Уравнение показательной функции имеет вид эконометрика

Показательное уравнение регрессии

В случае b = e (примерное значение экспоненты e ≈ 2.718281828 ), показательное уравнение регрессии называется экспоненциальным и записывается как y=a·e x .

Здесь b — темп изменения в разах или константа тренда, которая показывает тенденцию ускоренного и все более ускоряющегося возрастания уровней.

Пример . Необходимо изучить зависимость потребительским расходами на моторное масло (у) и располагаемым личным доходом (х). <table x + ε

Составляем систему нормальных уравнений с помощью онлайн-калькулятора Нелинейная регрессия .
a•n + b∑x = ∑y
a∑x + b∑x 2 = ∑y•x

Для наших данных система уравнений имеет вид
21a + 20439.4 b = 32.32
20439.4 a + 20761197.38 b = 31007.03
Из первого уравнения выражаем а и подставим во второе уравнение:
Получаем эмпирические коэффициенты регрессии: b = -0.000515, a = 2.04
Уравнение регрессии (эмпирическое уравнение регрессии):
y = e 2.04 *e -0.000515x = 7.69529*0.99948 x
Эмпирические коэффициенты регрессии a и b являются лишь оценками теоретических коэффициентов βi, а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.
Для расчета параметров регрессии построим расчетную таблицу (табл. 1) <table 2log(y) 2x·log(y)622.91.59388004.412.53989.936581.654329642.721084.82700.41.7490560.162.911194.01740.61.72548488.362.971275.88774.41.72599695.362.971334.11816.21.67666182.442.781361.18853.51.61728462.252.591373.66876.81.55768778.242.391356.99001.538100002.331373.45951.41.61905161.962.591531.221007.91.691015862.412.841699.721004.81.441009623.042.061441.971010.81.441021716.642.061450.581056.21.531115558.442.331611.821105.41.481221909.162.21637.771162.31.551350941.292.391798.731200.71.551441680.492.391858.161209.51.361462890.251.851646.11248.61.281559001.961.641599.371254.41.281573519.361.641606.81284.61.391650197.161.921780.8320439.432.3220761197.3850.131007.03

1. Параметры уравнения регрессии.
Выборочные средние.
Уравнение показательной функции имеет вид эконометрика
Уравнение показательной функции имеет вид эконометрика
Уравнение показательной функции имеет вид эконометрика
Выборочные дисперсии:
Уравнение показательной функции имеет вид эконометрика
Уравнение показательной функции имеет вид эконометрика
Среднеквадратическое отклонение
Уравнение показательной функции имеет вид эконометрика
Уравнение показательной функции имеет вид эконометрика

Видео:ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать

ПРОСТЕЙШИЙ способ решения Показательных Уравнений

Эконометрика

Уравнение показательной функции имеет вид эконометрика

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ

Кафедра экономико-метематических моделей

Тема 4. Множественная регрессия.

Вопросы

1. Нелинейная регрессия. Нелинейные модели и их линеаризация.

Нелинейная регрессия

При рассмотрении зависимости экономических показателей на основе реальных статистических данных с использованием аппарата теории вероятности и математической статистики можно сделать выводы, что линейные зависимости встречаются не так часто. Линейные зависимости рассматриваются лишь как частный случай для удобства и наглядности рассмотрения протекаемого экономического процесса. Чаще встречаются модели которые отражают экономические процессы в виде нелинейной зависимости.

Если между экономическими явлениями существуют не­линейные соотношения, то они выражаются с помощью со­ответствующих нелинейных функций.

Различают два класса нелинейных регрессий:

    регрессии, нелинейные относительно включенных в анализ объясняющих пе­ременных, но линейные по оцениваемым параметрам: регрессии, нелинейные по оцениваемым параметрам.

Нелинейные регрессии по включаемым в нее объясня­ющим переменным, но линейные по оцениваемым пара­метрам

Данный класс нелинейных регрессий включает уравне­ния, в которых зависимая переменная линейно связана с параметрами. Примером могут служить:

полиномы разных степеней

Уравнение показательной функции имеет вид эконометрика(полином k-й степени)

Уравнение показательной функции имеет вид эконометрикаи равносторонняя гипербола

Уравнение показательной функции имеет вид эконометрика.

При оценке параметров регрессий нелинейных по объясняю­щим переменным используется подход, именуе­мый «замена переменных». Суть его состоит в замене «нели­нейных» объясняющих переменных новыми «линейными» переменными и сведение нелинейной регрессии к линейной регрессии. К новой «преобразованной» регрессии может быть приме­нен обычный метод наименьших квадратов (МНК).

Полином любого порядка сводится к ли­нейной регрессии с ее методами оценивания параметров и проверки гипотез.

Среди нелинейной полиноминальной регрессии чаще всего используется парабола второй степени; в отдельных случаях — полином третьего порядка. Ограничение в ис­пользовании полиномов более высоких степеней связаны с требованием однородности исследуемой совокупности: чем выше порядок полинома, тем больше изгибов имеет кривая и, соответственно, менее однородна совокупность по резуль­тативному признаку.

Равносторонняя ги­пербола, для оценки параметров которой используется тот же подход «замены переменных» (1/x заменяют на переменную z) хорошо известна в эконометрике.

Она может быть использована, например, для характеристики связи удельных расходов сы­рья, материалов и топлива с объемом выпускаемой продукции. Также примером использования равносторонней ги­перболы являются кривые Филлипса и Энгеля..

Регрессии нелинейные по оцениваемым параметрам

К данному классу регрессий относятся уравнения, в которых зависимая переменная нелинейно связана с параметрами. Примером таких нелинейных регрессий являются функции:

• степенная — Уравнение показательной функции имеет вид эконометрика;

• показательная — Уравнение показательной функции имеет вид эконометрика;

• экспоненциальная — Уравнение показательной функции имеет вид эконометрика

Если нелинейная модель внутренне линейна, то она с по­мощью соответствующих преобразований может быть при­ведена к линейному виду (например, логарифмированием и заменой переменных). Если же нелинейная модель внут­ренне нелинейна, то она не может быть сведена к линейной функции и для оценки её параметров используются итеративные процедуры, успешность которых зависит от вида уравнений и особен­ностей применяемого итеративного подхода.

Примером нелинейной по параметрам регрессии внут­ренне линейной является степенная функция, которая ши­роко используется в эконометрических исследованиях при изучении спроса от цен: Уравнение показательной функции имеет вид эконометрика, где у — спрашиваемое количество; х — цена;

Данная модель нелинейна относительно оцениваемых параметров, т. к. включает параметры а и b неаддитивно. Однако ее можно считать внутренне линейной, ибо логариф­мирование данного уравнения по основанию е приводит его к линейному виду Уравнение показательной функции имеет вид эконометрика. Заменив пе­ременные и параметры, получим линейную регрессию, оцен­ки параметров которой а и b могут быть найдены МНК.

Ши­рокое использование степенной функции Уравнение показательной функции имеет вид эконометрикасвязано это с тем, что параметр b в ней имеет четкое экономическое истолко­вание, т. е. он является коэффициентом эластичности. Это значит, что величина коэффициента b показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1 %.

Коэффициент эластичности можно определять и при наличии других форм связи, но только для степенной функ­ции он представляет собой постоянную величину, равную па­раметру b.

По семи предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений ( Х, млн. руб. ).

Видео:Показательная функция. 11 класс.Скачать

Показательная функция. 11 класс.

Модели регрессии, нелинейные по оцениваемым коэффициентам

Нелинейными по оцениваемым параметрам моделями регрессииназываются модели, в которых результативная переменная yi нелинейно зависит от коэффициентов модели β0…βn.

К моделям регрессии, нелинейными по оцениваемым параметрам, относятся:

1) степенная функция:

Уравнение показательной функции имеет вид эконометрика

2) показательная или экспоненциальная функция:

Уравнение показательной функции имеет вид эконометрика

3) логарифмическая парабола:

Уравнение показательной функции имеет вид эконометрика

4) экспоненциальная функция:

Уравнение показательной функции имеет вид эконометрика

5) обратная функция:

Уравнение показательной функции имеет вид эконометрика

Уравнение показательной функции имеет вид эконометрика

7) логистическая функция или кривая Перла-Рида:

Уравнение показательной функции имеет вид эконометрика

Кривыми насыщения называются показательная, логарифмическая и экспоненциальная функции, т. к. будущий прирост результативной переменной зависит от уже достигнутого уровня функции.

Кривые насыщения применяются для характеристики явлений и процессов, величина роста которых является ограниченной величиной (например, в демографии).

Определение. S-образными кривыми называются кривая Гомперца и кривая Перла-Рида. Данные кривые представляют собой кривые насыщения с точкой перегиба.

S-образные кривые применяются для характеристики явлений, включающий в себя два последовательных процесса – ускорения и замедления достигнутого уровня развития. Подобные явления характерны для демографии, страхования и других областей.

Модели регрессии, нелинейные по оцениваемым коэффициентам, делятся на два класса:

1) модели регрессии, которые можно с помощью преобразований привести к линейному виду;

2) модели регрессии, которые невозможно привести к линейному виду.

Рассмотрим первый класс моделей регрессии.

Показательная функция вида

Уравнение показательной функции имеет вид эконометрика

является нелинейной по коэффициенту β1 и относится к классу моделей регрессии, которые можно с помощью преобразований привести к линейному виду. Данная модель характеризуется тем, что случайная ошибка εi мультипликативно связана с факторной переменной хi.

Данную модель можно привести к линейному виду с помощью логарифмирования:

Для более наглядного представления данной модели регрессии воспользуемся методом замен:

В результате произведённых замен получим окончательный вид показательной функции, приведённой к линейной форме:

Таким образом, можно сделать вывод, что рассмотренная показательная функция является внутренне линейной, поэтому оценки неизвестных параметров её линеаризованной формы можно рассчитать с помощью классического метода наименьших квадратов.

Другим примером моделей регрессии первого класса является степенная функция вида:

Уравнение показательной функции имеет вид эконометрика

Данная модель характеризуется тем, что случайная ошибка βi мультипликативно связана с факторной переменной хi.

Данную модель можно привести к линейному виду с помощью логарифмирования:

Для более наглядного представления данной модели регрессии воспользуемся методом замен:

В результате произведённых замен получим окончательный вид показательной функции, приведённой к линейной форме:

Таким образом, можно сделать вывод, что рассмотренная степенная функция является внутренне линейной, поэтому оценки неизвестных параметров её линеаризованной формы можно рассчитать с помощью классического метода наименьших квадратов.

Рассмотрим второй класс моделей регрессии, нелинейных по оцениваемым коэффициентам.

Показательная функция вида

Уравнение показательной функции имеет вид эконометрика

относится к классу моделей регрессии, которые невозможно привести к линейной форме путём логарифмирования. Данная модель характеризуется тем, что случайная ошибка βi аддитивно связана с факторной переменной хi.

Степенная функция вида

Уравнение показательной функции имеет вид эконометрика

относится к классу моделей регрессии, которые невозможно привести к линейной форме путём логарифмирования. Данная модель характеризуется тем, что случайная ошибка εi аддитивно связана с факторной переменной хi.

Таким образом, для оценки неизвестных параметров моделей регрессии, которые нельзя привести к линейному виду, нельзя применять классический метод наименьших квадратов. В этом случае используются итеративные процедуры оценивания (квази-ньютоновский метод, симплекс-метод, метод Хука-Дживса, метод Розенброка и др.).

🔍 Видео

Показательные уравнения. 11 класс.Скачать

Показательные уравнения. 11 класс.

11 класс, 11 урок, Показательная функция, её свойства и графикСкачать

11 класс, 11 урок, Показательная функция, её свойства и график

Как решать Показательные Уравнения? (часть 2)Скачать

Как решать Показательные Уравнения? (часть 2)

11 класс, 12 урок, Показательные уравненияСкачать

11 класс, 12 урок, Показательные уравнения

Показательная функция | 10 класс АлимовСкачать

Показательная функция | 10 класс Алимов

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ 10 класс решение показательных уравненийСкачать

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ 10 класс решение показательных уравнений

§12 Показательные уравненияСкачать

§12 Показательные уравнения

Показательная функция - bezbotvyСкачать

Показательная функция - bezbotvy

Показательные уравнения. Видеоурок 11. Алгебра 10 классСкачать

Показательные уравнения. Видеоурок 11. Алгебра 10 класс

Показательные и логарифмические уравнения. Вебинар | МатематикаСкачать

Показательные и логарифмические уравнения. Вебинар | Математика

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ😩 #математика #shorts #егэ #огэ #уравнение #показательныеуравненияСкачать

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ😩 #математика #shorts #егэ #огэ #уравнение #показательныеуравнения

10 класс. Алгебра. Системы показательных уравнений.Скачать

10 класс. Алгебра.  Системы показательных уравнений.

Алгебра 10 класс (Урок№22 - Показательные уравнения. Системы показательных уравнений.)Скачать

Алгебра 10 класс (Урок№22 - Показательные уравнения. Системы показательных уравнений.)

Показательные уравнения в ЕГЭ 🥊Скачать

Показательные уравнения в ЕГЭ 🥊

Показательные уравнения | Алгебра 11 класс #8 | ИнфоурокСкачать

Показательные уравнения | Алгебра 11 класс #8 | Инфоурок

Показательная функция. Видеоурок 10. Алгебра 10 классСкачать

Показательная функция. Видеоурок 10. Алгебра 10 класс

Сложные показательные уравнения: примеры и способы решенияСкачать

Сложные показательные уравнения: примеры и способы решения

Алгебра 10 класс (Урок№21 - Показательная функция.)Скачать

Алгебра 10 класс (Урок№21 - Показательная функция.)
Поделиться или сохранить к себе: