Занимаясь исследованием кровообращения, французский врач и физик Пуазейль пришел к необходимости количественного описания процессов течения вязкой жидкости вообще. Установленные им для этого случая закономерности имеют важное значение для понимания сущности гемодинамических явлений и их количественного описания.
Пуазейль установил, что вязкость жидкости может быть определена по объему жидкости, протекающей через капиллярную трубку. Этот метод применим только к случаю ламинарного течения жидкости.
Пусть на концах вертикальной капиллярной трубки длиной l и радиусом R создана постоянная разность давлений Dр. Выделим внутри капилляра столбик жидкости радиусом r и высотой h. На боковую поверхность этого столбика действует сила внутреннего трения:
(17)
Рис. 6 Схема для вывода формулы Пуазейля. |
Если р1 и р2 – давления на верхнее и нижнее сечения соответственно, то силы давления на эти сечения будут равны:
Сила тяжести равна Fтяж=mgh=rpr 2 gl.
При установившемся движении жидкости, согласно второму закону Ньютона:
Постоянную интегрирования находим из условия, что при r=R скорость v=0 (слои, прилегающие непосредственно к трубе, неподвижны):
Скорость частиц жидкости в зависимости от расстояния от оси равна:
Объем жидкости, протекающий через некоторое сечение трубки в пространстве между цилиндрическими поверхностями радиусами r и r+dr за время t, определяется по формуле dV=2prdrvt или:
Полный объем жидкости, протекающей через сечение капилляра за время t:
(19)
В случае, когда пренебрегаем силой тяжести жидкости (горизонтальный капилляр), объем жидкости, протекающий через сечение капилляра, выражается формулой Пуазейля:
(20)
Формулу 20 можно преобразовать: разделим обе части этого выражения на время истечения t. Слева получим объемную скорость течения жидкости Q (объем жидкости, протекающий через сечение за единицу времени). Величину 8hl/ 8pR 4 обозначим через Х.. Тогда формула 20 принимает вид:
(21)
В такой записи формула Пуазейля (ее еще называют уравнением Гагена-Пуазейля) аналогична закону Ома для участка электрической цепи.
Можно провести аналогию между законами гидродинамики и законами протекания электрического тока по электрическим цепям. Объемная скорость течения жидкости Q является гидродинамическим аналогом силы электрического тока I. Гидродинамическим аналогом разности потенциалов j1-j2 является перепад давлений Р1 — Р2. Закон Ома I =(j1-j2)/R имеет своим гидродинамическим аналогом формулу 20. Величина Х представляет собой гидравлическое сопротивление — аналог электрического сопротивления R.
Факторы, влияющие на вязкость крови в организме.
Вязкость крови в живом организме зависит, в основном, от скорости сдвига, свойств плазмы, относительного объема эритроцитов и механических свойств эритроцитов, температуры.
Скорость сдвига.
Скоростью сдвига называют величину градиента скорости движения параллельных слоев жидкости ( ). Вязкость крови зависит от скорости сдвига в диапазоне 0,1-120 с -1 . При скорости сдвига>100 с -1 вязкость достигает значения асимптотической вязкости и при дальнейшем увеличении скорости сдвига (>200 с -1 ) не меняется (рис.10).
|
При низких скоростях сдвига в крови эритроциты выстраиваются в монетные столбики. Это определяет высокую вязкость крови, которая, строго говоря, в этом случае не может рассматриваться как чистая жидкость. По мере увеличения скорости сдвига, агрегаты эритроцитов распадаются, и вязкость крови снижается, приближаясь постепенно к некоторому пределу. При высоких скоростях сдвига, например, в крупных артериях, кровь можно рассматривать как ньютоновскую жидкость. Только в этом случае кровь рассматривается как суспензия форменных элементов и ее свойства можно изучать in vitro на модели суспензии эритроцитов в физиологическом растворе.
Плазма.
Плазма ведёт себя как линейно-вязкая ньютоновская жидкость с относительной вязкостью 1,2. При рассмотрении течения в артериальных сосудах плазма принимается несжимаемой и вязкой с кинематической вязкостью 0,04 см 2 /с.
Неньютоновский характер крови обусловлен наличием форменных элементов крови, в основном, эритроцитов.
Гематокрит.
Одним из основных факторов, определяющих вязкость крови, является объемная концентрация эритроцитов. Отношение суммарного объема эритроцитов к объему крови называют гематокритом. В норме гематокрит равен 0,4-0,5 отн. ед. С повышением гематокрита вязкость крови увеличивается (рис.11).
Видео:Формула ПуазёйляСкачать
Течение вязкой жидкости. Формула Пуазейля
Занимаясь исследованием кровообращения, французский врач и физик Ж. Пуазейль пришел к необходимости количественного описания процессов течения вязкой жидкости вообще. Установленные им для этого случая закономерности имеют важное значение для понимания сущности гемодинамических явлений и их количественного описания.
Не производя строгих математических расчетов, проанализируем, от чего зависит объем V вязкой жидкости, лами- нарно протекающей по участку гладкой трубы длиной L и радиусом г (рис. 9.10). Очевидно, этот объем будет прямо пропорционален времени истечения жидкости t и тому перепаду давлений Рх — Р2, который обусловливает ток жидкости на участке трубы длиной L. Естественно, что объем вытекающей жидкости будет резко возрастать и с увеличением площади поперечного сечения рассматриваемого участка. Теоретические расчеты и непосредственный эксперимент показывают, что V
г 4 . Помехой истечению жидкости является ее вязкость г|, поэтому объем V
1/г. Чем больше длина участка, тем больше потери в скорости протекающей по нему жидкости, значит V
1/L. Приведенные соображения, строгое теоретическое рассмотрение и непосредственный эксперимент приводят к формуле Пу- азейля:
Рис. 9.10. Движение жидкости по участку гладкой трубы
Разделив обе части этого выражения на время истечения t, получим формулу Пуазейля для объемной скорости течения жидкости:
По аналогии с законом Ома для участка электрической цепи это соотношение можно записать в виде более простой формулы Гагена — Пуазейля:
Величина X, входящая в это уравнение, называется гидравлическим сопротивлением участка трубы или сосуда:
Между законами гидродинамики и законами протекания электрического тока по электрическим цепям существует тесная аналогия. Объемная скорость течения жидкости Q = V/t является гидродинамическим аналогом силы электрического тока I = q/t. Причиной возникновения электрического тока является разность электрических потенциалов (р: — (р2 на соответствующем участке цепи, а причиной движения жидкости — разность давлений Рх — Р2 на участке трубы. В законе Ома I = (cpi — cp2)/i? величина R — электрическое сопротивление проводника, аналогом которого в формуле (9.10) является величина X = 8rL/nr 4 , представляющая собой гидравлическое сопротивление участка трубы или сосуда.
Если от общих законов истечения вязкой жидкости перейти к задачам гемодинамики, то с помощью уравнения Гаге- на — Пуазейля можно определить ряд характеристик кровотока. Так, зная объемную скорость кровотока Q и величину гидравлического сопротивления X сосудов, можно найти величину давления крови в любой точке сосудистой системы:
Если Р0 — давление крови в желудочке сердца, а X — общее сопротивление сосудов на участке сосудистой системы между этим желудочком и некоторой точкой, то давление крови Р в этой точке определяется формулой (9.12).
Гидравлическое сопротивление X разветвленного участка сосудистой системы может быть определено по аналогии с расчетом общего электрического сопротивления участка электрической цепи, состоящего из набора отдельных резисторов. При последовательном соединении сосудов (рис. 9.11, а) общее сопротивление определяется суммой гидравлических сопротивлений их отдельных участков:
Рис. 9.11. Виды ветвления сосудистого русла: а — последовательное; б — параллельное а при параллельном ветвлении сосудистого русла (рис. 9.11, б) общее сопротивление X находится из уравнения
Следует отметить, что аналогия в описании электрических цепей и гидродинамических процессов плодотворно используется при моделировании гемодинамических явлений.
Видео:Вязкость и течение Пуазёйля (видео 14) | Жидкости | ФизикаСкачать
ПУАЗЁЙЛЯ ЗАКО́Н
В книжной версии
Том 27. Москва, 2015, стр. 727
Скопировать библиографическую ссылку:
ПУАЗЁЙЛЯ ЗАКО́Н (закон Гагена – Пуазёйля), утверждает, что при установившемся ламинарном движении вязкой несжимаемой жидкости сквозь цилиндрич. трубу круглого сечения объёмный расход за 1 с выражается формулой $Q=πR^4(p_0-p_i)/8μl$ , где $l$ – длина трубы, $R$ – её радиус, $p_0$ и $p_i$ – давление жидкости на входе и выходе трубы, μ – коэф. динамич. вязкости. Эта формула, представляющая собой точное решение Навье – Стокса уравнения , экспериментально установлена нем. учёным Г. Гагеном (1839) и независимо Ж. Л. М. Пуазёйлем (1840–41). П. з. справедлив в части трубы, достаточно удалённой от входа и выхода, где достигается ламинарный характер течения. Позднее П. з. был обобщён на течение в плоском канале и в трубе произвольного поперечного сечения.
📺 Видео
Вязкость. Ламинарное и турбулентное течения жидкостей. 10 класс.Скачать
Определение коэффициента вязкости жидкости с помощью капиллярного вискозиметраСкачать
Вывод уравнений движения идеальной жидкости - Лекция 2Скачать
Определение коэффициента вязкости жидкости. Проверка закона СтоксаСкачать
Физиология. Гемодинамика. Закон Гагена и Пуазейла.. #40Скачать
Движение тел в жидкостях и газах. Лобовое сопротивление и подъемная сила. Формула Стокса. 10 класс.Скачать
Закон БернуллиСкачать
Потери напора при движении жидкостиСкачать
Урок 19. Относительность движения. Формула сложения скоростей.Скачать
Урок 132. Основные понятия гидродинамики. Уравнение непрерывностиСкачать
Режимы течения жидкости, ламинарный и турбулентный режимыСкачать
Урок 202. Давление под искривленной поверхностью жидкости. Формула ЛапласаСкачать
Физические основы гемодинамики. Определение вязкости жидкостей с помощью вискозиметра.Скачать
Уравнение движения с постоянным ускорением | Физика 10 класс #6 | ИнфоурокСкачать
Физиология кровообращения: физиология давления, артериальное давление, пульс, гемодинамикаСкачать
КРИВОЛИНЕЙНОЕ ДВИЖЕНИЕ - Угловое Перемещение, Угловая Скорость, Центростремительное УскорениеСкачать
Физика. 10 класс. ГидродинамикаСкачать
Основы биофизики. Гемодинамика. Часть 1Скачать