Уравнение радиоактивного распада урана 235

Содержание
  1. Радиоактивный уран
  2. Радиоактивный распад урана
  3. Радиоактивность урана
  4. Ядерная топка Земли
  5. Красноречивый гелий
  6. Уран выпал в осадок?
  7. Не можешь найти – моделируй!
  8. Откуда летят геонейтрино?
  9. Вместо послесловия
  10. Содержание
  11. История
  12. Физические свойства
  13. Химические свойства
  14. Характерные степени окисления
  15. Свойства простого вещества
  16. Соединения урана III
  17. Соединения урана IV
  18. Соединения урана V
  19. Соединения урана VI
  20. Изотопы
  21. Нахождение в природе
  22. Месторождения
  23. Получение
  24. Применение
  25. Ядерное топливо
  26. Тепловыделяющая способность урана
  27. Производство искусственных изотопов
  28. Геология
  29. Другие сферы применения
  30. Обеднённый уран
  31. Сердечники бронебойных снарядов
  32. Физиологическое действие
  33. Добыча урана
  34. Добыча по странам
  35. Добыча по компаниям
  36. Уран из вторичных источников
  37. Добыча в СССР
  38. Добыча в России
  39. Добыча в Казахстане
  40. Добыча на Украине
  41. Стоимость и аффинаж

Видео:Деление урана 235Скачать

Деление урана 235

Радиоактивный уран

Уран представляет собой радиоактивный металл. В природе уран состоит из трех изотопов: уран-238, уран-235 и уран-234. Наивысший уровень стабильности фиксируется у урана-238.

Таблица 1. Таблица нуклидов

ХарактеристикаЗначение
Общие сведения
Название, символУран-238, 238U
Альтернативные названияура́н оди́н, UI
Нейтронов146
Протонов92
Свойства нуклида
Атомная масса238,0507882(20)[1] а. е. м.
Избыток массы47 308,9(19)[1] кэВ
Удельная энергия связи (на нуклон)7 570,120(8)[1] кэВ
Изотопная распространённость99,2745(106) %[2]
Период полураспада4,468(3)·109[2] лет
Продукты распада234Th, 238Pu
Родительские изотопы238Pa (β−)
242Pu (α)
Спин и чётность ядра0+[2]
Канал распадаЭнергия распада
α-распад4,2697(29)[1] МэВ
SF
ββ1,1442(12)[1] МэВ

Видео:Цепная реакция деления ядер уранаСкачать

Цепная реакция деления ядер урана

Радиоактивный распад урана

Радиоакти́вным распа́дом называют процесс внезапного изменения состава или внутреннего строения атомных ядер, которые отличаются нестабильностью. При этом испускаются элементарные частицы, гамма-кванты и/или ядерные фрагменты. Радиоактивные вещества содержат радиоактивное ядро. Получившееся вследствие радиоактивного распада дочернее ядро может тоже стать радиоактивным и спустя определенное время подвергается распаду. Этот процесс происходит до того момента, пока не образуется стабильное ядро, лишенное радиоактивности. Э. Резерфорд методом эксперимента в 1899 доказал, что урановые соли испускают три вида лучей:

  • α-лучи — поток положительно заряженных частиц
  • β-лучи — поток отрицательно заряженных частиц
  • γ-лучи — не создают отклонений в магнитном поле.
Таблица 2. Радиоактивный распад урана

Вид излученияНуклидПериод полураспада
ΟУран — 238 U4,47 млрд. лет
α ↓
ΟТорий — 234 Th24.1 суток
β ↓
ΟПротактиний — 234 Pa1.17 минут
β ↓
ΟУран — 234 U245000 лет
α ↓
ΟТорий — 230 Th8000 лет
α ↓
ΟРадий — 226 Ra1600 лет
α ↓
ΟПолоний — 218 Po3,05 минут
α ↓
ΟСвинец — 214 Pb26,8 минут
β ↓
ΟВисмут — 214 Bi19,7 минут
β ↓
ΟПолоний — 214 Po0,000161 секунд
α ↓
ΟСвинец — 210 Pb22,3 лет
β ↓
ΟВисмут — 210 Bi5,01 суток
β ↓
ΟПолоний — 210 Po138,4 суток
α ↓
ΟСвинец — 206 Pbстабильный

Видео:Деление ядер уранаСкачать

Деление ядер урана

Радиоактивность урана

Естественная радиоактивность – вот что отличает радиоактивный уран от прочих элементов. Атомы урана не зависимо ни от каких факторов и условий постепенно изменяются. При этом испускаются невидимые лучи. После трансформаций, которые происходят с атомами урана, получается иной радиоактивный элемент и процесс повторяется. Он будет повторять столько раз, сколько необходимо, чтобы получился не радиоактивный элемент. К примеру, некоторые цепочки превращений насчитывают до 14 стадий. При этом промежуточным элементом является радий, а последняя стадия – образование свинца. Этот металл не является радиоактивным элементом, поэтому ряд превращений прерывается. Однако для полного превращения урана в свинец необходимо несколько миллиардов лет.
Радиоактивная руда урана часто становится причиной отравлений на предприятиях, занимающихся добычей и переработкой уранового сырья. В человеческом организме уран — общеклеточный яд. Он поражает главным образом почки, но встречаются и поражения печени и желудочно-кишечного тракта.
Уран не имеет полностью стабильных изотопов. Наибольший период жизни отмечается у урана-238. Полу распад урана-238 происходит на протяжении 4,4 млрд лет. Чуть меньше одного миллиарда лет идет полу распад урана-235 — 0,7 млрд лет. Уран-238 занимает свыше 99% всего объема природного урана. Вследствие его колоссального периода полураспада радиоактивность этого металла не высокая, к примеру, альфа-частицы не могут проникнуть через ороговевший слой кожи человека. После ряда проведенных исследований ученые выяснили, что главным источником радиации является не сам уран, а образуемый им газ радон, а также продукты его распада, попадающие в человеческий организм во время дыхания.

Видео:КАК ДОБЫВАЮТ УРАН ДЛЯ АЭС И КОСМИЧЕСКИХ МИССИЙ? [Производство: Уран 235, Плутоний - 238.]Скачать

КАК ДОБЫВАЮТ УРАН ДЛЯ АЭС И КОСМИЧЕСКИХ МИССИЙ? [Производство: Уран 235, Плутоний - 238.]

Ядерная топка Земли

Общеизвестно, что Солнце и другие звезды черпают свою колоссальную энергию из пылающего в их недрах «термоядерного котла». Но и относительно холодная Земля излучает тепла заметно больше, чем можно было бы предположить на основе таких широко распространенных в природе процессов, как, например, естественный радиоактивный распад. Некоторые ученые считают, что причина этого кроется в работе гигантского атомного реактора в земных глубинах. Только в нашем геореакторе происходит не термоядерный синтез, как в звездах, а цепные реакции деления

В 1972 г. на заводе во Франции, производящем обогащенное ядерное топливо, случилось ЧП. До сих пор считалось, что изотопный состав природного урана повсюду на Земле одинаков. Однако в одной партии исходного сырья обнаружилось заметно меньше урана-235, чем обычно. Комиссариат по атомной энергии начал расследование.

Специалисты увидели в случившемся не злой умысел, но потрясающий природный феномен. Оказалось, что около 1,8 млрд лет назад на нескольких участках уранового месторождения в Окло (Габон), откуда поступила партия урана, происходили цепные ядерные реакции деления. Иными словами, там работал настоящий ядерный реактор, только не рукотворный, а природный! В частности, при изучении продуктов деления одного из таких реакторов было установлено, что он действовал в течение нескольких сотен тысяч лет в импульсном режиме – с рабочим циклом в полчаса и перерывом 2,5 часа, – выжигая уран-235.

Уравнение радиоактивного распада урана 235

Почему вообще так важна роль урана-235? Дело в том, что именно этот изотоп охотно делится под воздействием медленных нейтронов в отличие от преобладающего изотопа – урана-238, который может делиться только быстрыми нейтронами (а быстрые – в среде замедляются, и цепная реакция гаснет, не успев начаться).

Таким образом, за миллиарды лет до появления человека природа уже освоила технологию, над реализацией которой в середине ХХ в. бились лучшие умы планеты.

ИЗОТОПЫ УРАНА И ЦЕПНАЯ РЕАКЦИЯ ДЕЛЕНИЯ

Сама идея атомного реактора в земных недрах возникла примерно в это же время – и почти за двадцать лет до открытия феномена Окло! В 1953 г. американские физики Дж. Везерилл и М. Ингрэм выдвинули смелую гипотезу, что в древнейшие времена в скоплениях радиоактивных элементов, главным образом урана и тория, могли протекать цепные ядерные реакции. Датируя эти предположительные процессы эпохой более 2 млрд лет назад, авторы исходили из соображения, что в середине геологической истории Земли доля изотопа 235 U в общем уране была существенно выше, чем сейчас, и составляла более 3 % – как в топливе современных АЭС.

Поиски геореакторов, подобных оклоскому, предпринимались впоследствии и в других древних месторождениях, но они успехом не увенчались. Может быть, африканский реактор – это шутка Бога, результат случайного стечения обстоятельств и он действительно уникален? Даже если это так, идея, что в Земле могут идти – причем и в далеком прошлом, и в настоящее время! – ядерные реакции деления, не оставляет ученых.

Видео:Урок 472. Реакция деления ядер урана. Ядерная энергетикаСкачать

Урок 472. Реакция деления ядер урана. Ядерная энергетика

Красноречивый гелий

Признаки работы природных реакторов ищут не только в земной коре, но и в недрах планеты. Одна из причин упорства исследователей заключается в том, что Земля излучает тепла примерно в 2,5 раза больше, чем должна отдавать в результате естественного распада радиоактивных элементов в коре (радиогенное тепло) и первичного нагрева. (Тепловая энергия, получаемая от Солнца, в этом балансе не учитывается). Если такую большую разницу пытаться объяснить только радиогенным теплом из внутренних областей планеты, то Земля в целом должна иметь нереально большие запасы радиоактивных элементов.

Но вот в цепных ядерных реакциях как раз выделяется тепла в несколько раз больше, чем при естественном радиоактивном распаде. Цепной механизм выделения энергии мог бы объяснить и упомянутый тепловой дисбаланс, и многие другие необычные явления. И если гипотетические реакторы расположены глубоко в недрах, то понятно, почему следы их активности не удалось найти в урановых месторождениях (за исключением Окло). Искали где ближе, но, может, стоит «копнуть вглубь»?

Итак, предположим, что где-то в теле Земли действует такой реактор. По каким признакам его можно обнаружить? Один из методов поиска – анализ продуктов деления, мигрирующих из зоны реакции и достигающих земной поверхности. В частности, очень интересен изотопный состав «солнечного элемента» – гелия.

Природный гелий состоит из двух стабильных изотопов: 4 He и 3 He. Некоторая часть гелия-3 поступает в атмосферу Земли с солнечным ветром и при β-распаде трития – тяжелого водорода, образующегося при соударении космических частиц с ядрами атомов, входящих в состав воздуха. Гелий-4 попадает в атмосферу в результате естественного распада урана и тория.

В воздухе на миллион атомов гелия-4 приходится всего полтора атома гелия-3. Но в базальтах срединно-океанических хребтов изотопа 3 He больше уже в 8 раз, а в некоторых изверженных магматических горных породах – в 40!

Как объяснить происхождение гелия с высоким содержанием изотопа 3 He? Какие физические процессы могут быть ответственны за это? Обычный радиоактивный распад явно не годится, так как он продуцирует исключительно гелий-4. Попробуем привлечь на помощь ядерные реакции деления.

Известно, что при работе реактора тяжелые ядра, поглощая нейтрон, становятся неустойчивыми и могут делиться на два крупных осколка с испусканием легких заряженных частиц и 2—3 нейтронов. Среди легких заряженных частиц доминируют ядра гелия-4 (α-частицы); их доля выхода около 90 %. Эту реакцию можно записать, например, так:

235 U + n ® 131 Xe + 99 Tc + 4 He + 2n.

В реакциях несколько другого типа образуется тритий (доля выхода до 10 %):

235 U + n ® 132 Cs + 99 Tc + 3 H + 2n.

Радиоактивный тритий, в свою очередь, распадается, испуская электрон (β-распад) и антинейтрино, с образованием гелия-3:

В конечном продукте совокупности таких реакций доли обоих изотопов гелия хотя и отличаются, но представляют собой величины одного порядка. Напомним, что в «стандартном» атмосферном гелии их концентрации различаются на шесть порядков! Таким образом, относительно высокое содержание гелия-3, наблюдаемое в магматических породах, поднявшихся на поверхность из земных недр, может служить косвенным свидетельством работы глубинного геореактора.

Видео:Цепная реакция УранаСкачать

Цепная реакция Урана

Уран выпал в осадок?

Прежде чем продолжить разговор, хочется еще раз подчеркнуть принципиальное различие между естественным радиоактивным распадом и ядерной реакцией деления, ибо разница эта не всегда очевидна на неискушенный взгляд. Обычная радиоактивность – это самопроизвольный распад атомных ядер; для реакции деления обязательно требуется взаимодействие с внешней частицей (нейтроном). По этой причине для осуществления ядерной реакции нужна достаточная концентрация активного вещества; для спонтанного распада концентрация не имеет никакого значения.

Уравнение радиоактивного распада урана 235

Если в недрах Земли действительно идут цепные реакции, значит, там должны присутствовать скопления радиоактивных элементов (актиноидов). Как и где именно они образовались? На этот счет существует множество разных точек зрения: от мантии до геометрического центра Земли.

На рубеже XX–XXI вв. В.Ф. Анисичкин с соавторами предложили обоснованную гипотезу, согласно которой местом критической концентрации урана и тория могла быть поверхность твердого внутреннего ядра Земли. Эта концепция во многом базируется на работах по растворимости диоксида урана (UO2), проведенных в конце 1990-х гг. в Институте геологии и минералогии СО РАН (Новосибирск). В экспериментах на аппарате высокого давления типа «разрезная сфера» А. И. Туркиным было показано, что растворимость UO2 в расплавах на основе железа с ростом давления уменьшается. Исследуемый диапазон давлений составлял 5—10 ГПа (для сравнения: в центре Земли давление около 360 ГПа). Поскольку в природе уран встречается преимущественно в виде оксидов, то логично сделать вывод: чем глубже, тем хуже будет растворяться уран!

Уравнение радиоактивного распада урана 235

Этот важный экспериментальный факт наводит на мысль, что миграция актиноидов в теле Земли могла быть следующей. После образования планеты в океане магмы, состоящей, в основном, из расплавов железа и силикатов, присутствовали и соединения урана. Со временем магма остывала, и происходило гравитационное разделение вещества по плотности. Силикаты, кристаллизуясь, всплывали в магме, плотность которой за счет железа была выше. Соединения же тяжелых актиноидов, выделяясь из расплава по мере роста давления и кристаллизуясь, оседали на внутреннее твердое железоникелевое ядро планеты.

Из сейсмологических исследований известно, что переходная зона между внешним жидким и внутренним твердым ядром Земли толщиной 2—3 км имеет мозаичную структуру. При этом основными структурными элементами являются относительно тонкие взвешенные слои протяженностью до нескольких десятков километров. Возможно, именно они и являются областями концентрации тяжелых радиоактивных элементов.

Видео:Ядерные реакции. Простой и понятный советский научный фильм.Скачать

Ядерные реакции. Простой и понятный советский научный фильм.

Не можешь найти – моделируй!

Когда речь идет о процессах на глубинах в тысячи километров, следует иметь в виду, что, с одной стороны, они недоступны непосредственному экспериментальному исследованию, с другой – их не всегда возможно изучать и в лабораторных установках, где трудно создать аналогичные физические условия. Но в современной науке существует еще один универсальный инструмент познания – компьютерное моделирование.

В 2005 г. ученые из Института гидродинамики СО РАН (Новосибирск) и Физико-энергетического института (Обнинск) численно смоделировали различные режимы работы геореакторов, начиная со времени образования Земли. Задача была не из легких, поскольку методы теории реакторов традиционно применяются для расчета процессов длительностью максимум в годы, а здесь потребовалось просчитывать интервалы в миллиарды лет!

Моделируемая среда представляла собой железоникелевый расплав с примесью углерода, в котором находились взвешенные кристаллы диоксида урана. Время начала моделируемых процессов – 4 млрд лет назад (содержание делящегося изотопа 235 U в природном уране тогда составляло 16 %, т. е. в 20 раз превышало современное значение).

238 U + n ® 239 Pu ® 235 U + 4 He.

В результате содержание легко делящегося урана-235 поддерживается на достаточно высоком уровне, и получается реактор-размножитель на быстрых нейтронах.

Уравнение радиоактивного распада урана 235

10 тыс. лет) и похолоданий (

90 тыс. лет), надежно установленная в этих исследованиях, может свидетельствовать в пользу импульсного режима работы геореакторов, тепловые потоки от которых достигают поверхности Земли.

Вполне естественно предположить, что при работе реактора из-за тепловыделения возникают конвективные потоки, вызывающие разрыхление активной зоны. В какой-то момент цепная реакция деления останавливается. Когда выделение тепла прекращается и конвективные потоки ослабевают, уран медленно оседает – цепная реакция возобновляется. Таким образом, геореактор может работать и в импульсном режиме.

Уравнение радиоактивного распада урана 235

Определяющим показателем хода цепной реакции является коэффициент размножения нейтронов k, который равен отношению числа нейтронов, вновь образовавшихся в реакциях деления, к количеству нейтронов, поглощенных в ходе реакции либо покинувших активную зону.

Уравнение радиоактивного распада урана 235Чтобы цепная реакция была возможна, должно выполняться неравенство k ≥ 1. Тогда в каждом новом поколении нейтронов становится все больше, и они, в свою очередь, вызывают все больше делений ядер. Возникает лавинообразный процесс. Согласно проведенным расчетам максимально возможный коэффициент размножения ведет себя следующим образом: вначале он падает в течение 1 млрд лет, однако затем более-менее стабилизируется и остается больше единицы вплоть до настоящего времени.

Представляется, что более вероятен импульсный сценарий работы реактора, когда периоды активности перемежаются периодами «простоя». Так, как это было в маленьком природном реакторе Окло, но только с большей продолжительностью циклов. По мнению авторов, временные характеристики рассчитанного импульсного режима можно соотнести с рядом периодических явлений, наблюдаемых на поверхности Земли, таких как глобальные изменения климата или смена магнитных полюсов.

Видео:Уран - САМЫЙ ОПАСНЫЙ МЕТАЛЛ НА ЗЕМЛЕ!Скачать

Уран - САМЫЙ ОПАСНЫЙ МЕТАЛЛ НА ЗЕМЛЕ!

Откуда летят геонейтрино?

Сторонники точки зрения, что Земля является ядерным реактором, сегодня связывают особые надежды с электронным антинейтрино. Эта частица в больших количествах образуется в цепных реакциях, при последовательных β-распадах осколков деления тяжелых ядер.

В 2005 г. группа исследователей, работавшая на нейтринном детекторе KamLAND (Япония), сообщила о первых результатах регистрации антинейтрино из недр Земли – геонейтрино. В течение двух лет ученые зафиксировали 152 события, но после отсечения фона осталось всего 25 – по одному в месяц. (Главными источниками фона оказались промышленные реакторы Японии и Южной Кореи).

Полное число антинейтрино может быть частично связано с мощностью действующего геореактора и частично – с естественным распадом различных нестабильных ядер в недрах Земли. Из данных KamLAND следует, что полная плотность потока геонейтрино составляет примерно 16 млн частиц в секунду на кв. см. Это соответствует источнику тепла, порождаемого ядерными реакциями, мощностью от 24 до 60 ТВт. Первое из двух чисел оказалось близким к величине «избыточного» тепла, излучаемого Землей, о котором шла речь выше. И многие специалисты склоняются к мнению, что это объяснение наиболее правдоподобно.

Энергетические спектры нейтрино, образующихся при делении разных ядер, отличаются. При интерпретации данных KamLAND в 2007 г. В.Д. Русов с коллегами выполнили компьютерное моделирование и определили спектральные составляющие геонейтрино от различных внутренних источников – урана-238, тория-232, плутония-239. Суммарную мощность геореактора они оценили в 30 ТВт. Результаты этой работы также свидетельствуют в пользу импульсного режима размножения.

КОММЕНТАРИЙ СПЕЦИАЛИСТА ПО ГЕОДИНАМИКЕ

У замечательных экспериментов на KamLAND есть один существенный недостаток: в них нельзя определить расстояние до источника частиц, только направление. Для решения этой и других задач предполагается создать глобальную сеть детекторов. Подобный опыт у международного научного сообщества уже есть: в 2005 г. был запущен проект интеграции четырех нейтринных детекторов на четырех континентах – в Японии, Канаде, Италии и Антарктиде – для прогнозов вспышек сверхновых в Галактике.

Уравнение радиоактивного распада урана 235

Таким образом, в ближайшее десятилетие планируется зарегистрировать геонейтрино в нескольких точках земного шара. Объединение данных разных детекторов позволит наконец установить точное месторасположение источников этих частиц внутри нашей планеты и даст еще один довод «за» или «против» гипотезы «ядерной топки» Земли.

Видео:Производство урана | Как это устроено? | DiscoveryСкачать

Производство урана | Как это устроено? | Discovery

Вместо послесловия

Известно, что на атомной электростанции может произойти взрыв, если не регулировать ход цепной реакции в реакторе. Есть веские основания полагать, что в далеком прошлом по разным причинам – внутренним или внешним, например при столкновении с астероидом, – медленные ядерные реакции в недрах Земли могли трансформироваться во взрывные.

Если бы взорвался весь уран Земли, событие было бы эквивалентно взрыву тротила в количестве, сравнимом с массой планеты! И Земля перестала бы существовать. Однако даже теоретически трудно представить механизм, по которому бы земной уран мог сконцентрироваться и одновременно прореагировать. Но взрыва даже нескольких процентов актиноидов вполне достаточно, чтобы отделить от Земли фрагмент размером с Луну.

1 ТВт = 1000 ГВт = 10 12 Вт
Мощность геореактора = 30 000 ГВт
Мощность Саяно-Шушенской ГЭС = 6,4 ГВт

Этот «апокалиптический» пассаж касается не только нашей планеты, но и других. Ведь большие тела Солнечной системы образовались из одного протопланетного облака, поэтому и содержание радиоактивных элементов в них может быть схожим. Все планеты, вероятно, прошли стадию гравитационного разделения вещества по плотности, в результате которого тяжелые актиноиды могли сконцентрироваться в их недрах.

Катастрофические ядерные события хорошо объясняют ряд так называемых нерегулярностей в Солнечной системе, казалось бы, ничем между собой не связанных. Среди них аномально большая масса спутника Земли – Луны, малая масса Марса, обратное суточное вращение Венеры, множество хаотично движущихся астероидов и комет. Не исключено, что исследования нашего «домашнего» земного реактора заставят нас по-новому взглянуть и на вопросы эволюции планет.

Анисичкин В.Ф. // Физика горения и взрыва. – 1997. – T. 33. – C. 138.

Анисичкин В.Ф., Бордзиловский С.А., Караханов С.М. и др. // Физика горения и взрыва. – 2009. – T. 45. – C. 100.

Митрофанов В.В., Анисичкин В.Ф., Воронин Д.В. и др. // V Забабахинские научные чтения. – Снежинск: Изд-во РФЯЦ ВНИИТФ, 1999. (Тр. междунар. конф.)

Овчинников В.М., Краснощеков Д.Н., Каазик П.Б. // Докл. РАН. – 2007. – T. 417. – C. 389.

Anisichkin V.F., Bezborodov A.A., Suslov I.R. // Transport Theory and Statistical Physics. – 2008. – V. 37. – P. 624.

Araki T. et al. // Nature. – 2005. – V. 436. – P. 499.

Rusov V.D., Pavlovich V.N., Vaschenko V.N. et al. // Journ. Geophys. Res. – 2007. – V. 112. – P. 1.

Авторы признательны академику В. М. Титову за поддержку проводимых в СО РАН исследований по цепным ядерным реакциям в недрах планет

Видео:Уран для АЭССкачать

Уран для АЭС

Уравнение радиоактивного распада урана 235

Уран
Тяжёлый серебристо-белый глянцеватый металл
Уравнение радиоактивного распада урана 235
Название, символ, номерУран / Uranium (U), 92
Атомная масса
(молярная масса)
238,02891(3) а. е. м. (г/моль)
Электронная конфигурация[Rn] 5f 3 6d 1 7s 2
Радиус атома138 пм
Ковалентный радиус142 пм
Радиус иона(+6e) 80 (+4e) 97 пм
Электроотрицательность1,38 (шкала Полинга)
Электродный потенциалU←U 4+ -1,38В
U←U 3+ -1,66В
U←U 2+ -0,1В
Степени окисления6, 5, 4, 3
Энергия ионизации
(первый электрон)
686,4(7,11) кДж/моль (эВ)
Плотность (при н. у.)19,05 г/см³
Температура плавления1405,5 K
Температура кипения4018 K
Уд. теплота плавления12,6 кДж/моль
Уд. теплота испарения417 кДж/моль
Молярная теплоёмкость27,67 Дж/(K·моль)
Молярный объём12,5 см³/моль
Структура решёткиорторомбическая
Параметры решёткиa = 2,854 Å;
b = 5,870 Å;
c = 4,955 Å
Теплопроводность(300 K) 27,5 Вт/(м·К)
Номер CAS7440-61-1
5f 3 6d 1 7s 2

Уран (U, лат. uranium ; устаревший вариант ураний) — химический элемент с атомным номером 92 в периодической системе, атомная масса — 238,029; относится к семейству актиноидов. Уран — слаборадиоактивный элемент, он не имеет стабильных изотопов. Самыми распространёнными изотопами урана являются уран-238 (имеет 146 нейтронов, в природном уране составляет 99,3 %) и уран-235 (143 нейтрона, природная распространённость 0,7204 %).

Видео:УРАН-235 - АХИЛЛЕСОВА ПЯТА АМЕРИКИСкачать

УРАН-235 - АХИЛЛЕСОВА ПЯТА АМЕРИКИ

Содержание

  • 1 История
  • 2 Физические свойства
  • 3 Химические свойства
    • 3.1 Характерные степени окисления
    • 3.2 Свойства простого вещества
    • 3.3 Соединения урана III
    • 3.4 Соединения урана IV
    • 3.5 Соединения урана V
    • 3.6 Соединения урана VI
  • 4 Изотопы
  • 5 Нахождение в природе
    • 5.1 Месторождения
  • 6 Получение
  • 7 Применение
    • 7.1 Ядерное топливо
      • 7.1.1 Тепловыделяющая способность урана
    • 7.2 Производство искусственных изотопов
    • 7.3 Геология
    • 7.4 Другие сферы применения
    • 7.5 Обеднённый уран
      • 7.5.1 Сердечники бронебойных снарядов
  • 8 Физиологическое действие
  • 9 Добыча урана
    • 9.1 Добыча по странам
    • 9.2 Добыча по компаниям
    • 9.3 Уран из вторичных источников
    • 9.4 Добыча в СССР
    • 9.5 Добыча в России
    • 9.6 Добыча в Казахстане
    • 9.7 Добыча на Украине
  • 10 Стоимость и аффинаж

Видео:Деление ядра.Просто и доходчиво.Скачать

Деление ядра.Просто и доходчиво.

История

Ещё в древнейшие времена природная окись урана использовалась для изготовления жёлтой посуды. Так, возле Неаполя найден осколок жёлтого стекла, содержащий 1 % оксида урана и датируемый 79 годом н. э. Первая важная дата в истории урана — 1789 год, когда немецкий натурфилософ и химик Мартин Генрих Клапрот восстановил извлечённую из саксонской руды настурана золотисто-жёлтую «землю» до чёрного металлоподобного вещества. В честь самой далёкой из известных тогда планет (открытой Гершелем восемью годами раньше) Клапрот, считая новое вещество элементом, назвал его ураном (этим он хотел поддержать предложение Иоганна Боде назвать новую планету «Уран» вместо «Звезда Георга», как предложил Гершель). Пятьдесят лет уран Клапрота числился металлом. Только в 1841 году французский химик Эжен Пелиго (1811—1890) доказал, что, несмотря на характерный металлический блеск, уран Клапрота не элемент, а оксид UO2. В 1840 году Пелиго удалось получить простое вещество уран — тяжёлый металл серо-стального цвета — и определить его атомный вес. Следующий важный шаг в изучении урана сделал в 1874 году Д. И. Менделеев. Опираясь на разработанную им периодическую систему, он поместил уран в самой дальней клетке своей таблицы. Прежде атомный вес урана считали равным 120. Менделеев удвоил это значение. Через 12 лет его предвидение было подтверждено опытами немецкого химика Циммермана (J. Zimmermann).

В 1804 году немецкий химик Адольф Гелен открыл светочувствительность раствора хлорида уранила в эфире; это свойство французский изобретатель Абель Ньепс де Сен-Виктор в 1857 году пытался использовать в фотографии, однако обнаружил, что соли урана испускают некое невидимое излучение, экспонирующее светочувствительные материалы; на тот момент это наблюдение осталось незамеченным.

В 1896 году, исследуя уран, французский учёный Антуан Анри Беккерель случайно открыл радиоактивный распад. В это же время французскому химику Анри Муассану удалось разработать способ получения чистого металлического урана. В 1899 году Эрнест Резерфорд обнаружил, что излучение урановых препаратов неоднородно, что есть два вида излучения — альфа- и бета-лучи. Они несут различный электрический заряд; далеко не одинаковы их пробег в веществе и ионизирующая способность. В мае 1900 года, Поль Вийяр открыл третий вид излучения — гамма-лучи.

Резерфорд провёл в 1907 году первые опыты по определению возраста минералов при изучении радиоактивных урана и тория на основе созданной им совместно с Фредериком Содди теории радиоактивности.

Уравнение радиоактивного распада урана 235

В 1938 году немецкие физики Отто Ган и Фриц Штрассман открыли непредсказанное явление, происходящее с ядром урана при облучении его нейтронами. Захватывая свободный нейтрон, ядро изотопа урана 235 U делится, при этом выделяется (в расчёте на одно ядро урана) достаточно большая энергия, в основном за счёт кинетической энергии осколков и излучения. Позднее теория этого явления была обоснована Лизой Мейтнер и Отто Фришем и независимо от них Готтфридом фон Дросте и Зигфридом Флюгге. Данное открытие явилось истоком как мирного, так и военного использования внутриатомной энергии.

В 1939—1940 годах Ю. Б. Харитон и Я. Б. Зельдович впервые теоретически показали, что при небольшом обогащении природного урана ураном-235 можно создать условия для непрерывного деления атомных ядер, то есть придать процессу цепной характер.

2 декабря 1942 года в США была экспериментально доказана теория о возможности процесса превращения урана в плутоний.

Видео:Уран. Химия – простоСкачать

Уран. Химия – просто

Физические свойства

Уран — очень тяжёлый, серебристо-белый глянцевитый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами. Температура плавления 1132,3 °C. Уран имеет три кристаллические модификации:

  • α-U, (стабильна до 667,7 °C), ромбическая сингония, пространственная группа C mcm, параметры ячейки a = 0,2858 нм, b = 0,5877 нм, c = 0,4955 нм, Z = 4;
  • β-U, (стабильна от 667,7 °C до 774,8 °C), тетрагональная сингония, пространственная группа P 42/mnm, параметры ячейки a = 1,0759 нм, c = 0,5656 нм, Z = 30;
  • γ-U, (существующей от 774,8 °C до точки плавления), кубическая сингония, пространственная группа I m3m, параметры ячейки a = 0,3524 нм, Z = 2.

Видео:Что, Если Съесть Уран?Скачать

Что, Если Съесть Уран?

Химические свойства

Характерные степени окисления

Уран может проявлять степени окисления от +3 до +6.

Степень окисленияОксидГидроксидХарактерФормаПримечание
+3Не существуетНе существуетU 3+ , UH3Сильный восстановитель
+4UO2Не существуетОсновныйUO2, галогениды
+5Не существуетНе существуетГалогенидыВ воде диспропорционирует
+6UO3UO2(OH)2АмфотерныйUO2 2+ (уранил)
UO4 2- (уранат)
U2O7 2- (диуранат)
Устойчив на воздухе и в воде

Уравнение радиоактивного распада урана 235

Кроме того, существует оксид U3O8. Степень окисления в нём формально дробная, а реально он представляет собой смешанный оксид урана (IV) и (VI).

Нетрудно видеть, что по набору степеней окисления и характерных соединений уран близок к элементам VIB подгруппы (хрому, молибдену, вольфраму). Из-за этого его длительное время относили к этой подгруппе («размывание периодичности»).

Свойства простого вещества

Химически уран весьма активен. Он быстро окисляется на воздухе и покрывается радужной плёнкой оксида. Мелкий порошок урана самовоспламеняется на воздухе, он зажигается при температуре 150—175 °C, образуя U3O8. Реакции металлического урана с другими неметаллами приведены в таблице.

НеметаллУсловияПродукт
F2+20 o C, бурноUF6
Cl2180 o C для измельчённого
500—600 o C для компактного
Смесь UCl4, UCl5, UCl6
Br2650 o C, спокойноUBr4
I2350 o C, спокойноUI3, UI4
S250—300 o C спокойно
500 o C горит
US2, U2S3
Se250—300 o C спокойно
500 o C горит
USe2, U2Se3
N2450—700 o C
то же под давлением N
1300 o
U4N7
UN2
UN
P600—1000 o CU3P4
C800—1200 o CUC, UC2

Взаимодействует с водой, вытесняя водород, медленно при низкой температуре, и быстро при высокой, а также при мелком измельчении порошка урана:

В кислотах-неокислителях уран растворяется, образуя UO2 или соли U 4+ (при этом выделяется водород). С кислотами-окислителями (азотной, концентрированной серной) уран образует соответствующие соли уранила UO2 2+
С растворами щелочей уран не взаимодействует.

При сильном встряхивании металлические частицы урана начинают светиться.

Соединения урана III

Соли урана(+3) (преимущественно, галогениды) — восстановители. На воздухе при комнатной температуре они обычно устойчивы, однако при нагревании окисляются до смеси продуктов. Хлор окисляет их до UCl4. Образуют неустойчивые растворы красного цвета, в которых проявляют сильные восстановительные свойства:

Галогениды урана III образуются при восстановлении галогенидов урана (IV) водородом:

2UCl4 + 2HI → 2UCl3 + 2HCl + I2 (500 о C)

а также при действии галогеноводорода на гидрид урана UH3.

Кроме того, существует гидрид урана (III) UH3. Его можно получить, нагревая порошок урана в водороде при температурах до 225 о C, а выше 350 о C он разлагается. Большую часть его реакций (например, реакцию с парами воды и кислотами) можно формально рассматривать как реакцию разложения с последующей реакцией металлического урана:

Соединения урана IV

Уран (+4) образует легко растворимые в воде соли зелёного цвета. Они легко окисляются до урана (+6)

Соединения урана V

Соединения урана(+5) неустойчивы и легко диспропорционируют в водном растворе:

Хлорид урана V при стоянии частично диспропорционирует:

а частично отщепляет хлор:

Соединения урана VI

Степени окисления +6 соответствует оксид UO3. В кислотах он растворяется с образованием соединений катиона уранила UO2 2+ :

C основаниями UO3 (аналогично CrO3, MoO3 и WO3) образует различные уранат-анионы (в первую очередь, диуранат U2O7 2- ). Последние, однако, чаще получают действием оснований на соли уранила:

Из соединений урана (+6), не содержащих кислород, известны только гексахлорид UCl6 и фторид UF6. Последний играет важнейшую роль в разделении изотопов урана.

Соединения урана (+6) наиболее устойчивы на воздухе и в водных растворах.

Ураниловые соли, такие, как уранилхлорид, распадаются на ярком свету или в присутствии органических соединений.

Уран также образует ураноорганические соединения.

Видео:Урок 468. Закон радиоактивного распадаСкачать

Урок 468. Закон радиоактивного распада

Изотопы

Радиоактивные свойства некоторых изотопов урана (жирным выделены природные изотопы):

2384,47⋅10 9 летα
2357,13⋅10 8 летα
2342,45⋅10 5 летα
Массовое числоПериод полураспадаОсновной тип распада
2331,59⋅10 5 летα
2362,39⋅10 7 летα
2376,75 сут.β −
23923,54 минутыβ −
24014 часовβ −

Природный уран состоит из смеси трёх изотопов: 238 U (изотопная распространённость 99,2745 %, период полураспада T1/2 = 4,468⋅10 9 лет), 235 U (0,7200 %, T1/2 = 7,04⋅10 8 лет) и 234 U (0,0055 %, T1/2 = 2,455⋅10 5 лет). Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238 U.

Радиоактивность природного урана обусловлена в основном изотопами 238 U и его дочерним нуклидом 234 U. В равновесии их удельные активности равны. Удельная активность изотопа 235 U в природном уране в 21 раз меньше активности 238 U.

На данный момент известно 23 искусственных радиоактивных изотопа урана с массовыми числами от 217 до 242. Наиболее важный из них — 233 U ( T 1/2 = 1,59⋅10 5 лет ) получается при облучении тория-232 нейтронами и способен к делению под воздействием тепловых нейтронов, что делает его перспективным топливом для ядерных реакторов. Наиболее долгоживущим из изотопов урана, не встречающихся в природе, является 236 U с периодом полураспада 2,39⋅10 7 лет .

Изотопы урана 238 U и 235 U являются родоначальниками двух радиоактивных рядов. Конечными элементами этих рядов являются изотопы свинца 206 Pb и 207 Pb.

В природных условиях распространены в основном изотопы 234 U, 235 U и 238 U с относительным содержанием 234 U : 235 U : 238 U = 0,0054 : 0,711 : 99,283 . Почти половина радиоактивности природного урана обусловлена изотопом 234 U, который, как уже отмечено, образуется в ходе распада 238 U. Для отношения содержаний 235 U : 238 U, в отличие от других пар изотопов и независимо от высокой миграционной способности урана, характерно географическое постоянство: 238 U/ 235 U = 137,88 . Величина этого отношения в природных образованиях не зависит от их возраста. Многочисленные натурные измерения показали его незначительные колебания. Так, в роллах величина этого отношения относительно эталона изменяется в пределах 0,9959—1,0042, в солях — 0,996—1,005. В урансодержащих минералах (настуран, урановая чернь, циртолит, редкоземельные руды) величина этого отношения колеблется в пределах 137,30—138,51, причём различие между формами U IV и U VI не установлено; в сфене — 138,4. В отдельных метеоритах выявлен недостаток изотопа 235 U. Наименьшая его концентрация в земных условиях найдена в 1972 году французским исследователем Бужигесом в местечке Окло в Африке (месторождение в Габоне). Так, в природном уране содержится 0,720 % урана 235 U, а в Окло оно составляет 0,557 %. Это послужило подтверждением гипотезы о существовании природного ядерного реактора, который стал причиной выгорания изотопа 235 U. Гипотеза была высказана американскими учёными Джорджем Ветриллом , Марком Ингрэмом и Полом Курода, ещё в 1956 г. описавшим процесс. Кроме этого, в этих же округах найдены природные ядерные реакторы: Окелобондо, Бангомбе (Bangombe) и другие. В настоящее время известно 17 природных ядерных реакторов, которые обычно объединяют под общим названием «Природный ядерный реактор в Окло».

Видео:Обогащение урана 1Скачать

Обогащение урана 1

Нахождение в природе

Уравнение радиоактивного распада урана 235

Уран является элементом с самым большим номером из встречающихся в больших количествах. Содержание в земной коре составляет 0,00027 % (вес.), концентрация в морской воде — 3,2 мкг/л (по другим данным, 3,3·10 -7 %). Количество урана в литосфере оценивается в 3 или 4·10 −4 %.

Основная масса урана находится в кислых породах с высоким содержанием кремния. Значительная масса урана сконцентрирована в осадочных породах, особенно богатых органикой. В больших количествах как примесь уран присутствует в ториевых и редкоземельных минералах (алланит (Ca,LREE,Th)2(Al,Fe +3 )3[SiO4][Si2O7]OOH, монацит (La,Ce)PO4, циркон ZrSiO4, ксенотим YPO4 и др.). Важнейшими урановыми рудами являются настуран (урановая смолка, уранинит) и карнотит. Основными минералами-спутниками минералов урана являются молибденит MoS2, галенит PbS, кварц SiO2, кальцит CaCO3, гидромусковит и др.

50

40

50

57

50

Основными формами нахождений урана в природе являются уранинит, настуран (урановая смолка) и урановые черни. Они отличаются только формами нахождения; имеется возрастная зависимость: уранинит присутствует преимущественно в древних (докембрийских породах), настуран — вулканогенный и гидротермальный — преимущественно в палеозойских и более молодых высоко- и среднетемпературных образованиях; урановые черни — в основном в молодых — кайнозойских и моложе — образованиях преимущественно в низкотемпературных осадочных породах.

Месторождения

Количество урана в земной коре примерно в 1000 раз превосходит количество золота, в 30 раз — серебра, при этом данный показатель приблизительно равен аналогичному показателю у свинца и цинка. Немалая часть урана рассеяна в почвах, горных породах и морской воде. Только относительно небольшая часть концентрируется в месторождениях, где содержание данного элемента в сотни раз превышает его среднее содержание в земной коре. По оценке 2015 года разведанные мировые запасы урана в месторождениях составляют более 5,7 млн тонн.

Крупнейшие запасы урана, с учётом резервных месторождений, имеют: Австралия, Казахстан (первое место в мире по добыче), Россия. По оценке 2015 года, в месторождениях России содержится около 507 800 тонн запасов урана (9 % его мировых запасов); около 63 % их сосредоточено в Республике Саха (Якутия). Основными месторождениями урана в России являются: Стрельцовское, Октябрьское, Антей, Мало-Тулукуевское, Аргунское молибден-урановые в вулканитах (Забайкальский край), Далматовское урановое в песчаниках (Курганская область), Хиагдинское урановое в песчаниках (Республика Бурятия), Южное золото-урановое в метасоматитах и Северное урановое в метасоматитах (Республика Якутия). Кроме того, выявлено и оценено множество более мелких урановых месторождений и рудопроявлений.

МинералОсновной состав минералаСодержание урана, %
УранинитUO2, UO3 + ThO2, CeO265-74
КарнотитK2(UO2)2(VO4)2·2H2O
КазолитPbO2·UO3·SiO2·H2O
Самарскит(Y, Er, Ce, U, Ca, Fe, Pb, Th)·(Nb, Ta, Ti, Sn)2O63,15-14
Браннерит(U, Ca, Fe, Y, Th)3Ti5O1540
ТюямунитCaO·2UO3·V2O5·nH2O50-60
ЦейнеритCu(UO2)2(AsO4)2·nH2O50-53
ОтенитCa(UO2)2(PO4)2·nH2O
ШрекингеритCa3NaUO2(CO3)3SO4(OH)·9H2O25
УранофанCaO·UO2·2SiO2·6H2O
Фергюсонит(Y, Ce)(Fe, U)(Nb, Ta)O40,2-8
ТорбернитCu(UO2)2(PO4)2·nH2O
КоффинитU(SiO4)(OH)4
Название месторожденияСтранаЗапасы, тОператор месторожденияначало разработки
1Северный ХорасанКазахстан200 000Казатомпром2008
2Мак-Артур-РиверАвстралия160 000Cameco1999
3Сигар-ЛейкКанада135 000Cameco
4Южное ЭльконскоеРоссия112 600Атомредметзолото
5ИнкайКазахстан75 900Казатомпром2007
6СтрельцовскоеРоссия50 000Атомредметзолото
7Зоовч ОвооМонголия50 000AREVA
8МоинкумКазахстан43 700Казатомпром, AREVA
9МардайМонголия22 000Khan Resources, Атомредметзолото, Правительство Монголии
10ИркольКазахстан18 900Казатомпром, China Guangdong Nuclear Power Co2009
11Жёлтые ВодыУкраина12 000ВостГок1959
12Олимпик-ДэмАвстралия1988
13РоссингНамибия1976
13ДоминионЮАР2007
13РейнджерАвстралия1980

Видео:Закон радиоактивного распада. Период полураспадаСкачать

Закон радиоактивного распада. Период полураспада

Получение

Самая первая стадия уранового производства — концентрирование. Породу дробят и смешивают с водой. Тяжёлые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжёлые минералы. Вторичные минералы урана легче, в этом случае раньше оседает тяжёлая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

Следующая стадия — выщелачивание концентратов, перевод урана в раствор. Применяют кислотное и щелочное выщелачивание. Первое — дешевле, поскольку для извлечения урана используют серную кислоту. Но если в исходном сырье, как, например, в урановой смолке, уран находится в четырёхвалентном состоянии, то этот способ неприменим: четырёхвалентный уран в серной кислоте практически не растворяется. В этом случае нужно либо прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит доломит или магнезит, реагирующие с серной кислотой. В этих случаях пользуются едким натром (гидроксидом натрия).

Проблему выщелачивания урана из руд решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с сульфидными минералами подают поток кислорода. При этом из сернистых минералов образуется серная кислота, которая и вымывает уран.

На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы — экстракция и ионный обмен — позволяют решить эту проблему.

Раствор содержит не только уран, но и другие катионы. Некоторые из них в определённых условиях ведут себя так же, как уран: экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

Методы ионного обмена и экстракции хороши ещё и тем, что позволяют достаточно полно извлекать уран из бедных растворов (содержание урана — десятые доли грамма на литр).

После этих операций уран переводят в твёрдое состояние — в один из оксидов или в тетрафторид UF4. Но этот уран ещё надо очистить от примесей с большим сечением захвата тепловых нейтронов — бора, кадмия, гафния. Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Для удаления этих примесей технически чистое соединение урана растворяют в азотной кислоте. При этом образуется уранилнитрат UO2(NO3)2, который при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO4·2H2O) и начинают осторожно прокаливать. В результате этой операции образуется трёхокись урана UO3, которую восстанавливают водородом до UO2.

На диоксид урана UO2 при температуре от 430 до 600 °C воздействуют газообразным фтористым водородом для получения тетрафторида UF4. Из этого соединения восстанавливают металлический уран с помощью кальция или магния.

Видео:Закон радиоактивного распада. 11 класс.Скачать

Закон радиоактивного распада. 11 класс.

Применение

Ядерное топливо

Наибольшее применение имеет изотоп урана 235 U, в котором возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используется как топливо в ядерных реакторах, а также в ядерном оружии. Выделение изотопа 235 U из природного урана — сложная технологическая проблема (см. разделение изотопов).

Приведём некоторые цифры для реактора мощностью 1000 МВт, работающего с нагрузкой в 80 %, и вырабатывающего 7000 ГВт·ч в год. Работа одного такого реактора в течение года требует 20 тонн уранового топлива с содержанием 3,5 % 235 U, который получают после обогащения примерно 153 тонн природного урана.

Изотоп 238 U способен делиться под влиянием бомбардировки высокоэнергетическими нейтронами, эту его особенность используют для увеличения мощности термоядерного оружия (используются нейтроны, порождённые термоядерной реакцией).

В результате захвата нейтрона с последующим β-распадом 238 U может превращаться в 239 Pu, который затем используется как ядерное топливо.

Уран-233, искусственно получаемый в реакторах из тория (торий-232 захватывает нейтрон и превращается в торий-233, который распадается в протактиний-233 и затем в уран-233), может в будущем стать распространённым ядерным топливом для атомных электростанций (уже сейчас существуют реакторы, использующие этот нуклид в качестве топлива, например, KAMINI в Индии) и производства атомных бомб (критическая масса около 16 кг).

Уран-233 также является наиболее перспективным топливом для газофазных ядерных ракетных двигателей.

Тепловыделяющая способность урана

Полное использование заключённой в уране потенциальной энергии пока технически невозможно. Величина выделившейся в ядерном реакторе полезной энергии урана характеризуется понятием глубины выгорания. Глубина выгорания — это суммарная энергия, отданная килограммом урана за все время работы в реакторе, от свежего топлива до утилизации. Измеряют глубину выгорания обычно в таких единицах как мегаватт-часы выделившейся тепловой энергии на килограмм топлива (МВт·час/кг). Иногда её приводят в пересчёте к реакторному урану того обогащения, которое загружается в реактор, не учитывая обеднённый уран в отвалах обогатительных производств, а иногда в пересчёте на природный уран.

Глубина выгорания ограничена особенностями конкретного типа реактора, конструктивной целостностью топливной матрицы и накоплением паразитных продуктов ядерных реакций. Глубина выгорания в пересчёте на природный уран в современных энергетических реакторах достигает 10 МВт·сутки/кг и более (то есть 240 МВт·час/кг и более). Для сравнения, типичное тепловыделение природного газа 0,013 МВт·час/кг , то есть примерно в 20 000 раз меньше.

Существуют проекты значительно более полного использования урана за счёт трансмутации урана-238 в плутоний. Наиболее проработанным является проект так называемого замкнутого топливного цикла на основе реакторов на быстрых нейтронах. Также развиваются проекты на основе гибридных термоядерных реакторов.

Производство искусственных изотопов

Изотопы урана являются исходным веществом для синтеза многих искусственных (нестабильных) изотопов, применяемых в промышленности и медицине. Наиболее известными искусственными изотопами, синтезируемыми из урана, являются изотопы плутония. Многие другие трансурановые элементы также получают из урана.

В медицине широкое применение нашёл изотоп молибден-99, одним из способов получения которого является выделение из продуктов деления урана, появляющихся в облучённом ядерном топливе.

Геология

Основное применение урана в геологии — определение возраста минералов и горных пород с целью выяснения последовательности протекания геологических процессов. Этим занимается раздел геохронологии, носящий название радиоизотопное датирование. Существенное значение имеет также решение задачи о смешении и источниках вещества.

В основе решения задачи лежат уравнения радиоактивного распада:

N206Pb = N238U(e λ238t −1), N207Pb = N235U (e λ235t −1) , где N238U , N235U — современные концентрации изотопов урана; λ238 и λ235 — постоянные распада соответственно 238 U и 235 U.

Весьма важной является их комбинация:

Ko U = N238U = 137.88 N235U — современное отношение концентраций изотопов урана.

В связи с тем, что горные породы содержат различные концентрации урана, они обладают различной радиоактивностью. Это свойство используется при анализе горных пород геофизическими методами. Наиболее широко этот метод применяется в нефтяной геологии при геофизических исследованиях скважин, в этот комплекс входит, в частности, гамма-каротаж или нейтронный гамма-каротаж, гамма-гамма-каротаж и так далее. С их помощью происходит выделение коллекторов и флюидоупоров.

Другие сферы применения

  • Небольшая добавка урана придаёт красивую жёлто-зелёную флуоресценцию стеклу (см. Урановое стекло).
  • Уранат натрия Na2U2O7 использовался как жёлтый пигмент в живописи.
  • Соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления).
  • Некоторые соединения урана светочувствительны.
  • В начале XX века уранилнитрат широко применялся для усиления негативов и окрашивания (тонирования) позитивов (фотографических отпечатков) в бурый цвет.
  • Карбид урана-235 в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей (рабочее тело — водород + гексан).
  • Сплавы железа и обеднённого урана (уран-238) применяются как мощные магнитострикционные материалы.
  • Ацетат уранила UO2(CH3COO)2 и ацетат цинка-уранила Zn[(UO2)3(CH3COO)8] применяются в аналитической химии при проведении качественного и количественного анализа катионов лития и натрия.

Обеднённый уран

После извлечения 235 U и 234 U из природного урана, оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF6). Обеднённый уран в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234 U.

Из-за того, что основное использование урана — производство энергии, обеднённый уран — малополезный продукт с низкой экономической ценностью.

Сколь-нибудь эффективным ядерным топливом обеднённый уран может служить только в редких экстремальных условиях, например, в пучке быстрых нейтронов. В таком качестве обеднённый уран используется только в термоядерном оружии — обеднённые урановые элементы в составе термоядерного заряда, не являясь необходимыми для, собственно, реакции ядерного синтеза, могут обеспечивать до 80 % суммарной энергии заряда.

В обычных же условиях использование обеднённого урана связано в основном с его большой плотностью и относительно низкой стоимостью. Обеднённый уран используется для радиационной защиты (как это ни странно) благодаря чрезвычайно высокому сечению захвата. Обеднённый уран применяется также в качестве балластной массы в аэрокосмических приложениях, таких как рулевые поверхности летательных аппаратов. В первых экземплярах самолёта «Боинг-747» содержалось от 300 до 500 кг обеднённого урана для этих целей (с 1981 года «Боинг» применяет вольфрам). Кроме того, этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, болидах «Формулы-1», при бурении нефтяных скважин.

Сердечники бронебойных снарядов

Уравнение радиоактивного распада урана 235

Самое известное применение обеднённого урана — в качестве сердечников для бронебойных снарядов. Большая плотность (в три раза тяжелее стали) делает закалённую урановую болванку чрезвычайно эффективным средством для пробивания брони, аналогичным по эффективности более дорогому и ненамного более тяжёлому вольфраму. Тяжёлый урановый наконечник также изменяет распределение масс в снаряде, улучшая его аэродинамическую устойчивость.

Подобные сплавы типа «Стабилла» применяются в стреловидных оперённых снарядах танковых и противотанковых артиллерийских орудий.

Процесс разрушения брони сопровождается измельчением в пыль урановой болванки и воспламенением её на воздухе с другой стороны брони (см. Пирофорность). Около 300 тонн обеднённого урана остались на поле боя во время операции «Буря в Пустыне» (по большей части это остатки снарядов 30-мм пушки GAU-8 штурмовых самолётов A-10, каждый снаряд содержит 272 г уранового сплава). Усовершенствованные американские танки M1A1, снабжённые 120-мм орудиями, сражались с иракскими Т-72. В этих боях американские силы применяли снаряды с обеднённым ураном M829A1, которые показали высокую эффективность. Снаряд, прозванный «серебряной пулей», был способен пробить эквивалент 570-мм брони с расстояния в 2000 метров, что делало его на стандартной дистанции эффективным даже против Т-80.

Такие снаряды были использованы войсками НАТО в боевых действиях на территории Косово. После их применения обсуждалась экологическая проблема радиационного загрязнения территории страны.

Обеднённый уран используется в современной танковой броне, например, танка M-1 «Абрамс».

Видео:Виды ядерного распада(видео 18) | Квантовая физика | ФизикаСкачать

Виды ядерного распада(видео 18) | Квантовая физика | Физика

Физиологическое действие

В микроколичествах (10 −5 —10 −8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в лёгких — 50 %. Основные депо в организме: селезёнка, почки, скелет, печень, лёгкие и бронхо-лёгочные лимфатические узлы. Содержание в органах и тканях человека и животных не превышает 10 −7 г.

Уран и его соединения токсичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м³, для нерастворимых форм урана ПДК 0,075 мг/м³. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Уран, как и многие другие тяжёлые металлы, практически необратимо связывается с белками, прежде всего с сульфидными группами аминокислот, нарушая их функцию. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.

Видео:Радиохимия (часть 3) Half Life / закон радиоактивного распада / Химия – ПростоСкачать

Радиохимия (часть 3) Half Life / закон радиоактивного распада / Химия – Просто

Добыча урана

Уравнение радиоактивного распада урана 235

Согласно «Красной книге по урану», выпущенной ОЭСР, в 2005 г. добыто 41 250 тонн урана (в 2003 — 35 492 тонны). Согласно данным ОЭСР, в мире функционирует 440 реакторов коммерческого назначения и около 60 научных, которые потребляли в год 67 тысяч тонн урана. Это означает, что его добыча из месторождений обеспечивала лишь 60 % объёма его потребления (на 2009 год эта доля возросла до 79 %). Остальной уран, потребляемый энергетикой, или 17,7 %, поступал из вторичных источников. На 2016-2017 год потребность в ядерном топливе, 449 действующих реакторов составляла те же 65 000 тонн урана. Первичные источники обеспечили около 85 %, а вторичные источники 15 % (оружейный уран, запасы от переработки отработанного топлива, а также за счёт повторного обогащения хвостов (остатков от первоначального обогащения).

1 Не включая 5 судов Атомфлота с 7 реакторами и 129 судов ВМФ различных стран со 177 реакторами на борту.

Уравнение радиоактивного распада урана 235

Добыча по странам

Страна2005 годСтрана2009 годСтрана2012 годСтрана2015 годСтрана2017 год
1Канада11 628Казахстан14 020Казахстан19 451Казахстан23 800Казахстан23 391
2Австралия9516Канада10 173Канада9145Канада13 325Канада13 116
3Казахстан4020Австралия7982Австралия5983Австралия5654Австралия5882
4Россия3570Намибия4626Нигер4351Нигер4116Намибия4224
5Намибия3147Россия3564Намибия3258Намибия2993Нигер3449
6Нигер3093Нигер3234Узбекистан3000Россия3055Россия2917
7Узбекистан2300Узбекистан2429Россия2993Узбекистан2385Узбекистан2404
8США1039США1453США1537Китай1616Китай1885
9Украина800Китай1200Китай1500США1256США940
10Китай750Украина840Украина890Украина1200Украина550
Итого39 86349 52152 10859 40058 758

Добыча по компаниям

СтранаКомпания2006 годСтранаКомпания2009 годСтранаКомпания2011 годСтранаКомпания2018 год
1Cameco8100 (24 %)Areva8600 ▲ (19 %)Казатомпром8884 ▲ (19 %)Казатомпром11074 ▲ (26 %)
2Rio Tinto7000 (21 %)Cameco8000 ▼ (18 %)Areva8790 ▲ (19 %)АРМЗ7289 ▲ (16 %)
3Areva5000 (15 %)Rio Tinto7900 ▲ (18 %)Cameco8630 ▲ (19 %)Orano/Areva5809 ▼ (13 %)
4Казатомпром3800 (11 %)Казатомпром7500 ▲ (17 %)АРМЗ7088 ▲ (15 %)Cameco4613 ▼ (11 %)
5АРМЗ3500 (10 %)АРМЗ4600 ▲ (10 %)Rio Tinto4061 ▼ (9 %)CGN3185 ▲ (7 %)
6BHP Billiton3000 (9 %)BHP Billiton2900 ▼ (6 %)BHP Billiton3353 ▲ (7 %)BHP Billiton3159 ▼ (7 %)
7Навоийский ГМК2100 (4 %)Навоийский ГМК2400 ▲ (5 %)Навоийский ГМК3000 ▲ (6 %)Rio Tinto2602 ▼ (6 %)
8Uranium One1000 (3 %)Uranium One1400 ▲ (3 %)Paladin Energy2282 ▲ (5 %)Navoi2404 ▼ (5 %)
9Heathgate800 (2 %)Paladin Energy1200 ▲ (3 %)SOPaminН/Д ▲ (менее 1 %)Energy Asia2204 ▲ (5 %)
10Denison Mines500 (1 %)General Atomics600 ▲ (1 %)CNNCН/Д ▲ (менее 1 %)CNNC1983 ▬ (4 %)
Итого34 800 (100 %)45 100 (100 %)более 46 088 (100 %)44 322 (100 %)

Примечания к таблице:

1 Данные по АРМЗ даны с учётом приобретённой в 2010 году компании Uranium One . Основным способом добычи урана с 2010 г. стало скважинное подземное выщелачивание. С целью гарантированного долгосрочного сырьевого обеспечения отраслевых потребностей в уране «Росатом» приобрёл канадскую компанию Uranium One и консолидировал на её основе высокоэффективные урановые активы в Казахстане и других странах. За последние 8 лет производство Uranium One выросло почти в 5 раз, что позволило выйти на четвёртое место в мире среди урановых компаний. 2 Оrano SA (до 2018 года Areva) — Переименование было произведено после того, как Areva оказалась на грани банкротства, контрольный пакет остался у правительства Франции.

Также в 2012 году появилялась информация о возможном слиянии урановых подразделений BHP Billiton и Rio Tinto и доведения совместной добычи до 8000 тонн в год.

Уран из вторичных источников

Вторичными источниками традиционно считаются — запасы из ядерного оружия, от переработки отработанного топлива и повторного обогащения хвостов (остатков от первоначального обогащения). Повторное обогащение отвалов, критично (взаимно и неотъемлемо) для использования оружейного урана в мирных целях.

В конце июля 1991 года в Москве СССР и США подписали Договор СНВ-I.

Преемником СССР в декабре 1991 года стала Россия, но ядерное вооружение находилось и в других бывших республиках СССР.

На начало 1992 года на территории России размещалась 961 пусковая установка (73 % от общего количества).

23 мая 1992 года в Лиссабоне Россией, США, Украиной, Казахстаном и Белоруссией был подписан дополнительный протокол к СНВ-1 (Лиссабонский протокол), в соответствии с которым к договору СНВ-1 присоединились Украина, Казахстан и Белоруссия. Все имеющиеся на их территории боеголовки они обязались ликвидировать или передать России.

В конце 1992, Россия, в связи с нежеланием Украины выполнять Лиссабонский протокол, обязалась демонтировать почти половину своих запасов ядерного оружия (около 35 % от запасов СССР) и переработать высвободившийся оружейный уран в металл топливного сорта. США в свою очередь обязались приобрести этот материал по рыночным ценам.

К концу 1996 года на всём постсоветском пространстве Россия осталась единственной страной входящей в ядерный клуб, а все запасы СССР были сосредоточены на eё территории для последующей переработки в соответствии с договором СНВ-1.

Вместе с тем началось повторное обогащение урановых отвалов и переработка ОЯТ. План по переработке предусматривал начало работ с отвалов уровня месторождений III категории (рядовые) от 0,05 до 0,1 % аффинаж менее 60 %. Однако в середине и конце 1990-х годов обогащающие предприятия начали повторно обогащать отвалы для производства разбавителя по соглашению ВОУ-НОУ, в связи с нестабильностью получаемого топлива из отвалов.

Соглашение ВОУ-НОУ было рассчитано на 20 лет, закончило действовать в 2013 году. Всего в рамках программы из России в США было вывезено 14 446 тонн низкообогащённого урана:

  • по договору СНВ-II 352 тонны — из оговорённых 500 (несмотря на то, что договор не вступил в силу, в связи с выходом России из договора 14 июня 2002);
  • по договору СНВ-I (вступил в силу 5 декабря 1994 года, истёк 5 декабря 2009 года) с российской стороны 500 тонн;
  • по договору СНВ-III (ДСНВ) — договор подписан 8 апреля 2010 года в Праге. Договор сменил истёкший в декабре 2009 года СНВ-I и действует до 2021 года.

Добыча в СССР

В СССР основными уранорудными регионами были Украинская ССР (месторождение Желтореченское, Первомайское и другие), Казахская ССР (Северный — Балкашинское рудное поле и другие; Южный — Кызылсайское рудное поле и другие; Восточный; все они принадлежат преимущественно вулканогенно-гидротермальному типу); Забайкалье (Антей, Стрельцовское и другие); регион Кавказских Минеральных Вод (Рудник № 1 в горе Бештау и Рудник № 2 в горе Бык); Средняя Азия, в основном Узбекская ССР с оруденениями в чёрных сланцах с центром в городе Учкудук. Имеется масса мелких рудопроявлений и проявлений.

Добыча в России

В России основным урановорудным регионом осталось Забайкалье. На месторождении в Забайкальском крае (около города Краснокаменска) добывается около 93 % российского урана. Добычу осуществляет шахтным способом «Приаргунское производственное горно-химическое объединение» (ППГХО), входящее в состав ОАО «Атомредметзолото» (Урановый холдинг).

Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» (Курганская область) и ОАО «Хиагда» (Бурятия).

Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.

На 2008 г по годовому производству урана (около 3,3 тысячи тонн) Россия занимала 4-е место после Казахстана. Годовое же потребление урана в России составляло 16 тысяч тонн и складывалось из расходов на собственные АЭС в объёме 5,2 тысячи тонн, а также на экспорт тепловыделяющих средств (5,5 тысячи тонн) и низкообогащённого урана (6 тысяч тонн).

Добыча в Казахстане

В Казахстане сосредоточена примерно пятая часть мировых запасов урана (21 % и 2-е место в мире). Общие ресурсы урана порядка 1,5 млн тонн, из них около 1,1 млн тонн можно добывать методом подземного выщелачивания.

В 2009 году Казахстан вышел на первое место в мире по добыче урана (добыто 13 500 тонн).

Добыча на Украине

Добыча и переработка — основное предприятие — Восточный горно-обогатительный комбинат в городе Жёлтые Воды.

Стоимость и аффинаж

Горнодобывающие компании поставляют уран в виде закиси-окиси урана U3O8. В 1990-е годы стоимость урана природного изотопного состава колебалась вокруг отметки 20 USD за килограмм. С 2004 года цена начала активно расти и кратковременно достигла пиковых $300 в середине 2007 года, столь же резко обвалившись до $100 к 2009 году. Обновив в 2011 году кратковременный локальный максимум в $140, цена начала снижаться. С 2017 году цена стабилизировалась на отметке около $40 за килограмм закиси-окиси природного урана.

По мнению вице-председателя урановой группы Александра Бойцова, в мире месторождения I категории с себестоимостью добычи до 40 долл./кг уже почти исчерпаны (2010 год). К 2030 году будут исчерпаны известные крупные месторождения II категории, с себестоимостью до 80 долл./кг, и в освоение начнут вовлекаться труднодоступные месторождения III категории с себестоимостью добычи до 130 долл./кг и выше.

На всех этапах переработки урановых руд происходит очистка урана от сопутствующих ему примесей — элементов, обладающих большим сечением захвата нейтронов (гафний, бор, кадмий и т. д.). Наилучшие концентраты содержат 95-96 %, другие всего 60-80 % оксида урана, а остальное более 60 % различных примесей. «В чистом виде» такой уран непригоден в качестве ядерного топлива.

В целом по возможности аффинажа урановые руды делятся на

  • I категория — супер богатые содержание свыше 0,3 % аффинаж 95-96 %
  • II категория — богатые содержит от 0,1 до 0,3 % аффинаж 60-80 %
  • III категория — рядовые от 0,05 до 0,1 % аффинаж менее 60 %
  • IV категория — убогие от 0,03 до 0,05 %
  • V категория — забалансовые менее 0,03 %.

1 Категории пригодные для производства топлива выделены жирным

  • Диуранат аммония ((NH4)2U2O7)
  • Ацетат уранила (UO2(CH3COO)2)
  • Ацетат уранила-цинка (ZnUO2(CH3COO)4)
  • Боргидрид урана (U(BH4)4)
  • Бромид урана (III) (UBr3)
  • Бромид урана (IV) (UBr4)
  • Бромид урана (V) (UBr5)
  • Гидрид урана (III) (UH3)
  • Гидроксид урана (III) (U(OH)3)
  • Гидроксид уранила (UO2(OH)2)
  • Диборид урана (UB2)
  • Дисилицид урана (USi2)
  • Дисульфид урана (US2)
  • Диурановая кислота (H2U2O7)
  • Йодид урана (III) (UI3)
  • Йодид урана (IV) (UI4)
  • Йодид урана (V) (UI5)
  • Карбонат уранила-аммония (UO2CO3·2(NH4)2CO3)
  • Карбонат уранила (UO2CO3)
  • Монооксид урана (UO)
  • Моносульфид урана (US)
  • Монофосфид урана (UP)
  • Диуранат натрия (Na2U2O7)
  • Уранат натрия (Na2UO4)
  • Нитрат уранила (UO2(NO3)2)
  • Нитрид урана (U2N3)
  • Нонаоксид тетраурана (U4O9)
  • Оксид урана (IV) (UO2)
  • Оксид урана (VI)-диурана(V) (U3O8)
  • Пероксид урана (UO4)
  • Сульфат урана (IV) (U(SO4)2)
  • Сульфат уранила (UO2SO4)
  • Тридекаоксид пентаурана (U5O13)
  • Триоксид урана (UO3)
  • Урановая кислота (H2UO4)
  • Формиат уранила (UO2(CHO2)2)
  • Фосфат урана (III) (U2(PO4)3)
  • Фторид урана (III) (UF3)
  • Фторид урана (IV) (UF4)
  • Фторид урана (V) (UF5)
  • Фторид урана (VI) (UF6)
  • Фторид уранила (UO2F2)
  • Хлорид урана (III) (UCl3)
  • Хлорид урана (IV) (UCl4)
  • Хлорид урана (V) (UCl5)
  • Хлорид урана (VI) (UCl6)
  • Хлорид уранила (UO2Cl2)
123456789101112131415161718
1HHe
2LiBeBCNOFNe
3NaMgAlSiPSClAr
4KCaScTiVCrMnFeCoNiCuZnGaGeAsSeBrKr
5RbSrYZrNbMoTcRuRhPdAgCdInSnSbTeIXe
6CsBaLaCePrNdPmSmEuGdTbDyHoErTmYbLuHfTaWReOsIrPtAuHgTlPbBiPoAtRn
7FrRaAcThPaUNpPuAmCmBkCfEsFmMdNoLrRfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
8UueUbnUbuUbbUbtUbqUbpUbhUbs

Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu,
Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2,
W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

Поделиться или сохранить к себе: