитробензола, относительную массовую долю X нитробензола и его молярную объемную концентрацию Сх, считая, что объем жидкой смеси равен сумме объемов компонентов.
Ответ: р = 1050 кг/м 3 , х = 1,33 кг/кг, Сх = 4,86 кмоль нитробензола/м3, совпадает с задачником
Задача 5.2 (задачник Романков, Флисюк) Определить плотность жидкой смеси, содержащей (в молярных долях) 20 % хлороформа, 40 % ацетона и 40 % сероуглерода, считая, что изменения объема при смешении не происходит.
Ответ: р = 1140 кг/м 3 , совпадает с задачником
Задача 5.3 (задачник Романков, Флисюк) Воздух насыщен паром этилового спирта. Общее давление воздушно-паровой смеси 600 мм рт. ст., температура 60°С. Считая оба компонента смеси идеальными газами, определить относительную массовую долю этанола Y в смеси и плотность смеси.
Ответ: Y = 1,59 кг пара/кг воздуха; р = 1,08 кг/м 3 , совпадает с задачником
Задача 5.4 (задачник Романков, Флисюк) Газовая смесь, содержащая 26% водорода, 60% метана и 14% этилена (молярные доли) имеет давление рабс=30 кгс/см 2 и температуру 20°С. Считая компоненты смеси идеальными газами, определить их объемные массовые концентрации Cy (в кг/м 3 ).
Ответ: Сy = 0,634, 11,6 и 4,74 кг/м 3 , совпадает с задачником
Задача 5.5 (задачник Романков, Флисюк) Над плоской поверхностью поглотителя водяного пара со скоростью 2,1 м/с при нормальных условиях проходит паровоздушная смесь с начальной концентрацией пара 12,0·10 -3 кг/м 3 . Поверхность поглотителя имеет ширину 0,50 и длину 2,0 м. Высота зазора, по которому проходит смесь, составляет 100 мм. Средняя толщина пограничного слоя у поверхности, поперек которого происходит диффузия пара, равна 0,40 мм. Определить количество поглощенного пара, если на самой поглощающей поверхности концентрацию пара можно принять нулевой, а распределение концентрации вдоль движения воздуха — линейным. Расчет проводится последовательными приближениями.
Ответ: М = 0,12*10 -3 кг не совпадает с задачником 0,12*10 -3 кг/с, разные единицы измерения.
Задача 5.6 (задачник Романков, Флисюк) В условиях примера 5.3 определить движущую силу процесса массоперехода в начальный момент времени по газовой и по жидкой фазе в объемных концентрациях, мольных и массовых.
Ответ: Сх = 5,15*10 -3 кмоль/м 3 , Су = 0134 кг/м3, Сх = 3,86*10 -6 кмоль/м 3 , Сх = 0,1*10 -3 кг/м3, ответ не совпадает для второго случая Сх = 5,26*10 -3 кмоль/м 3 , Сх = 0,137 кг/м 3
Задача 5.7 (задачник Романков, Флисюк) Пар бинарной смеси хлороформ — бензол, содержащий 50% хлороформа и 50% бензола, контактирует с жидкостью, содержащей 44% хлороформа и 56% бензола (молярные доли). Давление атмосферное. Определить: а) из какой фазы в какую будут переходить хлороформ и бензол; б) движущую силу процесса массопередачи по паровой и по жидкой фазе на входе пара в жидкость (в молярных долях). Данные о равновесных составах см. в табл. ХLII.
Ответ: y = 0,1 и х = 0,08 кмоль/кмоль смеси, совпадает с задачником
Задача 5.8 (задачник Романков, Флисюк) Газовая смесь, содержащая 0,8 % (объемная доля) октана, сжимается компрессором до рабс=5 кгс/см 2 и затем охлаждается до 25°С. Определить степень выделения октана. Как изменится степень выделения, если охладить сжатую газовую смесь холодильным рассолом до 0 °С? Давление насыщенного пара октана — см. рис. XI.
Ответ: степень выделения 40,5 и 85%, совпадает с задачником
Задача 5.9 (задачник Романков, Флисюк) Рассчитать коэффициенты молекулярной диффузии под атмосферным давлением: а) пара бензола в паре толуола при температуре 100°С; б) пара этилового спирта в водяном паре при температуре 92°С.
Ответ: а) 4,85*10 -6 ; б) 20,6*10 -6 м 2 /с, совпадает с задачником
Задача 5.10 (задачник Романков, Флисюк) Определить коэффициент массопередачи в орошаемом водой абсорбере, в котором у = 2,76·10 -3 кмоль/(м 2 ·ч·кПа), а x = 1,17·10 -4 м/с. Давление в аппарате рабс = 1,07 кгс/см 2 . Уравнение линии равновесия в мольных долях: у* = 102x.
Ответ: 0,00232 кмоль/(м 2 *ч*кПа), не совпадает с задачником 0,00122 кмоль/(м 2 *ч*кПа)
Задача 5.11 (задачник Романков, Флисюк) Определить среднюю движущую силу и общее число единиц переноса nоу при поглощении из газа паров бензола маслом. Начальная концентрация бензола в газе 4% (объемная доля); улавливается 80% бензола. Концентрация бензола в масле, вытекающем из скруббера, 0,02 кмоль бензола/кмоль чистого масла. Масло, поступающее в скруббер, бензола не содержит. Уравнение равновесной линии в относительных мольных концентрациях: у*=0,126х. Движущую силу выразить в единицах концентрации Y (кмоль бензола/кмоль инертного газа).
Ответ: 0,02 кмоль бензола/кмоль инертного газа, noy = 1,6, совпадает с задачником
Задача 5.12 (задачник Романков, Флисюк) В скруббере поглощается водой диоксид серы из инертного газа (азота) под атмосферным давлением (760 мм рт. ст.). Начальное содержание диоксида серы в газе 5% (об.). Температура воды 20°С, ее расход на 20% больше теоретически минимального. Извлекается из газа 90% SО2. Определить: 1) расход воды на поглощение 1000 кг/ч сернистого газа; 2) среднюю движущую силу процесса; 3) общее число единиц переноса nоу. Линия равновесия может быть принята за прямую; координаты двух ее точек: 1) парциальное давление SО2 в газовой фазе р = 39 мм рт. ст., X = 0,007 кг SО2/кг воды; 2) р = 26 мм рт. ст., X = 0,005 кг SО2/кг воды.
Ответ: L = 48,6 кг/с, noy = 6,02, Рср = 5,67 кПа, совпадает с задачником
Задача 5.13 (задачник Романков, Флисюк) В насадочном абсорбере производится поглощение пара метанола водой из газа под атмосферным давлением при средней температуре 27°С. Содержание метилового спирта в газе, поступающем в скруббер, 100 г на 1 м 3 инертного газа (считая объем газа при рабочих условиях). На выходе из скруббера вода имеет концентрацию 67% от. от равновесной с входящим газом. Уравнение растворимости метилового спирта в воде в относительных мольных концентрациях: Y*=1.15Х. Извлекается водой 98% от исходного количества спирта. Коэффициент массопередачи: Kх = 0,5 (кмоль спирта м 2 ·ч кмоль спирта/кмоль воды) инертного газа 1200 м 3 /ч (при рабочих условиях). Абсорбер заполнен насадкой из керамических колец с удельной поверхностью 190 м 2 /м 3 . Коэффициент смачивания насадки 0,87. Фиктивная скорость газа в абсорбере w= 0,4 м/с. Определить расход воды и требуемую высоту слоя насадки.
Ответ: L = 1480 кг/ч, Н = 7,2м, совпадает с задачником
Задача 5.14 (задачник Романков, Флисюк) В скруббер диаметром 0,5 м подается 550 м3/ч (при 760 мм рт. ст. и 20 °С) воздуха, содержащего 2,8% (объемная доля) аммиака, который поглощается водой под атмосферным давлением. Степень извлечения аммиака 0,95. Расход воды на 40% больше теоретически минимального. Определить: 1) расход воды; 2) общее число единиц переноса nоу; 3) высоту слоя насадки из керамических колец 50X50X5 мм. Коэффициент массопередачи: Ку=0,001кмоль аммиака/(м 2 ·с кмоль аммиака/кмоль воздуха). Данные о равновесных концентрациях жидкости и газа взять из примера 5.11. Коэффициент смоченности насадки 0,9.
Ответ: L = 760кг/ч, noy = 4,68, Н = 1,93 м, совпадает с задачником
Задача 5.15 (задачник Романков, Флисюк) Воздух с примесью аммиака пропускается через орошаемый водой скруббер, наполненный насадкой из колец с удельной поверхностью 89,5м 2 /м 3 . Свободный объем начадки 0,79 м 3 /м 3 . Температура процесса абсорбции 28 С, абсолютное давление 1кг/см 2 . Объемная доля аммиака в газовой смеси 5,8%. Массовая скорость газа, отнесенная к полному сечению скруббера, 1,1кг/(м 2 ·с). Определить коэффициент массоотдачи для газа, считая что скруббер работает при пленочном режиме.
Ответ bг = 0,038 м/с, совпадает с задачником
Задача 5.16 (задачник Романков, Флисюк) Рассчитать коэффициент массоотдачи от жидкой фазы в насадочном абсорбере, в котором производится поглощение диоксида углерода водой при температуре 20 °С. Плотность орошения 60 м 3 /(м 2 ·ч). Насадка — керамические кольца 35х35х4 мм навалом. Коэффициент смоченности насадки 0,86.
Ответ: bx = 2,16*10 -6 м/с, совпадает с задачником
Задача 5.17 (задачник Романков, Флисюк) Определить коэффициент массоотдачи для газа в скруббере при поглощении пара бензола из коксового газа по следующим данным: насадка хордовая из реек 12,5х100 мм с расстоянием между рейками b = 25 мм (для такой насадки 4dэ = 2b = 0,05 м); скорость газа, считая на полное сечение скруббера, 0,95 м/с; плотность газа 0,5 кг/м 3 ; динамический коэффициент вязкости газа 0,013 мПа с; коэффициент диффузии бензола в газе 16·10 -8 м 2 /с. Режим считать пленочным.
Ответ: b y = 0,0285 м/с, совпадает с задачником
Задача 5.18 (задачник Романков, Флисюк) Определить диаметр и высоту тарельчатого абсорбера для поглощения водой аммиака из воздушно-аммиачной смеси при атмосферном давлении и температуре 20°С. Начальное содержание аммиака в газовой смеси 7% (об.). Степень извлечения 90%. Расход инертного газа (воздуха) 10000 м3/ч (при рабочих условиях). Линию равновесия считать прямой, ее уравнение в относительных массовых концентрациях: Y* = 0,61X. Скорость газа в абсорбере (фиктивная) 0,8 м/с. Расстояние между тарелками 0,6 м. Средний к. п. д. тарелок 0,62. Коэффициент избытка поглотителя 1.3.
Ответ: d = 2,15м, Н = 5,4м, совпадает с задачником
Задача 5.19 (задачник Романков, Флисюк) По условиям предыдущей задачи определить: 1) высоту насадочного абсорбера с насадкой из керамических колец 50ХХ50х5 мм, приняв hy — высоту слоя насадки, эквивалентную теоретической тарелке (ВЭТТ), равной 0,85 м; 2) величину коэффициента массопередачи в этом насадочном абсорбере Ку кг аммиака /(м 2 ·с кмоль аммиака/кмоль воздуха) насадки равным 0,9.
Ответ: 1) Н = 5,1м, 2) Ку = 0,0132 кг аммиака /(м2с кмоль аммиака/кмоль воздуха), совпадает с задачником
Задача 5.20 (задачник Романков, Флисюк) По данным контрольных задач 6.20 и 6.21 определить высоту слоя насадки через общее число единиц переноса nоу и высоту единицы переноса (ВЕП) h0у.
Ответ: Н = 5,1м, совпадает с задачником
Задача 5.21 (задачник Романков, Флисюк) Абсорбер для улавливания паров бензола из парогазовой смеси орошается поглотительным маслом с мольной массой 260 кг/кмоль. Среднее давление в абсорбере рабс=800 мм рт. ст., температура 40°С. Расход парогазовой смеси 3600 м 3 /ч (при рабочих условиях). Концентрация бензола в газовой смеси на входе в абсорбер 2% (об.) извлекается 95% бензола. Содержание бензола в поглотительном масле, поступающем в абсорбер после регенерации, 0,2% (мол.). Расход поглотительного масла в 1,5 раза больше теоретически минимального. Для расчета равновесных составов принять, что растворимость бензола в м:асле определяется законом Рауля. При концентрациях бензола в жидкости до X=0,10 кмоль бензола/кмоль масла равновесную зависимость Y*=f(X) считать прямолинейной. Определить: 1) расход поглотительного масла в кг/ч; 2) концентрацию бензола в поглотительном масле, выходящем из абсорбера; 3) диаметр и высоту насадочного абсорбера при скорости газа в нем (фиктивной) 0,5 м/с и высоте единицы переноса (ВЕП) hоу = 0,9 м; 4) высоту тарельчатого абсорбера при среднем к. п. д. тарелок 0,67 и расстоянии между тарелками 0,4 м.
Ответ: 1) L = 12,3 т/ч, 2) Хк = 0,061 кмоль бензола/кмоль масла, 3) d = 1,59м, n = 10, 4) Н = 4м, совпадает с задачником
Задача 5.22 (задачник Романков, Флисюк) В абсорбере под атмосферным давлением при температуре 20°С поглощается из парогазовой смеси 300 кг бензола в 1 ч. Начальное содержание пара бензола в парогазовой смеси 4% (об.). Степень извлечения бензола 0,85. Жидкий поглотитель, поступающий в абсорбер после регенерации, содержит 0,0015 кмоль бензола/кмоль поглотителя. Фиктивная скорость газа в абсорбере 0,9 м/с. Уравнение линии равновесия: Y* =0,2Х, где Y* и X выражены соответственно в кмоль бензола/кмоль инертного газа и кмоль бензола/кмоль поглотителя. Коэффициент избытка поглотителя 1,4. Определить диаметр абсорбера и концентрацию бензола в поглотителе, выходящем из абсорбера.
Ответ: D = 1,03м и Хн = 0,149 кмоль бензола/кмоль поглотителя, совпадает с задачником
Задача 5.23 (задачник Романков, Флисюк) В насадочном аппарате диаметром 1,2 м из потока воздуха поглощаются пары этанола от начальной (в нижнем сечении аппарата) концентрации 0,065 до конечной концентрации 0,006 кмоль эт/кмоль вх. Движение воздуха и жидкого поглотителя в аппарате противоточное. В исходном потоке подаваемой сверху воды этанол отсутствует. Объемный расход воздуха при температуре 30°С и атмосферном давлении составляет 1200 м 3 /ч. Удельная поверхность насадки 204 м 2 /м 3 , доля смоченности ее водой 0,85. Коэффициент массопередачи этанола от воздуха к воде Ку = 3,1·10 -4 кмоль эт/(м 2 ·с (кмоль эт/кмоль вх)). Равновесная зависимость линейная У*(Х)=1,40Х. Коэффициент избытка воды по отношению к ее теоретически минимальному расходу составляет 1,3. Вычислить необходимый расход воды и высоту слоя насадки.
Ответ: L = 0,4 кг/с, Н = 1,04м, совпадает с задачником.
Задача 5.24 (задачник Романков, Флисюк) В насадочном абсорбере непрерывного действия из воздушного потока поглощаются пары аммиака с помощью подаваемого в верхнюю часть аппарата потока воды. Диаметр аппарата 1,1 м. Удельная поверхность насадки 140 м 2 /м 3 , а доля смачиваемости ее поверхности 0,7. Расход воздушно-аммиачной смеси 1400 м 3 /ч; начальная и конечная концентрации аммиака в воздухе 0,050 и 0,0045 кмоль ам/кмоль вх; температура воздуха и воды 12°С. Коэффициент массопередачи от воздуха к воде Ку = 3,1·10 -4 кмоль ам/(м 2 ·с (кмоль ам/кмоль вх)). Равновесная зависимость имеет линейный характер Y*(Х) = 1,35X. Расход воды в 1,5 раза превышает теоретически минимальное количество. Вычислить необходимую высоту слоя насадки и расход воды.
Ответ: L = 0,551 кг/с, Н = 2,91 м, совпадает с задачником.
Видео:Оценка флегмовых чисел ректификационной колонны (минимального и оптимального)Скачать
Примеры решения глава 5
Решение задач по вашим данным от 100р
Пример 5.1. Жидкая смесь имеет состав: молярная доля толуола 58,8% и тетрахлорида углерода (ТХУ) 41,2%. Определить относительную массовую долю толуола X (в кг толуола/кг ТХУ) и его массовую объемную концентрацию Сх (в кг/м 3 ).
Скачать решение примера 5.1 (17.22 Кб) скачиваний716 раз(а)
Пример 5.2. Воздух при давлении 745 мм рт, ст. и температуре 34°С насыщен водяным паром. Определить парциальное давление воздуха, объемную и массовую долю пара в воздушно-паровой смеси и его относительную массовую долю, считая оба компонента смеси идеальными газами. Определить также плотность воздушно-паровой смеси, сравнить ее с плотностью сухого воздуха.
Пример 5.3. Определить плотности диффузионных потоков аммиака в его смеси с воздухом и в аммиачной воде, если массовые концентрации аммиака на одинаковом расстоянии 1,9 м составляют в обоих случаях 5,20·10 -3 и 0,14·10 -3 кг/м 3 . Изменение концентрации считать линейным; температура воздуха и воды 15°С; давление в газе 1300 мм рт. ст.
Пример 5.4. При температуре 25°С приведены в соприкосновение: воздух атмосферного давления, содержащий 14% (объемная доля) ацетилена (С2Н2), и вода, содержащая растворенный ацетилен в количестве: а) 0,29·10 -3 кг на 1 кг воды; б) 0,153·10 -3 кг на 1 кг воды. Определить: 1) из какой фазы в какую будет переходить адетилен; 2) движущую силу этого процесса перехода (в относительных молярных долях). Общее давление 765 мм рт. ст. Равновесные содержания ацетилена в газовой и в жидкой фазах определяются законом Генри.
Пример 5.5. В массообменном аппарате, работающем под давлением р абс =3,1 кгс/см 2 , коэффициенты массоотдачи имеют следующие значения: у= 1,07 кмоль/(м 2 ·ч·у), Δх=22кмоль/(м·ч·Δх). Равновесные составы газовой и жидкой фаз характеризуются законом Генри р*=8·10 4 х. Определить: а) коэффициенты массопередачи Ку и Кх; б) соотношение диффузионных сопротивлений в жидкой и в газовой фазах.
Пример 5.6. Коэффициент массопередачи в абсорбере Кv=10,4кмоль/(м 2 ·ч·кмоль/м 3 ). Инертный газ — азот. Давление в аппарате р абс = 760 мм рт. ст., температура 20°С. Определить значение коэффициента массопередачи Ку в следующих единицах: 1) кмоль/(м 2 ·ч·у); 2) кмоль/(м 2 ·ч·мм.рт.ст.); 3) кг/м 2 ·ч (кг/кг инертного газа)].
Пример 5.7. Вычислить коэффициент диффузии сероводорода в воде при 40 ° С.
Пример 5.8. Определить расход серной кислоты, используемой для очистки воздуха. Производительность скруббера 500 м 3 /ч по сухому воздуху при нормальных условиях. Начальное содержание влаги в воздухе 0,016 кг/кг сухого воздуха, конечное содержание 0,006 кг/кг сухого воздуха. Начальное содержание воды в кислоте 0,6 кг/кг моногидрата, конечное содержание 1,4 кг/кг моногидрата. Давление атмосферное.
Пример 5.9. Скруббер для поглощения паров ацетона из воздуха при атмосферном давлении и температуре 20°С орошается чистой водой с расходом 3000 кг/ч. Объемная доля ацетона а исходной паровоздушной смеси 6 %. Расход чистого воздуха в поступающей смеси 1400 м 3 /ч (считая на нормальные условия). Степень поглощения ацетона 0,98. Уравнение линии равновесия: Y*=1.68Х, где X и Y* выражены в киломолях ацетона на киломоль второго компонента, т. е. воды или воздуха. Определить необходимые диаметр и высоту скруббера, заполненного керамическими кольцами размером 25x25x3 мм. Скорость газа принять на 25 % меньше скорости захлебывания. Коэффициент массопередачи Ку=0,4кмоль ацетона/[м 2 ·ч (кмоль ацетона/кмолъ воздуха)]. Коэффициент смоченности насадки равен единице.
Пример 5.10. Вычислить коэффициент массопередачи в водяном скруббере при поглощении из газа диоксида углерода по следующим данным. В скруббер поступают 5000 м 3 /ч газовой смеси, считая при атмосферном давлении и при рабочей температуре, и 650 м 3 /ч чистой воды. Начальное содержание <объемная доля) диоксида углерода в газе 28,4%, конечное 0,20%. Общее давление в скруббере рабс=16,5кгс/см 2 . Температура 15?С. В нижнюю часть скруббера загружено 3т керамических колец 50х50х5 мм. Выше загружено 17т колец 35х35х4 мм. Коэффициент смоченности насадки считать равным единице.
Пример 5.11. Аммиак поглощается в скруббере водой из газа под атмосферным давлением. Начальное содержание аммиака в газе 0,03 кмоль/кмоль инертного газа. Степень извлечения равна 90%. Вода, выходящая из скруббера, содержит аммиака 0,02 кмоль/кмоль воды. В скруббере поддерживается постоянная температура. Равновесные данные приведены ниже:
Определить требуемое число единиц переноса nоу: 1) графическим построением; 2) методом графического интегрирования.
Скачать решение примера 5.11 (35.94 Кб) скачиваний678 раз(а)
Пример 5.12. Определить теоретически минимальный расход жидкого поглотителя, необходимый для полного извлечения пропана и бутана из 1000 м 3 /ч (при нормальных условиях) газовой смеси. Объемная доля пропана в газе 15 % , бутана 10 % . Температура в абсорбере 10?С, абсолютное давление 1800 мм. рт. ст. Растворимости бутана и пропана в поглотителе характеризуются законом Рауля.
Пример 5.13. Вычислить коэффициент массоотдачи для газовой фазы в насадочном абсорбере, в котором производится поглощение диоксида серы из азота при атмосферном давлении. Температура в абсорбере 20°С. Скорость газа в абсорбере (фиктивная) 0,35 м/с. Абсорбер заполнен кусками кокса (σ= 42 м 2 /м 3 , V св =0,58 м 3 /м 3 ). Поглощающая жидкость стекает по насадке в пленочном режиме.
Пример 5.14. В скруббере с насадкой из керамических колец 50x50x5 мм производится поглощение диоксида углерода водой из газа под давлением р абс =16кгс/см 2 (1,57 МПа) при температуре 22°С. Средняя молярная масса газовой сиеси 20,3 кг/кмоль, динамическая вязкость газа при рабочих условиях 1,31·10-5 Па·с, коэффициент диффузии СО 2 в инертном газе 1,7·10 -6 м 2 /с. Фиктивная скорость газа в скруббере 0,041 м/с, плотность орошения (фиктивная скорость жидкости) 0,064 м 3 /(м 2 ·с).
Определить общую высоту единицы переноса hоу, принимая коэффициент смоченности насадки равным единице.
Скачать решение примера 5.14 (32.94 Кб) скачиваний599 раз(а)
Пример 5.15. Вычислить необходимую высоту противоточного насадочного абсорбера (рис. 5.1) для непрерывного процесса поглощения паров метанола из потока воздуха водой при атмосферном давлении. Диаметр абсорбера 1,0 м, удельная поверхность насадки 140 м 3 /м 3 . Температура процесса 15°С. Расход воздуха 1500 м 3 /ч при заданной температуре. Концентрации метанола в воздухе на входе и выходе из абсорбера 0,060 и 0,006 кмоль м/кмоль вх. В подаваемой на слой насадки воде метанол отсутствует. Насадка смачивается водой на 85 %. Коэффициент избытка воды по отношению к ее теоретически минимальному количеству составляет 1,5, Коэффициент массопередачи паров метанола от воздуха к воде 0,333·10 -3 кмоль м/(м 2 ·с (кмоль м/кмоль вх)). Линейная равновесная зависимость содержания метанола в воде и воздухе имеет вид Y*(Х) = 1.20Х в мольных долях.
Пример 5.16. Определить высоту слоя насадки в противоточном насадочном абсорбере диаметром 0,8 м, в котором вода поглощает пары аммиака из потока воздуха. Расход воздушно-аммиачной смеси 0,50 м 3 /с при температуре 20°С и атмосферном давлении. Начальная и конечная концентрации аммиака в потоке воздуха 0,055 и 0,007 кмоль ам/кмоль вх. В исходной воде, подаваемой на слой насадки, аммиак отсутствует. Удельная поверхность насадки 80,5 м2/м3, доля ее смачиваемости 0,75. Значение коэффициента массопередачи паров метанола от потока воздуха к пленке воды на насадке Кy=4,0·10 4 кмоль ам/(м 2 ·с(кмоль ам/кмоль вх)). Равновесная зависимость линейная Y*(Х)=1,45Х в молярных долях аммиака в воздухе и в воде. Действительный расход воды в 1,7 раз превышает его теоретическое минимальное значение.
Видео:Молярная масса. 8 класс.Скачать
Расчетные задания глава 5
ПРИМЕРЫ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ
Задание 5-1 (цена расчета 500р). В противоточном, абсорбере содержание поглощаемого компонента в газе изменяется от Yн до Yк. Абсорбер орошается чистым поглотителем с удельным расходом i= L/G. Уравнение линии равновесия Y*=mХ. Содержание компонента в газе на выходе из аппарата должно быть снижено до Y*к.
Определить:
1) как следует изменить высоту насадки, чтобы при тех же расходах фаз достичь Y*к;
2) при каком удельном расходе поглотителя i` необходимо работать, чтобы достичь Y*к, не меняя высоты насадки;
Исходные данные к заданию 5-1
Задание 5-2, В насадочном абсорбере чистой водой поглощается целевой компонент А из его смеси с воздухом при давлении П и температуре t. Расход газа V0, (при 0?С, 760 мм рт. ст.), начальное содержание извлекаемого компонента в газе уH, степень извлечения компонента раана ηп. Коэффициент избытка орошения φ, коэффициент смачивания ψ, коэффициент массопередачи К. Определить расход воды, диаметр абсорбера и высоту насадки. Принять рабочую скорость газа w=0,8· wз, где wз — скорость газа в точке захлебывания.
Исходные данные к заданию 5-2
📹 Видео
Основы массорепедачи. Первая лекцияСкачать
❄️Семинар 9. Ректификация. Подробный разбор метода Поншона-Бошняковича и принятых допущенийСкачать
Запись лекции АбсорбцияСкачать
Визуализация гравитацииСкачать
Расчетная работа "Тарельчатая ректификационная колонна"Скачать
Урок 132. Основные понятия гидродинамики. Уравнение непрерывностиСкачать
5.1. Адсорбция. Классификация адсорбцииСкачать
Полный разбор всех заданий демоверсии ЕГЭ 2024 по химииСкачать
25. Схема реакции и химическое уравнениеСкачать
Семинары Овчинкина В.А. для 1 курса по механике, занятие 1. Кафедра общей физики МФТИСкачать
Асеев В. В. - Основы энзимологии - Ферментативная кинетика Уравнение Михаэлиса-МентенСкачать
Задача на расчет молярной концентрации (См) по схемам ОВР + титрование.Скачать
Массообменные процессы. Часть 2. Уровень: начальныйСкачать