Уравнение предельного равновесия для грунтов

Видео:📚Лекция VI-1. Теория предельного равновесияСкачать

📚Лекция VI-1. Теория предельного равновесия

Уравнение предельного равновесия для сыпучих и связных грунтов

Угол наибольшего отклонения. При действии на поверхность грунта местной нагрузки в любой точке грунта М (рис. 4.4, а) для любой площадки mn, проведенной через эту точку пол углом α, возникнут нормальные и касательные напряжения. К нормальным напряжениям при математическом рассмотрении вопроса следует отнести и силы связности; суммарно оцениваемые давлением связности ре. Тогда на площадку mn (рис. 4.4, а) будут действовать нормальное напряжение σα + ре и касательное τα.

Уравнение предельного равновесия для грунтов

Рис. 4.4. Круги предельных напряжений: а – схема напряжений в данной точке; кривые сдвига для сыпучих (б) и связных (в) грунтов

При изменении угла α величины составляющих напряжений также будут меняться, и если касательные (сдвигающие) напряжения достигнут определенной доли от нормальных, то, как показывают опыты на сдвиг, произойдет скольжение одной части грунта по другой.

Таким образом, условием предельного равновесия грунта в данной точке будет

Уравнение предельного равновесия для грунтов

Уравнение предельного равновесия для грунтов

Если f — величина постоянная, то в предельном состоянии она представляет собой тангенс угла наклона прямолинейной огибающей кругов предельных напряжений (рис. 4.4, б,в).

С другой стороны, согласно рис. 4.4, а

Уравнение предельного равновесия для грунтов

Это отношение равно тангенсу угла отклонения Θ, т. е. угла, на который отклоняется полное напряжение для площадки σ от нормали к этой площадке.

Так как через заданную точку можно провести множество площадок, то, очевидно, необходимо отыскать самую невыгодную площадку, для которой будет существовать максимальный угол отклонения Θmax. Тогда

Уравнение предельного равновесия для грунтов

Условия предельного равновесия. Для сыпучих грунтов согласно диаграмме сдвига (рис. 4.4, б) максимальное значение угла отклонения Θmax будет тогда, когда огибающая ОЕ коснется круга предельных напряжений.

Из геометрических соотношений вытекает, что поставленному условию удовлетворяет равенство:

Уравнение предельного равновесия для грунтов

где σ1 и σ2 —главные напряжения; φ — угол внутреннего трения грунта.

Это и есть условие предельного равновесия для сыпучих грунтов. Ему можно придать несколько другой вид после несложных тригонометрических преобразований, а именно

Уравнение предельного равновесия для грунтов

Уравнение предельного равновесия для грунтов

Последнее выражение весьма широко используется в теории давления грунтов на ограждения, причем знак минус (в скобках) соответствует так называемому активному давлению, а знак плюс – пассивному сопротивлению сыпучих грунтов.

Условию предельного равновесия для сыпучих грунтов иногда придают иной вид, выразив главные напряжения σ1 и σ2 через составляющие напряжения σz, σy и τzy (для плоской задачи). Тогда будем иметь выражение:

Уравнение предельного равновесия для грунтов

Для связных грунтов, подобно предыдущему, пользуясь кривой предельных напряжений (рис. 4.4,в), получим условие предельного равновесия в виде

Уравнение предельного равновесия для грунтов

Уравнение предельного равновесия для грунтов(2.25)

Уравнение предельного равновесия для грунтов

где с—сцепление грунта, определяемое как начальный параметр огибающей кругов предельных напряжений, то уравнение (2.25) может быть представлено в виде

Уравнение предельного равновесия для грунтов

Последняя формула широко используется в задачах теории предельного равновесия.

Условие предельного равновесия в составляющих напряжениях σz, σy и τzy для связных грунтов имеет следующий вид:

Уравнение предельного равновесия для грунтов

Отметим, что круг предельных напряжений дает возможность определить направления площадок скольжения для любой заданной точки.

Если соединить точку касания предельной прямой ОЕ (рис. 4.4, в) с концом отрезка, изображающего в масштабе σ2 (точка А), то направление ЕА определит направление площадки скольжения. По рис. 4.4, в

Уравнение предельного равновесия для грунтов

Уравнение предельного равновесия для грунтов

Таким образом, в условиях предельного равновесия площадки скольжения будут наклонены под углом ±( 45°+ φ/2)к направлению площадки наибольшего главного напряжения, или, что то же самое, под углом ±(45°—φ/2) к направлению главного напряжения σ1.

Дата добавления: 2015-01-29 ; просмотров: 276 ; Нарушение авторских прав

Видео:Лекция VI-1. Теория предельного равновесияСкачать

Лекция VI-1. Теория предельного равновесия

Уравнения предельного равновесия для сыпучих и связных грунтов

Угол наибольшего отклонения. При действии на поверхность грунта местной нагрузки в любой точке грунта М для любой пло­щадки тп, проведенной через эту точку под углом а (рис. 64, а), возникнут нормальные и касательные напряжения. К нормальным напряжениям при математическом рассмотрении вопроса следует отнести и силы связности, суммарно оцениваемые [см. формулу (11.23′)] давлением связности рг. Тогда на площадку тп (рис. 64, а) будут действовать нормальное напряжение оа+ре и каса­тельное Та .

При изменении угла а величина составляющих напряжений так­же будет меняться и, если касательные (сдвигающие) напряжения достигнут определенной доли от нормальных, то, как показывают опыты на сдвиг, произойдет скольжение одной части грунта по дру­гой.

Таким образом, условием предельного равновесия грунта в дан­ной точке будет

Это отношение равно тангенсу угла отклонения 9, т. е. угла, на ко­торый отклоняется полное напряжение для площадки о от нормали к этой площадке.

Уравнение предельного равновесия для грунтов

Читайте также:

  1. Адиабатический процесс. Уравнение Пуассона.
  2. Анализ инженерно-геологических условий, анализ инженерных свойств грунтов.
  3. Бегущие волны описываются [1] волновым уравнением
  4. Безусловное торможение. Сущность внешнего и запредельного торможения. Условное торможение, его виды.
  5. Билет. Условия равновесия совершенно-конкурентной фирмы в долгосрочном периоде.
  6. Бюджетные ограничения. Изменение покупательной способности потребителя. Условие потребительского равновесия
  7. В приближении идеального газа уравнение Клапейрона -Клаузиуса примет вид
  8. Введение Задача курса механики грунтов.
  9. Величины ∆G , ∆F, ∆μ (и все их вариации), характеризующие меру отклонения системы от равновесия, называются движущей силой кристаллизации.
  10. Взаимосвязь между различными константами равновесия.

Уравнение предельного равновесия для грунтов

Рис. 64. Круги предельных напряжений:

а — схема напряжений в данной точке; б— диаграмма сдвига для сыпучих грунтов; в — то же, для грунтов связных

Так как через заданную точку можно провести множество пло­щадок, то, очевидно, необходимо отыскать самую невыгодную пло­щадку, для которой будет существовать максимальный угол откло­нения бтах- Тогда

Условия предельного равновесия. Для сыпучих грунтов согласно диаграмме сдвига (см. рис. 64, б) максимальное значение угла от­клонения бтах будет тогда, когда огибающая ОЕ коснется круга предельных напряжений.

Как было показано ранее (см. гл. II, § 4) и что вытекает из гео­метрических соотношений, поставленному условию удовлетворяет

120 равенство (11.24):

где 01 и 02 — главные напряжения;

Ф — угол внутреннего трения грунта.

Это и есть условие предельного равновесия для сыпучих грун­тов. Ему можно придать несколько другой вид после несложных тригонометрических преобразований, а именно

1 — 51П ф 1 + 51Пф

Последнее выражение весьма широко используется в теории давления грунтов на ограждения, причем знак «минус» (в скобках) соответствует так называемому активному давлению, а знак «плюс» — пассивному сопротивлению сыпучих грунтов.

Условию предельного равновесия для сыпучих грунтов иногда придают иной вид, выразив главные напряжения 01 и 02 через со­ставляющие напряжения о2, ау и хуг (для плоской задачи). Тогда будем иметь следующее выражение, тождественное зависимости (11.24):

(0у + ог) У> 1уг составляющие напряжении;

у — объемный вес грунта.

В этих двух дифференциальных уравнениях три неизвестных (ог, оу и хуг); таким образом, задача является (без добавочных усло­вий) статически неопределимой. Если же добавить к этим двум уравнениям третье, например, (П.251У), то получим замкнутую систему трех уравнений с тремя неизвестными, но для предельного на­пряженного состояния, так как уравнение (П.251У) является усло­вием предельного равновесия:

Таким образом, задача в общей постановке статически опреде­лима.

Решение дифференциаль­ных уравнений равновесия (а1) и (аг) совместно с усло­вием предельного равнове­сия (аз) в дальнейшем полу­чено (проф. В. В. Соколов­ским, 1942 г.) как системы уравнений гиперболического типа.

Пространственная задача имеет замкнутую систему уравнений (статиче­ски определимую) только для случая осевой симмет­рии.

Для осесимметричной за­дачи, воспользовавшись ци­линдрической системой ко­ординат (г, т>) и приняв обо­значения составляющих на­пряжений по рис. 65, имеем следующую систему уравне­ний равновесия:

Уравнение предельного равновесия для грунтов

Рис. 65. Схема пространственной

напряжении в случае осесимметричной за­дачи

Видео:Применение метода предельного равновесия для расчет на сейсмику (МРЗ)Скачать

Применение метода предельного равновесия для расчет на сейсмику (МРЗ)

Строй-справка.ру

Видео:Лекция VII-5. Численные методы в механике грунтовСкачать

Лекция VII-5. Численные методы в механике грунтов

Отопление, водоснабжение, канализация

Для оценки прочности и устойчивости оснований фундаментов в настоящее время используют теорию предельного напряженного состояния. В основу этой теории положено понятие о предельном равновесии грунта.

Предельным равновесием основания называют такое напряженное состояние, при котором любое достаточно малое увеличение внешней нагрузки или малейшее уменьшение прочности грунта приведет к нарушению установившегося равновесия и вызовет потерю устойчивости грунта, сопровождающуюся выпором грунта из-под подошвы фундамента со значительным нарастанием осадки.

Теория предельного состояния рассматривает задачи устойчивости грунтов в основаниях фундаментов.

Обычно нарушение существующего равновесия сопровождается выпором грунта из-под фундаментов с их большой осадкой, сползанием масс грунта в откосах, значительным смещением конструкции, ограждающих массив грунта или заделанных в грунте.

Поскольку существенные смещения для подавляющего большинства сооружений недопустимы, весьма важно правильно оценивать максимально возможную нагрузку данного направления на массив грунта, при которой еще соблюдается его равновесие — не наступает потери устойчивости.

В теории предельного состояния грунтов рассматриваются задачи устойчивости грунтов в основании сооружений и в откосах, определения давления грунта на ограждающие конструкции (подпорные стенки, обделки тоннелей) и сопротивления грунтов перемещению различных анкеров и ограждающих конструкций.

Начало решению задач предельного равновесия грунтов было положено более двух столетий назад Ш. Кулоном. Около 30 — 40 лет назад советские ученые (В. В. Соколовский, С. С. Голушкевич, В. Г. Березанцев) разработали эффективные методы решения дифференциальных уравнений устойчивости грунтов в условиях предельного равновесия.

В этих методах используется теория прочности Мора, согласно которой условие предельного равновесия сыпучего грунта при сдвиге выражается формулой, а при сложном напряженном состоянии— формулой.

В настоящее время считают, что теория прочности Кулона, рассматривающая плоскую деформацию, не позволяет решать некоторые задачи устойчивости грунтов в основании сооружений при сложном напряженном состоянии. В связи с этим все большее число исследователей в условиях интенсивного пространственного напряженного состояния учитывают нелинейность зависимости между напряжениями и деформациями грунтов и используют более сложные теории прочности с учетом всех компонентов напряжений, их концентрации и явления изменения объема при сдвиге. При потере устойчивости касательные октаэдрические напряжения являются прямой функцией нормальных октаэдрических напряжений.

Присоединяя уравнение предельного равновесия, получаем систему трех уравнений с тремя неизвестными. Следовательно, плоская задача предельного равновесия статически определима, решение этих уравнений зависит от граничных условий конкретной задачи. Это решение, основанное на численном интегрировании, вьшолнено В. В. Соколовским. Таким образом, можно решать различные задачи устойчивости массивов грунта.

Для осесимметричной пространственной задачи принимается, что меньшие главные напряжения равны между собой, т. е. аг — аъ. С учетом этого В. Г. Березанцевым получено решение дифференциальных уравнений предельного равновесия при осесимметричной загрузке грунтов основания.

Условимся давление под подошвой фундамента считать равномерно распределенным и рассмотрим условие возникновения предельного равновесия в некоторых областях под полосовой равномерно распределенной нагрузкой (плоская задача). Пусть в пределах бесконечной полосы (фундамента) действует равномерно распределенная нагрузка интенсивностью р, по сторонам от которой приложена вертикальная пригрузка уД где yd — удельный вес грунта в пределах глубины заложения фундамента d. Оси координат направлены так, как показано на рис. 2.14.

Уравнение предельного равновесия для грунтов

Рис. 2.14. Расчетная схема к определению критического давления на грунты основания:
а — схема фундамента; б — расчетная схема; 1 — начало развития зон предельного равновесия в грунтах основания; 2 — допустимое развитие зон

Формулу (2.20) используют в практических расчетах; ш определения расчетного сопротивления грунта при условии введения специальных коэффициентов, называемых коэффициентами условий работы и надежности, которые позволяют учитывать конструктивные особенности фундаментов, специфику конструктивной схемы возводимых зданий и сооружений, а также различие физико-механических свойств грунтов оснований.

Нормы проектирования требуют ограничивать напряжения по подошве фундаментов расчетным сопротивлением грунта основания, так как это является условием применимости для грунтов модели линейно деформируемой среды, позволяющей получать достоверное значение осадки.

При проектировании фундаментов, расположенных на слабых грунтах, важно знать не только критическое давление на грунты оснований, соответствующее работе грунта в пределах первых двух фаз напряженного состояния, при относительно незначительных осадках, но и нагрузку, при которой произойдет потеря устойчивости грунта, сопровождающаяся выпором грунта из-под подошвы фундамента и значительным возрастанием осадки.

Предельное значение давления на грунт основания получено в результате решения задачи об условиях предельного равновесия (рис. 2; 15), предусматривающих образование областей предельного равновесия 2, зоны уплотнения 3 и поверхностей скольжения 4, по которым происходит перемещение грунта.

Уравнение предельного равновесия для грунтов

Рис. 2.15. Расчетная схема к определению предельного давления на грунты основания: 1 — поверхность грунта; 2 —:область пластического течения грунта; 5 — зона уплотнения; 4 — поверхность скольжения

Выражение (2.21) положено в основу при назначении силы предельного сопротивления оснований, предлагаемой действующими нормами с учетом коэффициентов условий работы и надежности. Предельно возможные давления на грунт оснований, как правило, сопровождаются ростом значительных осадок (исключения составляют только скальные основания), что с точки зрения эксплуатационной пригодности не может служить удовлетворительным условием функционирования зданий и сооружений, поэтому ограничению по предельному давлению предшествует введение ограничения по предельной осадке.

Предельно возможные деформации сооружений регламентированы нормами на основании обобщения и статистического анализа практического опыта эксплуатации различных зданий и сооружений.

Средние осадки, допускаемые для промышленных и гражданских зданий и сооружений, колеблются в пределах от 10 до 20 см. Большая деформация допускается для зданий, имеющих большую жесткость. Для зданий и сооружений, имеющих значительную жесткость (дымовые трубы, силосные корпуса и др.), предельно допустимую осадку можно принимать в пределах 30…40 см. Помимо абсолютных вертикальных деформаций нормами ограничивается и крен зданий.

📹 Видео

М 1-2 Первое предельное состояниеСкачать

М 1-2 Первое предельное состояние

Лекция VI-2. Устойчивость откосов и склоновСкачать

Лекция VI-2. Устойчивость откосов и склонов

Лекция VI-3. Давление грунтов на ограждающие конструкцииСкачать

Лекция VI-3. Давление грунтов на ограждающие конструкции

МГ. 2-11. Теория предельного напряжённого состоянияСкачать

МГ. 2-11. Теория предельного напряжённого состояния

Лекция №6. Определение напряжений в грунтахСкачать

Лекция №6. Определение напряжений в грунтах

М 1-4 Второе предельное состояниеСкачать

М 1-4 Второе предельное состояние

Расчеты устойчивости. Основные положенияСкачать

Расчеты устойчивости. Основные положения

ПРЕДЕЛЬНЫЕ СОСТОЯНИЯ РАВНОВЕСИЯ. ТРЕНИЕ. https://stepik.org/course/71088/syllabusСкачать

ПРЕДЕЛЬНЫЕ СОСТОЯНИЯ РАВНОВЕСИЯ.  ТРЕНИЕ. https://stepik.org/course/71088/syllabus

Учебные пособия по МЕХАНИКЕ ГРУНТОВСкачать

Учебные пособия по МЕХАНИКЕ ГРУНТОВ

МГ. 2-14. Давление грунта на сооружение (активное, пассивное давление грунта, давление покоя)Скачать

МГ. 2-14.  Давление грунта на сооружение (активное, пассивное давление грунта, давление покоя)

Вознесенский Е. А. - Грунтоведение - Прочностные свойства грунтовСкачать

Вознесенский Е. А. - Грунтоведение - Прочностные свойства грунтов

Лекция IV-3. Напряженное состояние под внешней нагрузкой. Часть 1Скачать

Лекция IV-3. Напряженное состояние под внешней нагрузкой. Часть 1

Лекция VII-2. Динамические свойства грунтовСкачать

Лекция VII-2. Динамические свойства грунтов

Сопротивление грунтов сдвигу и характеристики их прочности (угол внутреннего трения; сцепление)Скачать

Сопротивление грунтов сдвигу и характеристики их прочности (угол внутреннего трения; сцепление)

Основы геотехники. 7-3Скачать

Основы геотехники. 7-3

М 1-3 Определение параметров сопротивления сдвигуСкачать

М 1-3 Определение параметров сопротивления сдвигу
Поделиться или сохранить к себе:
УУ* 4 ___■—7
Втая = Я> // / V-
Л
и /б
А быс