Уравнение прямой проходящей через вершину гиперболы

Видео:Видеоурок "Гипербола"Скачать

Видеоурок "Гипербола"

Кривые второго порядка на плоскости

Уравнение вида Ах 2 +2Вхуу 2 +2Dх+2Еу+F=0 называется общим уравнением кривой второго порядка. Коэффициенты уравнения – действительные числа, причем хотя бы одно из чисел А,В,С отлично от нуля. Такое уравнение определяет на плоскости окружность, эллипс, гиперболу или параболу.

В табл. 2 приведены уравнения кривых второго порядка и определен смысл входящих в них коэффициентов.

№ п/пОпределение кривойВид уравненияПримечание
Уравнение прямой проходящей через вершину гиперболыЭллипс – множество всех точек плоскости, сумма расстояний от которых до двух точек, называемых фокусами, есть величина постоянная (рис.4) Уравнение прямой проходящей через вершину гиперболы— каноническое уравнение эллипса2а – большая ось; 2b – малая ось 2с–межфокус-ное расстояние с 2 =а 2 -b 2 ; Уравнение прямой проходящей через вершину гиперболы— эксцентриси-тет, 0 2 =а 2 +b 2 ; Уравнение прямой проходящей через вершину гиперболы— эксцентри-ситет, e>1. Точки А12 – вершины гиперболы. Прямые Уравнение прямой проходящей через вершину гиперболы— асимптоты
3.Парабола — множество точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и данной прямой, называемой директриссой.

Рис.6б 6б 31
Уравнение прямой проходящей через вершину гиперболы
х
F
х 2 =2py

у 2 =2px – каноническое уравнение параболы, симметричной относительно оси ОХ x 2 =2 – каноническое уравнение параболы, симметричной относительно оси ОY (рис.6б)F Уравнение прямой проходящей через вершину гиперболы— фокус, Уравнение прямой проходящей через вершину гиперболыди-ректриса. Точка (0;0) – вершина параболы (рис.6а) F Уравнение прямой проходящей через вершину гиперболы— фокус, Уравнение прямой проходящей через вершину гиперболыди-ректриса. Точка (0;0) – вершина параболы (рис.6б)

1. Найти координаты фокусов и эксцентриситет эллипса 36х 2 +100у 2 =3600.

Приведем уравнение эллипса к каноническому виду:

36х 2 +100у 2 =3600, поделим обе части уравнения на 3600:

Уравнение прямой проходящей через вершину гиперболы, a 2 =100, b 2 =36.

С= Уравнение прямой проходящей через вершину гиперболы.

Эксцентриситет: Уравнение прямой проходящей через вершину гиперболы.

Ответ: Fл(-8,0); Fп(8,0); Уравнение прямой проходящей через вершину гиперболы=0,8.

2.Написать уравнение прямой, проходящей через левую вершину эллипса 16х 2 +25у 2 =400 и точку М0(1;-3) (рис.7).

у

Решение:

-4
-5
М
х
М0
Рис. 7

Приведем уравнение 16х 2 +25у 2 =400 к каноническому виду.

Уравнение прямой проходящей через вершину гиперболы, a 2 =25, b 2 =16.

Левая вершина эллипса (-а,0)Þ(-5,0). Обозначим М(-5,0). Составим уравнение прямой, проходящей через точки М0 и М:

Уравнение прямой проходящей через вершину гиперболы.

Ответ: Уравнение прямой проходящей через вершину гиперболы.

3. Написать уравнение прямой, проходящей через правый фокус гиперболы 9х 2 -16у 2 =144 и параллельно прямой 3х-2у+6=0 (рис.8).

-3
-4
FП
Уравнение прямой проходящей через вершину гиперболы
х
у
Рис.8

Приведем уравнение 9х 2 -16у 2 =144 к каноническому виду Уравнение прямой проходящей через вершину гиперболы, a 2 =16, b 2 =9.

Правый фокус гиперболы Fп(с,0);

С= Уравнение прямой проходящей через вершину гиперболы.

Пусть уравнение искомой прямой имеет вид y=k2x+b2;

Значит, y=(3/2)x+b2 проходит через точку Fп(5,0), то 0=(3/2)5+b2Þb2=-15/2. Итак, Уравнение прямой проходящей через вершину гиперболыÛ3x-2у-15=0.

Искомая прямая проходит через точку Fл(5,0) параллельно прямой 3х-2у+6=0. Из общего уравнения заданной прямой определяем вектор нормали Уравнение прямой проходящей через вершину гиперболы, который будет являться нормалью и для параллельной ей искомой прямой. Пользуемся уравнениемА(х-х0)+В(у-у0)=0, 3(х-5)-2(у-0)=0, 3х-2у-15=0.

4. Написать уравнение прямой l, проходящей через нижнюю вершину эллипса 4х 2 +20у 2 =80, перпендикулярно прямой 2ху+1=0 (рис.9).

М
Уравнение прямой проходящей через вершину гиперболы
-2
y
Уравнение прямой проходящей через вершину гиперболы
l
х
Уравнение прямой проходящей через вершину гиперболы
Рис. 9

Приведем уравнение к каноническому виду 4х 2 +20у 2 =80,

Уравнение прямой проходящей через вершину гиперболы, a 2 =20, b 2 =4.

Нижняя вершина имеет вид: М(0;-b)=М(0;-2).

Условие перпендикулярности двух прямых: k1k3=-1.

k2=-1: k1Þk2=-1/2, Уравнение прямой проходящей через вершину гиперболы

Так как прямая Уравнение прямой проходящей через вершину гиперболыпроходит через точку М(0;-2), то Уравнение прямой проходящей через вершину гиперболы.

Итак, Уравнение прямой проходящей через вершину гиперболыÞх+2у+4=0.

По условию задачи требуется написать уравнение прямой l, проходящей через точку М(0;-2) перпендикулярно прямой 2ху+1=0. Из общего уравнения прямой определяем координаты вектора нормали Уравнение прямой проходящей через вершину гиперболы. Несложно представить (рис.9), что если искомая прямая l перпендикулярна заданной, то вектор Уравнение прямой проходящей через вершину гиперболыпараллелен искомой прямой, т.е. является ее направляющим вектором. Используя уравнение прямой, проходящей через точку М0(х0,у0) параллельно вектору Уравнение прямой проходящей через вершину гиперболы, получим:

Уравнение прямой проходящей через вершину гиперболы. У нас Уравнение прямой проходящей через вершину гиперболы; Уравнение прямой проходящей через вершину гиперболы;

5. Написать уравнение прямой, проходящей через правый фокус эллипса Уравнение прямой проходящей через вершину гиперболыпод углом 45˚ к оси Ох.

Правый фокус эллипса имеет вид Fп(с,0);

С= Уравнение прямой проходящей через вершину гиперболы.

Так как прямая проходит под углом 45˚ к оси Ох, то k=tgα=tg45˚=1.

Пусть уравнение искомой прямой имеет вид: y=kx+b;

Так как прямая проходит через точку Fп(3,0), то 0=3+bÞb=-3.

Плоскость в пространстве

Любое уравнение первой степени в трехмерном пространстве определяет какую-либо плоскость.

Разным способам задания плоскости соответствуют различные виды уравнений (табл. 3.)

№ п/пВид уравненияСмысл входящих в уравнение коэффициентовПримечание
Уравнение плоскости, проходящей через данную точку перпендикулярно заданному вектору А(х-х0)+В(у-у0)+С(z-z0)=0(x0,y0,z0) – координаты заданной точки; АВС – координаты заданного вектораВектор N(А,В,С) называется нормальным вектором плоскости
Общее уравнение плоскости Ахуz+D=0D=-Ax0-By0-Cz0, АВС – нормальный вектор плоскости;Это уравнение получается из уравнения (1) эле-ментарными
№ п/пВид уравненияСмысл входящих в уравнение коэффициентовПримечание
х0,y0,z0 – координаты данной точкипреобразованиями
Уравнение плоскости, проходящей через три заданные точки Уравнение прямой проходящей через вершину гиперболыМ1(х1,y1,z1), М2(х2,y2,z2), М3(х3,y3,z3) – три точки, заданные своими координатамиТочки М1, М2, М3 не должны лежать на одной прямой
Уравнение плоскости в отрезках на осях Уравнение прямой проходящей через вершину гиперболыа,b,c – отрезки, отсекаемые плоскостью от осей координатаbc≠0

Пусть даны две плоскости a1 и a2:

Угол между двумя плоскостями определяется как Уравнение прямой проходящей через вершину гиперболы.

Условие перпендикулярности двух плоскостей:

Уравнение прямой проходящей через вершину гиперболы=0, то есть Уравнение прямой проходящей через вершину гиперболы=0.

Условие параллельности двух плоскостей:

Уравнение прямой проходящей через вершину гиперболыили Уравнение прямой проходящей через вершину гиперболы.

Расстояние от точки до плоскости:

Уравнение прямой проходящей через вершину гиперболы,

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Что такое гипербола

Уравнение прямой проходящей через вершину гиперболы

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

Уравнение прямой проходящей через вершину гиперболы

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

  • Две симметричные ветви.
  • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

Уравнение прямой проходящей через вершину гиперболы

Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) — 4(y^2) = 20.



    Приведем данное уравнение к каноническому виду (x^2)/(a^2) — (y^2)/(b^2) = 1.

Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

Уравнение прямой проходящей через вершину гиперболы

  • Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
    Уравнение прямой проходящей через вершину гиперболы
  • Выделяем квадраты в знаменателях:
    Уравнение прямой проходящей через вершину гиперболы
  • Готово. Можно начертить гиперболу.
  • Можно было сделать проще и дроби левой части 5(x^2)/20 — 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 — (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

    Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 — 8(y^2)/20 = 1.

    Уравнение прямой проходящей через вершину гиперболы
    Уравнение прямой проходящей через вершину гиперболы

    1. Произведем сокращение при помощи трехэтажной дроби:
    2. Воспользуемся каноническим уравнением
      Уравнение прямой проходящей через вершину гиперболы
      • Найдем асимптоты гиперболы. Вот так: Уравнение прямой проходящей через вершину гиперболы
        Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
      • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

    Если y = 0, то каноническое уравнение (x^2)/(a^2) — (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

    Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    Найдем дополнительные точки — хватит двух-трех.

    В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

    Способ такой же, как при построении эллипса. Из полученного канонического уравнения

    Уравнение прямой проходящей через вершину гиперболы

    на черновике выражаем:

    Уравнение прямой проходящей через вершину гиперболы

    Уравнение распадается на две функции:

    Уравнение прямой проходящей через вершину гиперболы

    — определяет верхние дуги гиперболы (то, что ищем);

    Уравнение прямой проходящей через вершину гиперболы

    — определяет нижние дуги гиперболы.

    Далее найдем точки с абсциссами x = 3, x = 4:

    Уравнение прямой проходящей через вершину гиперболы

  • Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.
  • Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

    Действительная ось гиперболы — отрезок А1А2.

    Расстояние между вершинами — длина |A1A2| = 2a.

    Действительная полуось гиперболы — число a = |OA1| = |OA2|.

    Мнимая полуось гиперболы — число b.

    В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

    Уравнение прямой проходящей через вершину гиперболы

    Видео:§22 Исследование канонического уравнения гиперболыСкачать

    §22 Исследование канонического уравнения гиперболы

    Форма гиперболы

    Повторим основные термины и узнаем, какие у гиперболы бывают формы.

    Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

    Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

    Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

    Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

    Уравнение прямой проходящей через вершину гиперболы

    Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

    Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

    Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

    Уравнение прямой проходящей через вершину гиперболы

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

    Математика без Ху!ни. Кривые второго порядка. Эллипс.

    Фокальное свойство гиперболы

    Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

    Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

    Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .

    Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

    Уравнение прямой проходящей через вершину гиперболы

    Рассмотрим, как это выглядит на прямоугольной системе координат:

    • пусть центр O гиперболы будет началом системы координат;
    • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
    • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

    Уравнение прямой проходящей через вершину гиперболы

    Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

    Уравнение прямой проходящей через вершину гиперболы

    Запишем это уравнение в координатной форме:

    Уравнение прямой проходящей через вершину гиперболы

    Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

    Уравнение прямой проходящей через вершину гиперболы

    , т.е. выбранная система координат является канонической.

    Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) — (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

    Видео:Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

    Записать уравнение прямой параллельной или перпендикулярной данной.

    Директориальное свойство гиперболы

    Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

    ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

    Директориальное свойство гиперболы звучит так:

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

    Уравнение прямой проходящей через вершину гиперболы

    На самом деле для фокуса F2 и директрисы d2 условие

    Уравнение прямой проходящей через вершину гиперболы

    можно записать в координатной форме так:

    Уравнение прямой проходящей через вершину гиперболы

    Избавляясь от иррациональности и заменяя e = a/c, c^2 — a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

    Уравнение прямой проходящей через вершину гиперболы

    Видео:Уравнение прямой в пространстве через 2 точки. 11 класс.Скачать

    Уравнение прямой в пространстве через 2 точки. 11 класс.

    Построение гиперболы

    Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

    Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

    В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

    Уравнение прямой проходящей через вершину гиперболы

    Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

    Уравнение прямой проходящей через вершину гиперболы

    Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

    По определению эксцентриситет гиперболы равен Уравнение прямой проходящей через вершину гиперболы

    Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

    Так как b^2 = c^2 — a^2, то величина b изменится.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

    Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 — y^2 = a^2

    Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 — a^2 = a^2. И так как а и b положительные числа, получаем a = b.

    Видео:Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

    Аналитическая геометрия, 6 урок, Уравнение прямой

    Гипербола: формулы, примеры решения задач

    Видео:Видеоурок "Уравнение прямой, проходящей через две точки"Скачать

    Видеоурок "Уравнение прямой, проходящей через две точки"

    Определение гиперболы, решаем задачи вместе

    Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

    Каноническое уравнение гиперболы имеет вид:

    Уравнение прямой проходящей через вершину гиперболы,

    где a и b — длины полуосей, действительной и мнимой.

    На чертеже ниже фокусы обозначены как Уравнение прямой проходящей через вершину гиперболыи Уравнение прямой проходящей через вершину гиперболы.

    На чертеже ветви гиперболы — бордового цвета.

    Уравнение прямой проходящей через вершину гиперболы

    При a = b гипербола называется равносторонней.

    Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

    Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

    Уравнение прямой проходящей через вершину гиперболы.

    Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

    Точки Уравнение прямой проходящей через вершину гиперболыи Уравнение прямой проходящей через вершину гиперболы, где

    Уравнение прямой проходящей через вершину гиперболы,

    называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

    Уравнение прямой проходящей через вершину гиперболы

    называется эксцентриситетом гиперболы.

    Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

    Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

    Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

    Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

    То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

    Подставляем и вычисляем:

    Уравнение прямой проходящей через вершину гиперболы

    Получаем требуемое в условии задачи каноническое уравнение гиперболы:

    Уравнение прямой проходящей через вершину гиперболы.

    Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет Уравнение прямой проходящей через вершину гиперболы.

    Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет — это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

    Уравнение прямой проходящей через вершину гиперболы.

    Результат — каноническое уравнение гиперболы:

    Уравнение прямой проходящей через вершину гиперболы

    Если Уравнение прямой проходящей через вершину гиперболы— произвольная точка левой ветви гиперболы (Уравнение прямой проходящей через вершину гиперболы) и Уравнение прямой проходящей через вершину гиперболы— расстояния до этой точки от фокусов Уравнение прямой проходящей через вершину гиперболы, то формулы для расстояний — следующие:

    Уравнение прямой проходящей через вершину гиперболы.

    Если Уравнение прямой проходящей через вершину гиперболы— произвольная точка правой ветви гиперболы (Уравнение прямой проходящей через вершину гиперболы) и Уравнение прямой проходящей через вершину гиперболы— расстояния до этой точки от фокусов Уравнение прямой проходящей через вершину гиперболы, то формулы для расстояний — следующие:

    Уравнение прямой проходящей через вершину гиперболы.

    На чертеже расстояния обозначены оранжевыми линиями.

    Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

    Прямые, определяемые уравнениями

    Уравнение прямой проходящей через вершину гиперболы,

    называются директрисами гиперболы (на чертеже — прямые ярко-красного цвета).

    Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

    Уравнение прямой проходящей через вершину гиперболы,

    где Уравнение прямой проходящей через вершину гиперболы— расстояние от левого фокуса до точки любой ветви гиперболы, Уравнение прямой проходящей через вершину гиперболы— расстояние от правого фокуса до точки любой ветви гиперболы и Уравнение прямой проходящей через вершину гиперболыи Уравнение прямой проходящей через вершину гиперболы— расстояния этой точки до директрис Уравнение прямой проходящей через вершину гиперболыи Уравнение прямой проходящей через вершину гиперболы.

    Пример 4. Дана гипербола Уравнение прямой проходящей через вершину гиперболы. Составить уравнение её директрис.

    Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. Уравнение прямой проходящей через вершину гиперболы. Вычисляем:

    Уравнение прямой проходящей через вершину гиперболы.

    Получаем уравнение директрис гиперболы:

    Уравнение прямой проходящей через вершину гиперболы

    Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке «Эллипс» это пример 7.

    Характерной особенностью гиперболы является наличие асимптот — прямых, к которым приближаются точки гиперболы при удалении от центра.

    Асимптоты гиперболы определяются уравнениями

    Уравнение прямой проходящей через вершину гиперболы.

    На чертеже асимптоты — прямые серого цвета, проходящие через начало координат O.

    Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

    Уравнение прямой проходящей через вершину гиперболы, где Уравнение прямой проходящей через вершину гиперболы.

    В том случае, когда угол между асимптотами — прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

    Пример 5. Даны уравнения асимптот гиперболы Уравнение прямой проходящей через вершину гиперболыи координаты точки Уравнение прямой проходящей через вершину гиперболы, лежащей на гиперболе. Составить уравнение гиперболы.

    Решение. Дробь в уравнении асимптот гиперболы — это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения Уравнение прямой проходящей через вершину гиперболы. Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

    Уравнение прямой проходящей через вершину гиперболы.

    Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

    Уравнение прямой проходящей через вершину гиперболы

    Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

    Видео:УРАВНЕНИЕ ПРЯМОЙСкачать

    УРАВНЕНИЕ ПРЯМОЙ

    Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

    Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

    1) b = 4 , а один из фокусов в точке (5; 0)

    2) действительная ось 6, расстояние между фокусами 8

    3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы Уравнение прямой проходящей через вершину гиперболы

    📺 Видео

    Лекция 31.2. Кривые второго порядка. Гипербола.Скачать

    Лекция 31.2. Кривые второго порядка. Гипербола.

    IIT JEE 2010, Лист 1, Задача 50, Эксцентриситет гиперболыСкачать

    IIT JEE 2010, Лист 1, Задача 50, Эксцентриситет гиперболы

    Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

    Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

    Лекция 23. Виды уравнений прямой на плоскости.Скачать

    Лекция 23. Виды уравнений прямой на плоскости.

    Уравнение параллельной прямойСкачать

    Уравнение параллельной прямой

    Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать

    Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математика

    Видеоурок "Общие уравнения прямой"Скачать

    Видеоурок "Общие уравнения прямой"

    §29 Эксцентриситет гиперболыСкачать

    §29 Эксцентриситет гиперболы

    Математика без Ху!ни. Уравнение плоскости.Скачать

    Математика без Ху!ни. Уравнение плоскости.

    Уравнения прямой на плоскости | Векторная алгебраСкачать

    Уравнения прямой на плоскости | Векторная алгебра
    Поделиться или сохранить к себе: