Уравнение pv const справедливо для какого процесса

Уравнение pv const справедливо для какого процесса

Это утверждение называется законом Авогадро .

Для смеси невзаимодействующих газов уравнение состояния принимает вид

,

где , , и т. д. – количество вещества каждого из газов в смеси.

Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном, в форме оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева .

Следует отметить, что задолго до того, как уравнение состояния идеального газа было теоретически получено на основе молекулярно-кинетической модели, закономерности поведения газов в различных условиях были хорошо изучены экспериментально. Поэтому уравнение можно рассматривать как обобщение опытных фактов, которые находят объяснение в молекулярно-кинетической теории.

Газ может участвовать в различных тепловых процессах, при которых могут изменяться все параметры, описывающие его состояние (, и ). Если процесс протекает достаточно медленно, то в любой момент система близка к своему равновесному состоянию. Такие процессы называются квазистатическими . В привычном для нас масштабе времени эти процессы могут протекать и не очень медленно. Например, разрежения и сжатия газа в звуковой волне, происходящие сотни раз в секунду, можно рассматривать как квазистатический процесс. Квазистатические процессы могут быть изображены на диаграмме состояний (например, в координатах ) в виде некоторой траектории, каждая точка которой представляет равновесное состояние.

Интерес представляют процессы, в которых один из параметров (, или ) остается неизменным. Такие процессы называются изопроцессами .

Изотермическим процессом называют квазистатический процесс, протекающий при постоянной температуре . Из уравнения состояния идеального газа следует, что при постоянной температуре и неизменном количестве вещества в сосуде произведение давления газа на его объем должно оставаться постоянным:

.

На плоскости () изотермические процессы изображаются при различных значениях температуры семейством гипербол , которые называются изотермами . Так как коэффициент пропорциональности в этом соотношении увеличивается с ростом температуры, изотермы, соответствующие более высоким значениям температуры, располагаются на графике выше изотерм, соответствующих меньшим значениям температуры (рис. 3.3.1). Уравнение изотермического процесса было получено из эксперимента английским физиком Р. Бойлем (1662 г.) и независимо французским физиком Э. Мариоттом (1676 г.). Поэтому это уравнение называют законом Бойля–Мариотта .

Уравнение pv const справедливо для какого процесса
Рисунок 3.3.1.

Изохорный процесс ()

Изохорный процесс – это процесс квазистатического нагревания или охлаждения газа при постоянном объеме и при условии, что количество вещества в сосуде остается неизменным.

Как следует из уравнения состояния идеального газа, при этих условиях давление газа изменяется прямо пропорционально его абсолютной температуре: или

Уравнение pv const справедливо для какого процесса

На плоскости () изохорные процессы для заданного количества вещества при различных значениях объема изображаются семейством прямых линий, которые называются изохорами . Большим значениям объема соответствуют изохоры с меньшим наклоном по отношению к оси температур (рис. 3.3.2).

Уравнение pv const справедливо для какого процесса
Рисунок 3.3.2.

Экспериментально зависимость давления газа от температуры исследовал французский физик Ж. Шарль (1787 г.). Поэтому уравнение изохорного процесса называется законом Шарля .

Уравнение изохорного процесса может быть записано в виде:

Уравнение pv const справедливо для какого процесса

где – давление газа при (т. е. при температуре ). Коэффициент , равный (, называют температурным коэффициентом давления .

Изобарным процессом называют квазистатический процесс, протекающий при неизменным давлении .

Уравнение изобарного процесса для некоторого неизменного количества вещества имеет вид:

Уравнение pv const справедливо для какого процесса

где – объем газа при температуре . Коэффициент равен (. Его называют температурным коэффициентом объемного расширения газов .

На плоскости () изобарные процессы при разных значениях давления изображаются семейством прямых линий (рис. 3.3.3), которые называются изобарами .

Уравнение pv const справедливо для какого процесса
Рисунок 3.3.3.

Зависимость объема газа от температуры при неизменном давлении была экспериментально исследована французским физиком Ж. Гей-Люссаком (1862 г.). Поэтому уравнение изобарного процесса называют законом Гей-Люссака .

Экспериментально установленные законы Бойля–Мариотта, Шарля и Гей-Люссака находят объяснение в молекулярно-кинетической теории газов. Они являются следствием уравнения состояния идеального газа.

Видео:Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)Скачать

Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)

Блог об энергетике

Видео:Газовые законы. Изопроцессы | Физика 10 класс #34 | ИнфоурокСкачать

Газовые законы. Изопроцессы | Физика 10 класс #34 | Инфоурок

энергетика простыми словами

Видео:Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать

Урок 156. Уравнение состояния идеального газа. Квазистатические процессы

Основные термодинамические процессы

Основными процессами в термодинамике являются:

  • изохорный, протекающий при постоянном объеме;
  • изобарный, протекающий при постоянном давлении;
  • изотермический, происходящий при постоянной температуре;
  • адиабатный, при котором теплообмен с окружающей средой отсутствует;
  • политропный, удовлетворяющий уравнению pv n = const.

Изохорный, изобарный, изотермический и адиабатный процессы являются частными случаями политропного процесса.

При исследовании термодинамических процессов определяют:

  • уравнение процесса в pv иTs координатах;
  • связь между параметрами состояния газа;
  • изменение внутренней энергии;
  • величину внешней работы;
  • количество подведенной теплоты на осуществление процесса или количество отведенной теплоты.

Изохорный процесс

Уравнение pv const справедливо для какого процесса Уравнение pv const справедливо для какого процессаУравнение pv const справедливо для какого процесса

При изохорном процессе выполняется условие v = const.

Из уравнения состояния идеального газа (pv = RT) следует:

т. е. давление газа прямо пропорционально его абсолютной температуре:

Работа расширения в изохорном процессе равна нулю (l = 0), так как объем рабочего тела не меняется (Δv = const).

Количество теплоты, подведенной к рабочему телу в процессе 1-2 при cv = const определяется по формуле:

Т. к.l = 0, то на основании первого закона термодинамики Δu = q, а значит изменение внутренней энергии можно определить по формуле:

Изменение энтропии в изохорном процессе определяется по формуле:

Изобарный процесс

Уравнение pv const справедливо для какого процессаУравнение pv const справедливо для какого процессаУравнение pv const справедливо для какого процесса

Изобарным называется процесс, протекающий при постоянном давлении p = const. Из уравнения состояния идеального газа слуедует:

т. е. в изобарном процессе объем газа пропорционален его абсолютной температуре.

Работа будет равна:

Количество теплоты при cp = const определяется по формуле:

Изменение энтропии будет равно:

Изотермический процесс

Уравнение pv const справедливо для какого процессаУравнение pv const справедливо для какого процессаУравнение pv const справедливо для какого процесса

При изотермическом процессе температура рабочего тела остается постоянной T = const, следовательно:

т. е. давление и объем обратно пропорциональны друг другу, так что при изотермическом сжатии давление газа возрастает, а при расширении – снижается.

Работа процесса будет равна:

Так как температура остается неизменной, то и внутренняя энергия идеального газа в изотермическом процессе остается постоянной (Δu = 0) и вся подводимая к рабочему телу теплота полностью превращается в работу расширения:

При изотермическом сжатии от рабочего тела отводится теплота в количестве, равном затраченной на сжатие работе.

Изменение энтропии равно:

Адиабатный процесс

Уравнение pv const справедливо для какого процессаУравнение pv const справедливо для какого процессаУравнение pv const справедливо для какого процесса

Адиабатным называется процесс изменения состояния газа, который происзодит без теплообмена с окружающей средой. Так как dq = 0, то уравнение первого закона термодинамики для адиабатного процесса будет иметь вид:

В адиабатном процессе работа расширения совершается только за счет расходования внутренней энергии газа, а при сжатии, происходящем за счет действия внешних сил, вся совершаемая ими работа идет на увеличение внутренней энергии газа.

Обозначим теплоемкость в адиабатном процессе через cад, и условие dq = 0 выразим следующим образом:

Это условие говорит о том, что теплоемкость в адиабатном процессе равна нулю (cад = 0).

и уравнение кривой адиабатного процесса (адиабаты) в p, v-диаграмме имеет вид:

В этом выражении k носит название показателя адиабаты (так же ее называют коэффициентом Пуассона).

kвыхлопных газов ДВС = 1,33

Из предыдущих формул следует:

Техническая работа адиабатного процесса (lтехн) равна разности энтальпий начала и конца процесса (i1 i2).

Адиабатный процесс, происходящий без внутреннего трения в рабочем теле, называется изоэнтропийным. В T, s-диаграмме он изображается вертикальной линией.

Обычно реальные адиабатные процессы протекают при наличии внутреннего трения в рабочем теле, в результате чего всегда выделяется теплота, которая сообщается самому рабочему телу. В таком случае ds > 0, и процесс называется реальным адиабатным процессом.

Политропный процесс

Политропным называется процесс, который описывается уравнением:

Показатель политропы n может принимать любые значения в пределах от -∞ до +∞, но для данного процесса он является постоянной величиной.

Из уравнения политропного процесса и уравнения Клайперона можно получить выражение, устанавливающее связь между p, vи Tв любых двух точках на политропе:

Работа расширения газа в политропном процессе равна:

Уравнение pv const справедливо для какого процесса

В случае идеального газа эту формулу можно преобразовать:

Уравнение pv const справедливо для какого процесса

Количество подведенной или отведенной в процессе теплоты определяется с помощью первого закона термодинамики:

Уравнение pv const справедливо для какого процесса

представляет собой теплоемкость идеального газа в политропном процессе.

При cv, k и n = const cn = const, поэтому политропный процесс иногда определят как процесс с постоянной теплоемкостью.

Политропный процесс имеет обобщающее значение, ибо охватывает всю совокупность основных термодинамических процессов.

Графическое представление политропа в p, v координатах в зависимости от показателя политропа n.

Уравнение pv const справедливо для какого процесса

pv 0 = const (n = 0) – изобара;

pv = const (n = 1) – изотерма;

p 0 v = const, p 1/∞ v = const, pv ∞ = const – изохора;

n > 0 – гиперболические кривые,

n По материалам моего конспекта лекций по термодинамике и учебника «Основы энергетики». Автор Г. Ф. Быстрицкий. 2-е изд., испр. и доп. — М. :КНОРУС, 2011. — 352 с.

Видео:Уравнение состояния идеального газа. 10 класс.Скачать

Уравнение состояния идеального газа. 10 класс.

Уравнение состояния идеального газа. Изопроцессы

Соотношение p = n k T – это формула, связывающая значение давления газа с его температурой и концентрацией молекул на единицу объема.

Они взаимодействуют со стенками сосуда посредствам упругих соударений. Данное выражение можно записать иначе, учитывая параметрические состояния объема V , давления p , температуры T и количества вещества ν . Применим неравенства:

n = N V = ν N А V = m M N A V .

Значением N является количество молекул данного сосуда, N А – постоянной Авогадро, m – массой газа в емкости, М – молярной массой газа. Исходя из этого, формула примет вид:

p V = ν N А k T = m M N А k T .

Произведение постоянной Авогадро N А на постоянную Больцмана k называют универсальной газовой постоянной и обозначают R .

По системе С И имеет значение R = 8 , 31 Д ж / м о л ь · К .

Соотношение p V = ν R T = m M R T получило название уравнения состояния идеального газа.

Один моль газа обозначается p V = R T .

При температуре T н = 273 , 15 К ( 0 ° C ) и давлении ρ н = 1 а т м = 1 , 013 · 10 5 П а говорят о нормальных условиях состояния газа.

Из уравнения видно, что один моль газа при нормальных условиях занимает один и тот же объем, равный v 0 = 0 , 0224 м 3 / м о л ь = 22 , 4 д м 3 / м о л ь . Выражение получило название закона Авогадро.

Если имеется смесь невзаимодействующих газов, то формулу запишем как:

p V = ν 1 + ν 2 + ν 3 + . . . R T ,

где ν 1 , v 2 , v 3 обозначает количество вещества каждого из них.

Еще в ХХ веке Б. Клапейрон получил уравнение, показывающее связь между давлением и температурой:

p V = ν R T = m M R T .

Впоследствии оно было записано Д.И. Менделеевым. Позже его назвали уравнением Клапейрона-Менделеева.

Задолго до получения уравнения состояния идеального газа на основе молекулярно-кинетической теории поведения газов изучались в различных условиях экспериментально. То есть уравнение p V = ν R T = m M R T служит обобщением всех опытных фактов.

Газ принимает участие в процессах с постоянно изменяющимися параметрами состояния: ( p , V и T ).

При протекании процессов медленно, система находится в состоянии, близком к равновесному. Процесс получил название квазистатического.

Соотнеся с происхождением процессов в нашем времени, то его протекания нельзя считать медленными.

Обычное время для разрежения и сжатия газа сотни раз в секунду. Это рассматривается как квазистатический процесс. Они изображаются с помощью диаграммы состояний параметров, где каждая из точек показывает равновесное состояние.

При неизменном одном параметре из ( p , V или T ) процесс принято называть изопроцессом.

🎦 Видео

Физика. МКТ: Графики газовых процессов. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. МКТ: Графики газовых процессов. Центр онлайн-обучения «Фоксфорд»

Изопроцессы. Графики изопроцессов. Закон Дальтона. 2 часть. 10 класс.Скачать

Изопроцессы. Графики изопроцессов. Закон Дальтона. 2 часть. 10 класс.

Урок 172. Применение 1 закона термодинамики для различных процессовСкачать

Урок 172. Применение 1 закона термодинамики для различных процессов

мкт ИЗОТЕРМИЧЕСКИЙ процесс ИЗОХОРНЫЙ процесс ИЗОБАРНЫЙ процессСкачать

мкт ИЗОТЕРМИЧЕСКИЙ процесс ИЗОХОРНЫЙ процесс ИЗОБАРНЫЙ процесс

Урок 157. Изопроцессы и их графики. Частные газовые законыСкачать

Урок 157. Изопроцессы и их графики. Частные газовые законы

Лекция №7. ТЕРМОДИНАМИЧЕСКИЕ ПРОЦЕССЫ ИДЕАЛЬНЫХ ГАЗОВСкачать

Лекция №7. ТЕРМОДИНАМИЧЕСКИЕ ПРОЦЕССЫ ИДЕАЛЬНЫХ ГАЗОВ

Изопроцессы. Графики изопроцессов. Закон Дальтона. 1 часть. 10 класс.Скачать

Изопроцессы. Графики изопроцессов. Закон Дальтона. 1 часть. 10 класс.

Физика Изучение графиков изопроцессовСкачать

Физика Изучение графиков изопроцессов

Уравнение Менделеева - Клапейрона за 10 минут | Физика с Никитой АрхиповымСкачать

Уравнение Менделеева - Клапейрона за 10 минут | Физика с Никитой Архиповым

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»

Старт интенсива "Бог МКТ и Термодинамики"| Все про МКТ и газовые законы за 3 часаСкачать

Старт интенсива "Бог МКТ и Термодинамики"| Все про МКТ и газовые законы за 3 часа

Уравнение Менделеева-Клапейрона. Физика 10 класс.Скачать

Уравнение Менделеева-Клапейрона. Физика 10 класс.

Изопроцессы в газах, уравнение Менделеева -КлапейронаСкачать

Изопроцессы в газах, уравнение Менделеева -Клапейрона

ЕГЭ. Физика. Уравнение состояния идеального газа. ПрактикаСкачать

ЕГЭ. Физика. Уравнение состояния идеального газа. Практика

Физика. МКТ: Изобарный процесс. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. МКТ: Изобарный процесс. Центр онлайн-обучения «Фоксфорд»

Изопроцессы с идеальным газом. Первое начало термодинамики | Физика, онлайн-форумСкачать

Изопроцессы с идеальным газом. Первое начало термодинамики | Физика, онлайн-форум
Поделиться или сохранить к себе: