Уравнение прямой перпендикулярной данной и проходящей через точку не лежащую на данной прямой

Уравнение перпендикулярной прямой

Как составить уравнение прямой перпендикулярной данной прямой и проходящей через данную точку?

Пусть y=k1x+b1 — данная прямая. С учётом условия перпендикулярности прямых уравнение прямой, перпендикулярной данной, имеет вид

Уравнение прямой перпендикулярной данной и проходящей через точку не лежащую на данной прямой

Если эта прямая проходит через точку M(xo; yo), то её координаты удовлетворяют уравнению прямой. Подставив в уравнение xo и yo, мы найдем b.

1) Написать уравнение прямой, проходящей через точку A(-10;3), перпендикулярной прямой y=5x-11.

Так как прямые перпендикулярны, если их угловые коэффициенты обратны по абсолютной величине и противоположны по знаку, то

Уравнение прямой перпендикулярной данной и проходящей через точку не лежащую на данной прямой

Значит уравнение прямой, перпендикулярной прямой y=5x-11, имеет вид

Уравнение прямой перпендикулярной данной и проходящей через точку не лежащую на данной прямой

Так как прямая проходит через точку A(-10;3), то координаты A удовлетворяют уравнению прямой:

Уравнение прямой перпендикулярной данной и проходящей через точку не лежащую на данной прямой

Итак, уравнение прямой, перпендикулярной прямой y=5x-11 и проходящей через точку A(-10;3)

Уравнение прямой перпендикулярной данной и проходящей через точку не лежащую на данной прямой

2) Написать уравнение прямой, перпендикулярной прямой x= -2, проходящей через точку M(-5;9).

Прямая x= -2 перпендикулярна оси абсцисс. Значит, прямая, уравнение которой мы ищем, параллельна оси абсцисс, то есть ищем уравнение прямой в виде y=b.

Так как искомая прямая проходит через точку M(-5;9), то координаты M удовлетворяют уравнению прямой: y=9.

3) Написать уравнение прямой, перпендикулярной прямой y=4, проходящей через точку F(7;-5).

Прямая y=4 перпендикулярна оси ординат. Следовательно, прямая, уравнение которой мы ищем, параллельна оси ординат, а значит, её уравнение имеет вид x=a.

Так как эта прямая проходит через точку F(7;-5), то координаты F удовлетворяют уравнению прямой: x=7.

Видео:Перпендикуляр к прямой через заданную точку.Скачать

Перпендикуляр к прямой через заданную точку.

Уравнение прямой, проходящей через заданную точку перпендикулярно заданной прямой

В данной статье научимся составлять уравнения прямой, проходящей через заданную точку на плоскости перпендикулярно заданной прямой. Изучим теоретические сведения, приведем наглядные примеры, где необходимо записать такое уравнение.

Видео:Построение прямой, перпендикулярной данной и проходящей через данную точкуСкачать

Построение прямой, перпендикулярной данной и проходящей через данную точку

Принцип составления уравнения прямой, проходящей через заданную точку плоскости перпендикулярно заданной прямой

Перед нахождением уравнения прямой, проходящей через заданную точку перпендикулярно заданной прямой. Теорема рассматривается в средней школе. Через заданную точку, лежащую на плоскости, можно провести единственную прямую, перпендикулярную данной. Если имеется трехмерное пространство, то количество таких прямых увеличится до бесконечности.

Если плоскость α проходит через заданную точку М 1 перпендикулярно к заданной прямой b , то прямые, лежащие в этой плоскости, в том числе и проходящая через М 1 являются перпендикулярными заданной прямой b .

Уравнение прямой перпендикулярной данной и проходящей через точку не лежащую на данной прямой

Отсюда можно прийти к выводу, что составление уравнения прямой, проходящей через заданную точку перпендикулярно заданной прямой применимо только для случая на плоскости.

Задачи с трехмерным пространством подразумевают поиск уравнения плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

Если на плоскости с системой координат О х у z имеем прямую b , то ей соответствует уравнение прямой на плоскости, задается точка с координатами M 1 ( x 1 , y 1 ) , а необходимо составить уравнение прямой a , которая проходит через точку М 1 , причем перпендикулярно прямой b .

По условию имеем координаты точки М 1 . Для написания уравнения прямой необходимо иметь координаты направляющего вектора прямой a , или координаты нормального вектора прямой a , или угловой коэффициент прямой a .

Необходимо получить данные из заданного уравнения прямой b . По условию прямые a и b перпендикулярные, значит, направляющий вектор прямой b считается нормальным вектором прямой a . Отсюда получим, что угловые коэффициенты обозначаются как k b и k a . Они связаны при помощи соотношения k b · k a = — 1 .

Получили, что направляющий вектор прямой b имеет вид b → = ( b x , b y ) , отсюда нормальный вектор — n a → = ( A 2 , B 2 ) , где значения A 2 = b x , B 2 = b y . Тогда запишем общее уравнение прямой, проходящее через точку с координатами M 1 ( x 1 , y 1 ) , имеющее нормальный вектор n a → = ( A 2 , B 2 ) , имеющее вид A 2 · ( x — x 1 ) + B 2 · ( y — y 1 ) = 0 .

Нормальный вектор прямой b определен и имеет вид n b → = ( A 1 , B 1 ) , тогда направляющий вектор прямой a является вектором a → = ( a x , a y ) , где значения a x = A 1 , a y = B 1 . Значит осталось составить каноническое или параметрическое уравнение прямой a , проходящее через точку с координатами M 1 ( x 1 , y 1 ) с направляющим вектором a → = ( a x , a y ) , имеющее вид x — x 1 a x = y — y 1 a y или x = x 1 + a x · λ y = y 1 + a y · λ соответственно.

После нахождения углового коэффициента k b прямой b можно высчитать угловой коэффициент прямой a . Он будет равен — 1 k b . Отсюда следует, что можно записать уравнение прямой a , проходящей через M 1 ( x 1 , y 1 ) с угловым коэффициентом — 1 k b в виде y — y 1 = — 1 k b · ( x — x 1 ) .

Полученное уравнение прямой, проходящее через заданную точку плоскости перпендикулярно заданной. Если того требуют обстоятельства, можно переходить к другому виду данного уравнения.

Видео:Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

Решение примеров

Рассмотрим составление уравнения прямой, проходящей через заданную точку плоскости и перпендикулярно заданной прямой.

Записать уравнение прямой а, которая проходит через точку с координатами M 1 ( 7 , — 9 ) и перпендикулярна прямой b , которое задано каноническим уравнением прямой x — 2 3 = y + 4 1 .

Из условия имеем, что b → = ( 3 , 1 ) является направляющим вектором прямой x — 2 3 = y + 4 1 . Координаты вектора b → = 3 , 1 являются координатами нормального вектора прямой a , так как прямые a и b взаимно перпендикулярны. Значит, получаем n a → = ( 3 , 1 ) . Теперь необходимо записать уравнение прямой, проходящее через точку M 1 ( 7 , — 9 ) , имеющее нормальный вектор с координатами n a → = ( 3 , 1 ) .

Получим уравнение вида: 3 · ( x — 7 ) + 1 · ( y — ( — 9 ) ) = 0 ⇔ 3 x + y — 12 = 0

Полученное уравнение является искомым.

Ответ: 3 x + y — 12 = 0 .

Составить уравнение прямой, которая проходит через начало координат системы координат О х у z , перпендикулярно прямой 2 x — y + 1 = 0 .

Имеем, что n b → = ( 2 , — 1 ) является нормальным вектором заданной прямой. Отсюда a → = ( 2 , — 1 ) — координаты искомого направляющего вектора прямой.

Зафиксируем уравнение прямой, проходящую через начало координат с направляющим вектором a → = ( 2 , — 1 ) . Получим, что x — 0 2 = y + 0 — 1 ⇔ x 2 = y — 1 . Полученное выражение является уравнение прямой, проходящей через начало координат перпендикулярно прямой 2 x — y + 1 = 0 .

Ответ: x 2 = y — 1 .

Записать уравнение прямой, проходящей через точку с координатами M 1 ( 5 , — 3 ) перпендикулярно прямой y = — 5 2 x + 6 .

Из уравнения y = — 5 2 x + 6 угловой коэффициент имеет значение — 5 2 . Угловой коэффициент прямой, которая перпендикулярна ей имеет значение — 1 — 5 2 = 2 5 . Отсюда делаем вывод, что прямая, проходящая через точку с координатами M 1 ( 5 , — 3 ) перпендикулярно прямой y = — 5 2 x + 6 , равна y — ( — 3 ) = 2 5 · x — 5 ⇔ y = 2 5 x — 5 .

Видео:Построить перпендикуляр к прямой из точки не принадлежащей этой прямой.Скачать

Построить перпендикуляр к прямой из точки не принадлежащей этой прямой.

Уравнение прямой перпендикулярной данной и проходящей через точку не лежащую на данной прямой

Уравнение прямой перпендикулярной данной и проходящей через точку не лежащую на данной прямой1. Анализ. Предполагаем, что задача решена: ОС ^ а (рис. 26):

Заметим, что легко построить равнобедренный треугольник, у которого СО – медиана. Для этого достаточно отложить на прямой а равные отрезки ОВ и ОK, а затем соединить какую угодно точку перпендикуляра, кроме точки О, с концами отрезка ВK.

1) Проведем окружность произвольного радиуса с центром в точке О. Точки пересечения окружности с прямой а обозначим В и K.
2) Проведем окружность с центром в точке В, радиус которой больше половины длины отрезка ВK.
3) Проведем окружность того же радиуса с центром в точке K.
4) Одну их точек пересечения окружностей обозначим С.
5) Проведем прямую ОС.

Уравнение прямой перпендикулярной данной и проходящей через точку не лежащую на данной прямойПостроение прямой, перпендикулярной а, которая проходит через точку О, не лежащую на прямой а.

1. Анализ. Предполагаем, что задача решена: ОС ^ а (рис. 27):

Легко построить равнобедренный треугольник АОВ, в котором ОМ является высотой, и поэтому медианой и биссектрисой. Для этого достаточно провести окружность с центром в точке О и обозначить точки пересечения с прямой а буквами А и В (рис. 28).

Остается найти еще одну точку перпендикуляра, который проходит через середину М отрезка АВ. Для этого достаточно построить еще один равнобедренный треугольник с основанием АВ.

Уравнение прямой перпендикулярной данной и проходящей через точку не лежащую на данной прямой2. Построение.

1) Проведем окружность произвольного радиуса с центром в точке О. Точки пересечения окружности с прямой а обозначим А и В.
2) Проведем окружность с центром в точке А, радиус которой больше половины длины отрезка АВ. (Радиус этой окружности может быть таким же, как радиус первой окружности с с центром в точке О.)
3) Проведем окружность того же радиуса с центром в точке В.
4) Одну их точек пересечения окружностей обозначим С.
5) Проведем прямую ОС .

💡 Видео

Часть 8 Уравнение прямой проходящей через точку и перпендикулярную к заданной прямойСкачать

Часть 8 Уравнение прямой проходящей через точку и перпендикулярную к заданной прямой

Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.Скачать

Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.

Как построить прямую, перпендикулярную данной прямой через точку, которая лежит на данной прямойСкачать

Как построить прямую, перпендикулярную данной прямой через точку, которая лежит на данной прямой

7 класс, 16 урок, Перпендикуляр к прямойСкачать

7 класс, 16 урок, Перпендикуляр к прямой

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Построение прямой параллельной данной прямой проходящей через точку вне данной прямойСкачать

Построение прямой параллельной данной прямой проходящей через точку вне данной прямой

Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

ПОСТРОЕНИЕ ПРЯМОЙ ПЕРПЕНДИКУЛЯРНОЙ ДАННОЙ И ПРОХОДЯЩЕЙ ЧЕРЕЗ ДАННУЮ ТОЧКУ. ЗАДАЧИ. ГЕОМЕТРИЯ 7 классСкачать

ПОСТРОЕНИЕ ПРЯМОЙ ПЕРПЕНДИКУЛЯРНОЙ ДАННОЙ И ПРОХОДЯЩЕЙ ЧЕРЕЗ ДАННУЮ ТОЧКУ. ЗАДАЧИ. ГЕОМЕТРИЯ 7 класс

№11. Даны прямая и точка, не лежащая на этой прямой. Докажите, что все прямые, проходящие черезСкачать

№11. Даны прямая и точка, не лежащая на этой прямой. Докажите, что все прямые, проходящие через

10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

ПОСТРОЕНИЕ ПЕРПЕНДИКУЛЯРА ИЗ ТОЧКИ НЕ ЛЕЖАЩЕЙ НА ДАННОЙ ПРЯМОЙ. Примеры | МАТЕМАТИКА 6 классСкачать

ПОСТРОЕНИЕ ПЕРПЕНДИКУЛЯРА ИЗ ТОЧКИ НЕ ЛЕЖАЩЕЙ НА ДАННОЙ ПРЯМОЙ. Примеры | МАТЕМАТИКА 6 класс

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

10 класс, 18 урок, Теорема о прямой, перпендикулярной к плоскостиСкачать

10 класс, 18 урок, Теорема о прямой, перпендикулярной к плоскости

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

12. Уравнения прямой в пространстве Решение задачСкачать

12. Уравнения прямой в пространстве Решение задач
Поделиться или сохранить к себе: