Уравнение пуассона и его физический смысл

Уравнение Пуассона и распределение Больцмана (часть 1)

В продолжение предыдущей статьи «Есть ли плазма в космосе?» я хотел бы в познавательных целях рассказать об уравнениях, которые применялись при выводе уравнения Дебая-Хюккеля. Это уравнение Пуассона и распределение Больцмана.

Мы выяснили, что плазма квазинейтральна в равновесном состоянии и что под действием электрического поля от движущихся зарядов, заряженные частицы смещаются на дебаевскую длину и поле в пределах этой длины затухает. В электростатике взаимодействие заряженных частиц описывается кулоновским уравнением:

Уравнение пуассона и его физический смысл

где Уравнение пуассона и его физический смысл– величины взаимодействующих точечных зарядов, Уравнение пуассона и его физический смысл– квадрат расстояния между зарядами. Коэффициент k является константой. Если мы используем систему в электростатических единицах СГС, обозначаемых СГСЭq, то k = 1. Если используется система СИ, то Уравнение пуассона и его физический смысл, где Уравнение пуассона и его физический смысл– диэлектрическая проницаемость среды, в которой расположены заряды, Уравнение пуассона и его физический смысл– электрическая постоянная, равная 8,86 ∙ Уравнение пуассона и его физический смысл.

В физике непосредственно силой не пользуются, а вводят понятие электростатического поля распределённых зарядов и измеряют поле величиной напряженности электрического поля. Для этого в каждую точку поля мысленно помещают единичный пробный заряд и измеряют силу, с которой поле зарядов действует на пробный заряд:

Уравнение пуассона и его физический смысл

Отсюда, если подставить в это уравнение силу Кулона, то получим:

Уравнение пуассона и его физический смысл

Но и этим физики не ограничиваются, для того чтобы описать полноценно электрическое поле. Рассмотрим единичный заряд, помещённый в электростатическое поле. Поле выполняет работу по перемещению этого заряда на элементарное расстояние ds из точки P1 в точку P2:

Уравнение пуассона и его физический смысл

Величину Уравнение пуассона и его физический смыслназывают разностью потенциалов или напряжением. Напряжение измеряется в Вольтах. Знак минус говорит нам о том, что само поле выполняет работу для переноса единицы положительного заряда. Силы, перемещающие заряды являются консервативными, так как работа по замкнутому пути равна всегда нулю, независимо от того, по какому пути перемещается заряд.

Отсюда следует глубокий смысл разности потенциалов. Если зафиксировать точку Р1 и перемещать заряд в переменную точку Р2, то работа зависит только от положения второй точки Р2. Таким образом мы можем ввести понятие потенциала. Потенциал – это силовая функция, показывающая какую необходимо выполнить работу полю, чтобы переместить заряд из бесконечности в данную точку P2, где условно принимают потенциал в бесконечности равным нулю.

Чтобы понять уравнение Пуассона, необходимо разбираться в «особой» векторной математике. Я вкратце расскажу про такие понятия как градиент поля и дивергенции (подразумевается, что читатель знаком с математическим анализом)
Пусть f(x,y,z) является некоторой непрерывной дифференцируемой функцией координат. Зная её частные производные Уравнение пуассона и его физический смыслв каждой точке пространства можно построить вектор, компоненты которого x, y, z равны соответствующим частным производным:

Уравнение пуассона и его физический смысл

где Уравнение пуассона и его физический смысл– единичные векторы соответствующих осей x, y, z. Значок Уравнение пуассона и его физический смыслчитается «набла» и является дифференциальным оператором

Уравнение пуассона и его физический смысл

Этот оператор ввёл в математику Гамильтон. С набла можно выполнять обычные математические операции, такие как обычное произведение, скалярное произведение, векторное произведение и так далее.

Теперь вернёмся к электростатическому полю E. С одной стороны изменение потенциала при переходе из одной точки в другую имеет следующий вид:

Уравнение пуассона и его физический смысл

С другой стороны, согласно формуле (*)

Уравнение пуассона и его физический смысл

Применяя только что введённое понятие градиент, эта формула преобразуется в:

Уравнение пуассона и его физический смысл

Теперь разберёмся с таким понятием, как дивергенция поля. Рассмотрим конечный замкнутый объем V произвольной формы (см. рис. ниже). Обозначим площадь этой поверхности S. Полный поток вектора F, выходящего из этого объема по определению равно

Уравнение пуассона и его физический смысл

, где da является бесконечно малым вектором, величина которого равна площади малого элемента поверхности S, а направление совпадает с наружной нормалью к этому элементу.
Возьмём этот поток вектора F поделим на объём Уравнение пуассона и его физический смысли найдём предел при Уравнение пуассона и его физический смыслстремящейся к нулю, т.е. будем стягивать объём в бесконечно малую точку.

Уравнение пуассона и его физический смысл

Уравнение пуассона и его физический смысл

Мы подошли к понятию дивергенции. Обозначается дивергенция символом div и является отношением потока вектора F к объёму V, при V стремящейся к нулю.

Прежде чем показать, как получается уравнение Пуассона, важно знать закон Гаусса и теорему Гаусса. Представим себе сферу, внутри которой находится заряд q. Заряд создаёт вокруг себя электрическое поле напряжённости E. Возьмём поток вектора E

Уравнение пуассона и его физический смысл

где S площадь нашей сферы равная Уравнение пуассона и его физический смысл. Следовательно

Уравнение пуассона и его физический смысл

Это и есть закон Гаусса, утверждающий, что поток электрического поля E через любую замкнутую поверхность равен произведению Уравнение пуассона и его физический смыслна полный заряд, охватываемый поверхностью:

Уравнение пуассона и его физический смысл

где Уравнение пуассона и его физический смысл– плотность объёмного заряда, т.е. величина электрического заряда в единице объёма, и Уравнение пуассона и его физический смысл– элементарный объём, выделенный внутри нашего замкнутого объёма.

Теорема Гаусса (полное название теорема Гаусса-Остроградского) чисто математическая теорема о дивергенции. Перепишем полный поток вектора F следующим образом:

Уравнение пуассона и его физический смысл

В пределе, когда N → ∞, Уравнение пуассона и его физический смысл→0 величина в скобках становится дивергенцией и сумма переходит в объёмный интеграл:

Уравнение пуассона и его физический смысл

Это и есть теорема Гаусса, и является поистине самой важной формулой полевой теории. Применим эту теорему к электростатическому полю. С одной стороны, согласно закону Гаусса

Уравнение пуассона и его физический смысл

А с другой стороны, согласно теореме Гаусса (только не путайте теорему с законом Гаусса):

Уравнение пуассона и его физический смысл

Комбинируя два последних уравнения, получим:

Уравнение пуассона и его физический смысл

Вспомним формулу (**) и подставим сюда вместо E потенциал поля

Уравнение пуассона и его физический смысл

Дивергенция градиента это новый оператор, который в математике называют оператор Лапласа, или сокращённо лапласиан. Лапласиан обозначается значком набла следующим образом Уравнение пуассона и его физический смысли равен

Уравнение пуассона и его физический смысл

Перепишем предыдущую формулу в форме лапласиана:

Уравнение пуассона и его физический смысл

Наконец мы получили уравнение Пуассона. В первой статье это уравнение было немного в другой форме, с учётом диэлектрической проницаемости среды. Вспомните силу Кулона в системе СИ, там константа Уравнение пуассона и его физический смысл. Соответственно в законе Гаусса будет не Уравнение пуассона и его физический смысл, а коэффициент Уравнение пуассона и его физический смысл. Таким образом получаем уравнение Пуассона в форме представленной в предыдущей статье

Уравнение пуассона и его физический смысл

Таким образом по сути уравнение Пуассона – это закон Кулона (а точнее закон Гаусса) переписанный в другой форме, в обозначениях векторного дифференциального анализа.

В следующей статье мы разберём важное распределение из математической статистики — распределение Больцмана.

Видео:Адиабатный процесс. 10 класс.Скачать

Адиабатный процесс. 10 класс.

Уравнение Пуассона и математическая постановка задач электростатики

Существует большое количество случаев, когда самым удобным методом нахождения напряженности поля считается решение дифференциального уравнения для потенциала. После его получения применим в качестве основы теорему Остроградского-Гаусса в дифференциальной форме:

где ρ является плотностью распределения заряда, ε 0 — электрической постоянной, d i v E → = ∇ → E → = ∂ E x ∂ x + ∂ E y ∂ y + ∂ E z ∂ z — дивергенцией вектора напряженности и выражением, связывающим напряженность поля и потенциал.

Произведем подстановку ( 2 ) в ( 1 ) :

Учитывая, что d i v g r a d φ = ∇ 2 φ = ∂ 2 φ ∂ x 2 + ∂ 2 φ ∂ y 2 + ∂ 2 φ ∂ z 2 , где ∆ = ∇ 2 — это оператор Лапласа, равенство ( 3 ) принимает вид:

Выражение ( 4 ) получило название уравнения Пуассона для вакуума. При отсутствующих зарядах запишется как уравнение Лапласа:

После нахождения потенциала переходим к вычислению напряженности, используя ( 2 ) . Решения уравнения Пуассона должны удовлетворять требованиям:

  • значение потенциала как непрерывная функция;
  • потенциал должен быть конечной функцией;
  • производные потенциала как функции по координатам должны быть конечными.

При наличии сосредоточенных зарядов в объеме V , решение уравнения ( 4 ) будет выражаться для потенциала вида:

Общая задача электростатики сводится к нахождению решения дифференциального уравнения, то есть уравнения Пуассона, удовлетворяющего вышеперечисленным требованиям. Теоретические вычисления известны для небольшого количества частных случаев. Если возможно подобрать функцию φ , удовлетворяющую условиям, то она является единственным решением.

В таких задачах не всегда необходимо задавать заряды или потенциалы во всем пространстве. Для нахождения электрического поля в полости, окруженной проводящей оболочкой, достаточно вычислить поле тел, находящихся внутри нее.

Любое решение уравнения Пуассона ограниченной области может быть определено краевыми условиями, накладывающимися на поведение решения. Границы перехода из одной среды в другую имеют условия, которые должны быть выполнены:

E 2 n — E 1 n = 4 π σ , или ∂ φ 1 ∂ n — ∂ φ 2 ∂ n = 0 .

где σ — это поверхностная полость свободных зарядов, n – единичный вектор нормали к границе раздела, проведенный из среды 1 в 2 , τ — единичный вектор, касательный к границе.

Эти уравнения выражают скачок нормальных составляющих вектора напряженности и непрерывность касательной вектора напряженностей электрического поля при переходе через любую заряженную поверхность независимо от ее формы и наличия или отсутствия зарядов вне ее.

Видео:9. Уравнение ПуассонаСкачать

9. Уравнение Пуассона

Уравнение Пуассона в сферических, полярных и цилиндрических координатах

Запись уравнения может быть как при помощи декартовых координат, также и сферических, цилиндрических, полярных.

При наличии сферических r , θ , υ уравнение Пуассона запишется как:

1 r 2 · ∂ ∂ r r 2 ∂ φ ∂ r + 1 r 2 sin θ ∂ θ sin θ · ∂ φ ∂ θ + ∂ 2 φ r 2 sin 2 θ ∂ φ 2 = — 1 ε 0 ρ .

В полярных r , θ :

1 r · ∂ ∂ r r ∂ φ ∂ r + ∂ 2 φ r 2 ∂ θ 2 = — 1 ε 0 ρ .

В цилиндрических r , υ , z :

1 r · ∂ ∂ r r ∂ φ ∂ r + ∂ 2 φ ∂ z 2 + ∂ 2 φ r 2 ∂ υ 2 = — 1 ε 0 ρ .

Видео:29. Адиабатический процесс. Уравнение ПуассонаСкачать

29. Адиабатический процесс. Уравнение Пуассона

Примеры решения задач

Найти поле между коаксиальными цилиндрами с радиусами r 1 и r 2 и с имеющейся разностью потенциалов ∆ U = φ 1 — φ 2 .

Уравнение пуассона и его физический смысл

Решение

Необходимо зафиксировать уравнение Лапласа с цилиндрическими координатами, учитывая аксиальную симметрию:

1 r · ∂ ∂ r r ∂ φ ∂ r = 0 .

Решение имеет вид φ = — A ln ( r ) + B . Для этого следует выбрать нулевой потенциал на нужном цилиндре, тогда:

φ ( r 2 ) = 0 = — A ln r 2 + B , следовательно

φ ( r 1 ) = ∆ U = — A ln r 1 + B , получим:

A = ∆ U ln r 2 r 1 .

φ ( r ) = — ∆ U ln r 2 r 1 ln ( r ) + ∆ U ln r 2 r 1 ln r 2 .

Ответ: поле с двумя коаксиальными цилиндрами может быть задано при помощи функции φ ( r ) = — ∆ U ln r 2 r 1 ln ( r ) + ∆ U ln r 2 r 1 ln r 2 .

Найти потенциал поля, которое создает бесконечно круглый цилиндр с радиусом R и объемной плотностью заряда ρ . Использовать уравнение Пуассона.

Решение

Необходимо направить ось Z по оси цилиндра. Видно, что цилиндрическое распределение заряда аксиально симметрично, потенциал имеет такую же симметрию, иначе говоря, считается функцией φ ( r ) с r , являющимся расстоянием от оси цилиндра. Для решения используется цилиндрическая система координат. Уравнение Пуассона в ней запишется как:

φ 2 = C 2 ln r + C ‘ 2 .

C 1 , C ‘ 1 , C 2 , C ‘ 2 — это постоянные интегрирования. Имеем, что потенциал во всех точках должен быть конечным, а l i m r → 0 ln r = ∞ . Отсюда следует, что C 1 = 0 . Далее необходимо пронормировать потенциал, задействовав условие φ 1 ( 0 ) = 0 . Получим C ‘ 1 = 0 .

Поверхностные заряды отсутствуют, поэтому напряженность электрического поля на поверхности шара является непрерывной. Следовательно, что и производная от потенциала также непрерывна при r = R , как и сам потенциал. Исходя из условий, можно найти C 2 , C ‘ 2 :

C 2 ln R + C ‘ 2 = — 1 4 ρ ε 0 R 2 .

C 2 R = — 1 2 ρ ε 0 R .

Значит, полученные выражения записываются как:

Ответ: потенциал поля равняется:

Видео:ЧК_МИФ: 4.1.1.ДФ_1 Физический смысл уравнений МаксвеллаСкачать

ЧК_МИФ: 4.1.1.ДФ_1 Физический смысл уравнений  Максвелла

Уравнение Пуассона

Определение и формула уравнения Пуассона

Уравнение Пуассона описывает адиабатический процесс, происходящий в идеальном газе. Адиабатический процесс — это процесс, в котором нет теплообмена между рассматриваемой системой и окружающей средой:

Уравнение Пуассона имеет вид:

Здесь V — объем, занимаемый газом, P — его давление, а значение k называется адиабатическим индексом.

Адиабатический индекс в уравнении Пуассона

Адиабатический индекс можно рассчитать как отношение изобарной теплоемкости газа к его изохорной теплоемкости:

В практических расчетах удобно помнить, что для идеального газа адиабатический индекс равен для двухатомного и для трехатомного .

Что относительно реальных газов, когда силы взаимодействия между молекулами начинают играть важную роль? В этом случае адиабатический индекс для каждого испытательного газа может быть получен экспериментально. Один из таких методов был предложен в 1819 году Климентом и Дезормом. Мы наполняем цилиндр холодным газом, пока давление в нем не достигнет Р1. Затем мы открываем клапан, газ начинает адиабатически расширяться, а давление в цилиндре падает до атмосферного ПА. После того, как изохорный газ нагрелся до температуры окружающей среды, давление в цилиндре повысится до P2. Тогда адиабатический индекс можно вычислить по формуле:

Адиабатический индекс всегда больше 1, поэтому при адиабатическом сжатии газа — как идеального, так и реального — температура газа всегда поднимается до меньшего объема, а при расширении газ охлаждается. Это свойство адиабатического процесса, называемого пневматическим кремнем, используется в дизельных двигателях, где горючая смесь сжимается в цилиндре и воспламеняется теплом. Напомним первый закон термодинамики: , где — внутренняя энергия системы, а А — выполненная на ней работа. Поскольку работа, выполняемая газом, идет только для изменения ее внутренней энергии — и, следовательно, температуры. Из уравнения Пуассона можно получить формулу для расчета газовой операции в адиабатическом процессе:

Здесь n — количество газа в молях, R — универсальная газовая постоянная, T — абсолютная температура газа.

Уравнение Пуассона для адиабатического процесса используется не только при расчетах двигателей внутреннего сгорания, но и при проектировании холодильных машин.

Стоит вспомнить, что уравнение Пуассона точно описывает только равновесный адиабатический процесс, состоящий из непрерывно меняющихся состояний равновесия. Если на самом деле мы открываем клапан в цилиндре так, чтобы газ расширялся адиабатически, то возникнет нестационарный переходный процесс с газовой турбулентностью, который будет испаряться из-за макроскопического трения.

Примеры решения проблем

Одноатомный идеальный газ был адиабатически сжат, так что его объем увеличился в 2 раза. Как изменится давление газа?

Адиабатический индекс для одноатомного газа равен . Однако его можно вычислить по формуле:

где R — универсальная газовая постоянная, а і — степень свободы молекулы газа. Для одноатомного газа степень свободы равна 3: это означает, что центр молекулы может выполнять поступательное движение вдоль трех координатных осей.

Поэтому адиабатический индекс:

Представьте себе состояние газа в начале и конце адиабатического процесса через уравнение Пуассона:

Давление уменьшится в 3.175 раз.

100 молей двухатомного идеального газа было адиабатически сжато при 300 К. В то же время давление газа увеличилось в 3 раза. Как изменился газ?

Степень свободы двухатомной молекулы равна i = 5, так как молекула может двигаться постепенно вдоль трех координатных осей и вращаться вокруг двух осей.

Рассчитайте диатомический адиабатический индекс:

Определите, как изменяется объем газа при адиабатическом сжатии, из уравнения Пуассона:

Это означает, что объем газа уменьшился в 2,19 раза.

Вычислите работу газа, используя следующую формулу:

💥 Видео

Формула ПуассонаСкачать

Формула Пуассона

Уравнения математической физики 11 Формула Пуассона для уравнения теплопроводностиСкачать

Уравнения математической физики 11 Формула Пуассона для уравнения теплопроводности

Билет №04 "Потенциал электростатического поля"Скачать

Билет №04 "Потенциал электростатического поля"

Физический смысл коэффициента ПуассонаСкачать

Физический смысл коэффициента Пуассона

Урок 172. Применение 1 закона термодинамики для различных процессовСкачать

Урок 172. Применение 1 закона термодинамики для различных процессов

Расстановка коэффициентов в химических реакциях: как просто это сделатьСкачать

Расстановка коэффициентов в химических реакциях: как просто это сделать

ЧК_МИФ_3_1_2_5 (L3) УРАВНЕНИЕ ПУАССОНАСкачать

ЧК_МИФ_3_1_2_5 (L3)   УРАВНЕНИЕ ПУАССОНА

Формула ПуассонаСкачать

Формула Пуассона

Уравнение ПуассонаСкачать

Уравнение Пуассона

Обратимые и необратимые процессы. Энтропия. Второй закон термодинамики. 10 класс.Скачать

Обратимые и необратимые процессы. Энтропия. Второй закон термодинамики. 10 класс.

Электростатика | работа эл. поля | 10 | ур. Пуассона для электрического поля | для взрослыхСкачать

Электростатика | работа эл. поля | 10 | ур. Пуассона для электрического поля | для взрослых

Первое начало термодинамики в изопроцессах. Уравнение ПуассонаСкачать

Первое начало термодинамики в изопроцессах. Уравнение Пуассона

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.

Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.Скачать

Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.

Задача Пуассона. САМАЯ ИЗВЕСТНАЯ ЗАДАЧА НА ПЕРЕЛИВАНИЯ!Скачать

Задача Пуассона. САМАЯ ИЗВЕСТНАЯ ЗАДАЧА НА ПЕРЕЛИВАНИЯ!

Оператор набла (оператор Гамильтона) и оператор ЛапласаСкачать

Оператор набла (оператор Гамильтона) и оператор Лапласа
Поделиться или сохранить к себе: