Уравнение поверхности полученной вращением прямой

Уравнение поверхности полученной вращением прямой

Глава VI. Простейшие криволинейные поверхности и тела вращения.

§ 75*. Поверхности вращения

1. Пусть в плоскости р задана кривая L и некоторая прямая l. Поверхность, которая получается вращением кривой L вокруг прямой l, называется поверхностью вращения.

Пусть кривая L лежит в плоскости хОу (рис. 216) и имеет уравнение

y = f(x), х Уравнение поверхности полученной вращением прямой[а; b]. (1)

Найдем уравнение поверхности, которая получится вращением кривой L вокруг оси Ох (рис. 217).

Уравнение поверхности полученной вращением прямой

Очевидно, точка M с координатами (х; у; z), где х Уравнение поверхности полученной вращением прямой[а; b], принадлежит искомой поверхности вращения тогда и только тогда, когда

Действительно, точки (х; у; z) и (х; f(x); 0) лежат на одной окружности с центром в точке (х; 0; 0).

Таким образом, уравнение поверхности, полученной вращением кривой (1) вокруг оси Ох, имеет вид

y 2 + z 2 = (f(x)) 2 , х Уравнение поверхности полученной вращением прямой[а; b]. (2)

Заметим, что уравнение (2) получается из уравнения (1) следующим образом:
обе части уравнения (1) возводятся в квадрат и y 2 заменяется на y 2 + z 2 ,

В частности, если кривая L задана уравнением

то уравнение поверхности, полученной вращением этой кривой вокруг оси Ох, имеет вид

т. е. просто y 2 заменяем на y 2 + z 2 .

2. Поверхность, которая получается вращением эллипса вокруг одной из его осей, называется эллипсоидом вращения.

Пусть в плоскости хОу эллипс задан уравнением

Уравнение поверхности полученной вращением прямой(5)

Составим уравнение поверхности, полученной вращением его вокруг оси Ох. Уравнение эллипса (5) приводится к виду (3), следовательно, для получения уравнения эллипсоида вращения достаточно в уравнении (5) y 2 заменить на y 2 + z 2 . После замены получим

Уравнение поверхности полученной вращением прямой(6)

Это уравнение обычно записывают так:

Уравнение поверхности полученной вращением прямой

При а > b уравнение (6) определяет эллипсоид вращения, вытянутый вдоль оси Ох (рис. 218), при а 2 на y 2 + z 2 , получим искомое уравнение эллипсоида вращения:

Уравнение поверхности полученной вращением прямой

3. Поверхность, которая получается вращением гиперболы вокруг одной из ее осей, называется гиперболоидом вращения. При вращении гиперболы вокруг ее действительной оси получается двуполостный гиперболоид вращения (рис. 220), а при вращении гиперболы вокруг ее мнимой оси получается однополостный гиперболоид вращения (рис. 221).

Уравнение поверхности полученной вращением прямой

Пусть в плоскости хОу гипербола задана уравнением

Уравнение поверхности полученной вращением прямой(7)

Составим уравнение поверхности, полученной вращением гиперболы вокруг ее действительной оси Ох. Уравнение гиперболы (7) приводится к виду (3); следовательно, для получения уравнения поверхности двуполостного гиперболоида вращения достаточно в уравнении гиперболы (7) y 2 заменить на y 2 + z 2 . После замены получим

Уравнение поверхности полученной вращением прямой(8)

При вращении гиперболы (7) вокруг ее мнимой оси нужно в уравнении (7) x 2 заменить на x 2 + z 2 ; после замены получим

Уравнение поверхности полученной вращением прямой(9)

Задача 2. Гипербола с полуосями а = 3 и b = 4 вращается вокруг своей мнимой оси, совпадающей с осью Оу. Центр гиперболы совпадает с началом координат. Составить уравнение поверхности, полученной при вращении этой гиперболы.

Составим уравнение гиперболы:

Уравнение поверхности полученной вращением прямой

Чтобы получить уравнение гиперболоида вращения, в уравнении гиперболы x 2 заменим на x 2 + z 2 . После замены получим

Уравнение поверхности полученной вращением прямой

4. Поверхность, которая получается вращением параболы вокруг ее оси симметрии, называется параболоидом вращения (рис. 222).

Уравнение поверхности полученной вращением прямой

Пусть на плоскости хОу парабола задана уравнением

Для получения уравнения поверхности вращения нужно в уравнении (10) x 2 заменим на x 2 + z 2 ; после замены получим

Отметим одно замечательное свойство этой поверхности. Если внутреннюю поверхность параболоида вращения сделать зеркальной, а в ее фокусе (фокусом параболоида вращения называется фокус вращаемой параболы) поместить источник света, то все лучи света, отражаясь от поверхности параболоида, пойдут параллельно оси параболоида.

Это свойство широко используется при изготовлении светоотражающих устройств (прожекторов, фар автомобиля, кинопроекторов и других приборов).

Задача 3. Составить уравнение поверхности, полученной вращением параболы y 2 = 2х вокруг оси Ох.

Чтобы составить уравнение параболоида вращения, полученного вращением параболы вокруг оси Ох, нужно в уравнении y 2 = 2х заменить y 2 на y 2 + z 2 , после замены получим

5. Если вращать прямую, параллельную какой-либо оси координат, вокруг этой оси, то получится круговая цилиндрическая поверхность.

Пусть дана прямая, лежащая в плоскости yOz и имеющая уравнение у = а. Легко видеть, что поверхность вращения этой прямой вокруг оси Oz имеет уравнение

Эта цилиндрическая поверхность изображена на рис. 223.

Уравнение поверхности полученной вращением прямой

Задача 4. Составить уравнение цилиндрической поверхности, полученной вращением прямой у = 3, лежащей в плоскости хОу вокруг оси Ох.

В уравнении y 2 = 3 2 заменим y 2 на y 2 + z 2 , в результате получим

6. Пусть дана прямая, лежащая в плоскости yOz и проходящая через начало координат:
y = kz, k =/= 0.

Очевидно, уравнение поверхности вращения этой прямой вокруг оси Oz имеет вид

Полученное уравнение является уравнением искомой поверхности вращения, которая называется круговой конической поверхностью (рис. 224).

Уравнение поверхности полученной вращением прямой

Задача 5. Составить уравнение поверхности вращения прямой 2х = 3у, z =0 вокруг оси Ох.

Из уравнения 3у = 2х, используя формулу (2), находим 9(y 2 + z 2 ) = 4x 2 . Это и есть искомое уравнение.

Видео:§64 Поверхности вращенияСкачать

§64 Поверхности вращения

Уравнение поверхности полученной вращением прямой

Рассмотрим сечение плоскостью у = 0. Получается парабола = z, её ветви направлены вверх, вершина в точке (0, 0, 0).

Рассмотрим сечение плоскостью x = h. Это опять парабола:

Её ветви направлены вниз, вершина смещена по оси OZ на величину . то есть находится в точке . Заметим, что эта точка лежит на параболе

Теперь, изменяя h, видим, что поверхность гиперболического параболоида состоит из парабол, расположенных в плоскостях x = h, вершины которых находятся на параболе .

Видео:Поверхности второго порядка. Поверхности вращенияСкачать

Поверхности второго порядка. Поверхности вращения

Уравнения поверхности и линии в пространстве с примерами решения

Содержание:

Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Уравнения поверхности и линии в пространстве

Определение: Уравнение м поверхности в пространстве Oxyz называется такое уравнение между переменными х, у у z, которому удовлетворяют координаты всех точек данной поверхности и не удовлетворяют координаты точек, не лежащих на этой поверхности. То есть если

Уравнение поверхности полученной вращением прямой

— уравнение поверхности Р (рис. 189), то при М(х, у, z) Уравнение поверхности полученной вращением прямой

Таким образом, уравнение (1) выполнено тогда и только тогда, когда точка М(х, у, z) принадлежит данной поверхности. Координаты произвольной точки поверхности называются текущими координатами точки. Поэтому составить уравнение поверхности — это значит найти связь между текущими координатами ее точек.

Пример (уравнения координатных плоскостей):

Каждая точка М(х, у, z), лежащая на координатной плоскости Oyz, имеет абсциссу х = 0; обратно, если для какой-нибудь точки М(х, у, z) абсцисса ее х = 0, то эта точка расположена на плоскости Oyz. Следовательно,

— уравнение координатной плоскости Oyz. Аналогично,

Уравнение поверхности полученной вращением прямой

— соответственно уравнения координатных плоскостей Oxz и Оху.

Формула Уравнение поверхности полученной вращением прямойобозначает, что точка М принадлежит Р. Формула Уравнение поверхности полученной вращением прямойобозначает, что точка N не принадлежит Р.

В более общем случае

Уравнение поверхности полученной вращением прямой

— уравнения трех плоскостей, перпендикулярных соответствующим координатным осям Ох, Оу, Ог и отсекающих на них отрезки, численно равные Уравнение поверхности полученной вращением прямой

Теорема: Уравнение цилиндрической поверхности, образующие которой параллельны координатной оси, не содержит текущей координаты, одноименной с этой координатной осью, и обратно.

Доказательство: Пусть, например, цилиндрическая поверхность Р образована перемещением прямой Уравнение поверхности полученной вращением прямой(образующая) вдоль заданной линии L, лежащей в плоскости Оху (направляющая) (рис. 190).

Уравнение поверхности полученной вращением прямой

Обозначим через М(х, у, z) точку поверхности Р с текущими координатами х, у и z. Образующая MN, проходящая через точку М, пересекает направляющую, очевидно, в точке N(x, у, 0).

Уравнение поверхности полученной вращением прямой

— уравнение направляющей L в координатной плоскости Оху. Этому уравнению удовлетворяют координаты точки N. Так как точка М поверхности Р имеет ту же самую абсциссу хиту же самую ординату у, что и точка N, а переменная г в уравнение (3) не входит, то координаты точки М также удовлетворяют уравнению (3). Таким образом, координаты любой точки М(х, у, z) поверхности Р удовлетворяют уравнению (3). Обратно, если координаты какой-нибудь точки М(х, у, z) удовлетворяют уравнению (3), то эта точка расположена на прямой MN || Оz такой, что ее след на плоскости Оху, точка N(x, у, 0), лежит на линии L, а значит, точка М принадлежит цилиндрической поверхности Р. Следовательно,

Уравнение поверхности полученной вращением прямой

является уравнением цилиндрической поверхности в пространстве Oxyz, причем в этом уравнении отсутствует координата z.

Пример (уравнение эллиптического цилиндра):

Эллиптический цилиндр, в основании которого лежит эллипс с полуосями а и b, а осью служит ось Оz (рис. 191), на основании предыдущей теоремы имеет уравнение

Уравнение поверхности полученной вращением прямой

В частности, при а = b получаем уравнение кругового цилиндра

Уравнение поверхности полученной вращением прямой

Линию L в пространстве можно задать как пересечение двух данных поверхностей Уравнение поверхности полученной вращением прямой(рис. 192). Точка Уравнение поверхности полученной вращением прямой, лежащая на линии L, принадлежит как поверхности Уравнение поверхности полученной вращением прямойтак и поверхности Уравнение поверхности полученной вращением прямой, и, следовательно, координаты этой точки удовлетворяют уравнениям обеих поверхностей.

Поэтому под уравнениями линии в пространстве понимается совокупность двух уравнений:

Уравнение поверхности полученной вращением прямой

являющихся уравнениями поверхностей, определяющих данную линию.

Не нужно думать, что для нахождения уравнений линий систему (4) следует «решить». Этого, вообще говоря, нельзя сделать, так как число уравнений системы (4) меньше числа неизвестных. Точный смысл, который придается равенствам (4), следующий: линии L принадлежат те и только те точки Уравнение поверхности полученной вращением прямой, координаты которых удовлетворяют обоим уравнениям системы (4).

Заметим, что данную линию можно по-разному задавать как пересечение поверхностей. Поэтому линии в пространстве соответствует бесчисленное множество равносильных между собой систем уравнений.

Определение: Уравнениями линии в пространстве Уравнение поверхности полученной вращением прямойназывается такая пара уравнений между переменными Уравнение поверхности полученной вращением прямой, которой удовлетворяют координаты каждой точки, лежащей на данной линии, и не удовлетворяют координаты любой точки, не лежащей на этой линии.

Уравнение поверхности полученной вращением прямой

Пример (уравнения координатных осей):

Ось Ох можно, рассматривать как пересечение координатных плоскостей Оху и Oxz. Поэтому

Уравнение поверхности полученной вращением прямой

— уравнения оси Ох. Аналогично,

Уравнение поверхности полученной вращением прямой

— уравнения осей Оу и Oz соответственно.

Пример:

Написать уравнения окружности Г радиуса R = 1, центр которой находится в точке С(0, 0, 2) и плоскость которой параллельна координатной плоскости Оху (рис. 193).

Решение:

Окружность Г можно рассматривать как пересечение кругового цилиндра радиуса 1 с осью Oz и горизонтальной плоскости, расположенной выше координатной плоскости Оху на две единицы. Поэтому уравнения данной окружности есть

Уравнение поверхности полученной вращением прямой

В механике линию L часто рассматривают как след движущейся точки (рис. 194). Пусть х, у, z — текущие координаты точки М линии L. Так как с течением времени точка М перемещается и ее координаты меняются, то они являются функциями времени t. Следовательно, имеем

Уравнение поверхности полученной вращением прямой

Уравнение поверхности полученной вращением прямой

где Уравнение поверхности полученной вращением прямой— некоторые определенные функции. Обобщая уравнения (5), под t понимают вспомогательную переменную (параметр)> не обязательно время; поэтому уравнения (5) носят название параметрических уравнений линии в пространстве.

Исключая из уравнений (5) параметр t, мы получим два соотношения между текущими координатами х, у и z, которые представляют собой уравнения некоторых поверхностей, проходящих через данную линию.

Пример:

Написать уравнения винтовой линии радиуса а и шага Уравнение поверхности полученной вращением прямой(рис. 195).

Решение:

Пусть М (х, у, z) — текущая точка винтовой линии, М’ (х, у, 0) — ее проекция на плоскость Оху.

Уравнение поверхности полученной вращением прямой

Приняв за параметр Уравнение поверхности полученной вращением прямойи учитывая, что аппликата г винтовой линии растет пропорционально углу поворота t, будем иметь

Уравнение поверхности полученной вращением прямой

Для определения коэффициента пропорциональности b положим Уравнение поверхности полученной вращением прямой; тогда Уравнение поверхности полученной вращением прямой. Следовательно,

Уравнение поверхности полученной вращением прямой

Исключая параметр t из первого и второго, а также из первого и третьего уравнений (6), получаем

Уравнение поверхности полученной вращением прямой

Следовательно, винтовая линия представляет собой пересечение кругового цилиндра с образующими, параллельными оси Oz, и цилиндрической поверхности с образующими, параллельными оси Оу, и имеющей своей направляющей косинусоиду, лежащую в плоскости Уравнение поверхности полученной вращением прямой. Из уравнений (6′) также вытекает, что проекция винтовой линии (6′) на координатную плоскость Оху есть окружность, а на координатную плоскость Уравнение поверхности полученной вращением прямой— косинусоида.

Текущую точку Уравнение поверхности полученной вращением прямойкривой L можно характеризовать ее радиусом-вектором («следящий радиус-вектор») (рис. 196)

Уравнение поверхности полученной вращением прямой

Уравнение поверхности полученной вращением прямой

( Уравнение поверхности полученной вращением прямой— орты). Тогда из (5) получаем векторное уравнение линии

Уравнение поверхности полученной вращением прямой

Уравнение поверхности полученной вращением прямой

— так называемая вектор-функция скалярного аргумента t.

В механике в качестве параметра t обычно берут время. В таком случае линию (7) называют траекторией точки М(х, у, z).

Множество всех точек М(х, у, г) пространства, координаты которых удовлетворяют данному уравнению (или системе уравнений), называется геометрическим образом (графиком) данного уравнения (или системы уравнений).

Пример:

Какой геометрический образ соответствует уравнению

Уравнение поверхности полученной вращением прямой

Решение:

Из уравнения (8) получаем Уравнение поверхности полученной вращением прямойили Уравнение поверхности полученной вращением прямой. Следовательно, графиком уравнения (8) является пара плоскостей, параллельных координатной плоскости Оху и отстоящих от нее на расстояниях, равных единице (рис. 197).

Уравнение поверхности полученной вращением прямой

Пример:

Какой геометрический образ соответствует паре уравнений

Уравнение поверхности полученной вращением прямой

Решение:

Искомый график представляет собой пересечение плоскостей х = 2 и у = 3 и, следовательно, является прямой линией, параллельной оси Oz и имеющей след N (2, 3, 0) на координатной плоскости Оху (рис. 198).

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Общее уравнение плоскости
  • Угол между плоскостями
  • Понятие о производной вектор-функции
  • Криволинейные интегралы
  • Прямоугольная система координат на плоскости и ее применение
  • Линии второго порядка
  • Полярные координаты
  • Непрерывность функции

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

📸 Видео

Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать

Аналитическая геометрия, 8 урок, Поверхности второго порядка

11. Прямая в пространстве и ее уравненияСкачать

11. Прямая в пространстве и ее уравнения

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Поверхности второго порядкаСкачать

Поверхности второго порядка

Площадь поверхности вращенияСкачать

Площадь поверхности вращения

Уравнения прямой на плоскости | Векторная алгебраСкачать

Уравнения прямой на плоскости | Векторная алгебра

Поверхность вращения.Скачать

Поверхность вращения.

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Лекция 5. Поверхности вращения. часть 1.Скачать

Лекция 5. Поверхности вращения. часть 1.

Нахождение площади поверхности вращения телаСкачать

Нахождение площади поверхности вращения тела

Цилиндрические поверхностиСкачать

Цилиндрические поверхности

Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)Скачать

Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)

Интегралы №13 Объем тела вращенияСкачать

Интегралы №13 Объем тела вращения

Практическое занятие: поверхности второго порядкаСкачать

Практическое занятие: поверхности второго порядка

Лекция. Гиперболоиды, параболоиды, конус. Исследование методом сечений.Скачать

Лекция. Гиперболоиды, параболоиды, конус. Исследование методом сечений.

Объем тела вращения на примере тора. 2 способаСкачать

Объем тела вращения на примере тора. 2 способа

Геометрия 9 класс (Урок№34 - Тела и поверхности вращения.)Скачать

Геометрия 9 класс (Урок№34 - Тела и поверхности вращения.)
Поделиться или сохранить к себе: