Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ, имеет вид ξ= 0,01sin10 3 (t – ). Длина волны равна …..
М 1000 м 500 м 6,28 м
Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ, имеет вид ξ= 0,01sin10 3 (t – ). Длина волны равна …..
М 0,628 м 100 м 6,28 м
Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ, имеет вид ξ= 0,01sin10 3 (t – ). Длина волны равна …..
М 0,314 м 50 м 6,28 м
На рисунках изображены зависимости от времени координаты и ускорения материальной точки, колеблющейся по гармоническому закону.
Циклическая частота колебаний точки равна ….
1 с -1 3 с -1 4 с -1 2 с -1
Уравнение движения пружинного маятника является дифференциальным уравнением .
Вынужденных колебаний свободных незатухающих колебаний
Видео:10й класс; Физика; "Уравнение плоской волны"Скачать
Волновая природа света
Название | Волновая природа света |
Анкор | FEPO_2005_fizika_-_moi_otvety.docx |
Дата | 03.11.2017 |
Размер | 193.97 Kb. |
Формат файла | |
Имя файла | FEPO_2005_fizika_-_moi_otvety.docx |
Тип | Документы #10071 |
страница | 3 из 3 |
Подборка по базе: 7. Путешествуем вокруг света.doc, 7 кл-ЗАКОН И ПРИРОдА.docx, Кроссворд Природа Алтая.docx, статья Он весь дитя добра и света.docx, Влияние света тепла и влаги на рост растений.docx, быть может вся природа мозаика цветов.docx, ОВЗ природа.docx, план работы на гд света профелактики.docx, Влияние климата на жилища людей в разных частях света.docx, Интерферениция и дифракция света.ppt 1. Уравнение плоской синусоидальной волны, распространяющейся вдоль оси OХ, имеет вид 2. Уравнение плоской синусоидальной волны, распространяющейся вдоль оси OХ, имеет вид 3. Уравнение плоской синусоидальной волны, распространяющейся вдоль оси OХ со скоростью 500 м/с, имеет вид 4. Уравнение плоской синусоидальной волны, распространяющейся вдоль оси OХ со скоростью 500 м/с, имеет вид 5. Уравнение плоской синусоидальной волны, распространяющейся вдоль оси OХ, имеет вид Уравнение гармонических колебаний 1. Материальная точка совершает гармонические колебания с амплитудой А=4см и периодом Т=2с. Если смещение точки в момент времени, принятый за начальный, равно своему максимальному значению, то точка колеблется в соответствии с уравнением (в СИ)… С) 2. Материальная точка совершает гармонические колебания с амплитудой А=4см и частотой =2Гц. Если смещение точки в момент времени, принятый за начальный, равно нулю, то точка колеблется в соответствии с уравнением (в СИ)… d) 3. Материальная точка совершает гармонические колебания с амплитудой А=4см и частотой =2Гц. Если смещение точки в момент времени, принятый за начальный, равно своему максимальному значению, то точка колеблется в соответствии с уравнением (в СИ)… 4. Материальная точка совершает гармонические колебания с амплитудой А=4см и периодом Т=2с. Если смещение точки в момент времени, принятый за начальный, равно 2см, то точка колеблется в соответствии с уравнением (в СИ)… 5. Материальная точка совершает гармонические колебания с амплитудой А=4см и частотой =2Гц. Если смещение точки в момент времени, принятый за начальный, равно 2см, то точка колеблется в соответствии с уравнением (в СИ)… Уравнение Шредингера (конкретные ситуации) 1. Вероятность обнаружить электрон на участке (a,b) одномерного потенциального ящика с бесконечно высокими стенками вычисляется по формуле (Считает по интегралу в зависимости от заданных границ) Уравнения свободных и вынужденных колебаний 1. Уравнение движения пружинного маятника Решение: 1) Вынужденные колебания: 2) Свободные затухающие колебания: 3) Свободные незатухающие колебания: 4. Свободные затухающие колебания заряда конденсатора в колебательном контуре описываются уравнением… 5. Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением… Уравнения Шредингера (общие свойства) 1. Стационарным уравнением Шредингера для частицы в трехмерном ящике с бесконечно высокими стенками является уравнение… 2. Стационарным уравнением Шредингера для частицы в одномерном ящике с бесконечно высокими стенками является уравнение…c) 3. Стационарным уравнением Шредингера для электрона в водородоподобном ионе является уравнение… 4. Нестационарным уравнением Шредингера является уравнение… 1. На рисунке представлены две вольтамперные характеристики вакуумного фотоэлемента. Если Е – освещенность фотокатода, а – частота падающего на него света, то справедливо следующее утверждение… # 2. На рисунке представлены две вольтамперные характеристики вакуумного фотоэлемента. Если Е – освещенность фотокатода, а – длина волны падающего на него света, то справедливо следующее утверждение… 3. На рисунке представлены две вольтамперные характеристики вакуумного фотоэлемента. Если Е – освещенность фотокатода, а – длина волны падающего на него света, то справедливо следующее утверждение… 4. На рисунке представлены две вольтамперные характеристики вакуумного фотоэлемента. Если Е – освещенность фотокатода, а – длина волны падающего на него света, то справедливо следующее утверждение… Энергия волны. Перенос энергии волной 1. На рисунке показана ориентация векторов напряженности электрического ( 3. На рисунке показана ориентация векторов напряженности электрического () и магнитного () полей в электромагнитной волне. Вектор плотности потока энергии электромагнитного поля ориентирован в направлении…
5. На рисунке показана ориентация векторов напряженности электрического () и магнитного () полей в электромагнитной волне. Поток энергии электромагнитного поля ориентирован в направлении…
6. При увеличении в 2 раза амплитуды колебаний векторов напряженности электрического и магнитного полей плотность потока энергии … a) увеличится в 4 раза 7. При уменьшении в 2 раза амплитуды колебаний векторов напряженности электрического и магнитного полей плотность потока энергии …c) уменьшится в 4 раза 8. Если увеличить в 2 раза объемную плотность энергии и при этом увеличить в 2 раза скорость распространения упругих волн, то плотность потока энергии…b) увеличится в 4 раза 9. Если уменьшить в 2 раза объемную плотность энергии при неизменной скорости распространения упругих волн, то плотность потока энергии… b) уменьшится в 4 раза 10. Если увеличить в 2 раза объемную плотность энергии и при этом уменьшить в 2 раза скорость распространения упругих волн, то плотность потока энергии…a) останется неизменной 11. Плотность потока электромагнитной энергии имеет размерность…d) В·А/м 2 12. Плотность потока энергии упругой волны имеет размерность…c) Дж/м 2 Эффект Комптона. Световое давление 1. На рисунке показаны направления падающего фотона (), рассеянного фотона (’) и электрона отдачи (e). Угол рассеяния 90°, направление движения электрона отдачи составляет с направлением падающего фотона угол Решение 2. На рисунке показаны направления падающего фотона (), рассеянного фотона (’) и электрона отдачи (e). Угол рассеяния 90°, направление движения электрона отдачи составляет с направлением падающего фотона угол . Если импульс электрона отдачи Pе, то импульс падающего фотона равен… 3. На рисунке показаны направления падающего фотона (), рассеянного фотона (’) и электрона отдачи (e). Угол рассеяния 90°, направление движения электрона отдачи составляет с направлением падающего фотона угол . Если импульс электрона отдачи Pе, то импульс рассеянного фотона равен… 5. Если увеличить в 2 раза объемную плотность световой энергии, то давление света …b) увеличится в 2 раза 6. Если зачерненную пластинку, на которую падает свет, заменить на зеркальную той же площади, то световое давление …c) увеличится 2 раза 7. Если зеркальную пластинку, на которую падает свет, заменить на зачерненную той же площади, то световое давление … b) уменьшится 2 раза Видео:Урок 370. Механические волны. Математическое описание бегущей волныСкачать Дисциплина: Физика тема: 060 Механические колебания и волны (стр. 3 )
2) ∆ц = 3) ∆ц = 16. [Уд1] (ВО1) Два гармонических колебания происходят с одинаковыми периодами в одном направлении с амплитудами А1 = 4 см и А2 = 3 см. Разность фаз складываемых колебаний равна ∆ц = Тема: 060 Механические колебания и волны V064 – П Волновое движение S064 – П Волновое движение — 10 заданий 1. [Уд1] (ВО1) Решением волнового уравнения 1) 2) 3) 4) 2. [Уд1] (ВО1) Уравнение плоской синусоидальной волны, распространяющейся вдоль оси Ох со скоростью v = 500 м/с, имеет вид о = 0,01 sin (щt – 2х). Циклическая частота щ равна … рад·с-1. 3. [Уд1] (ВО1) Уравнение плоской монохроматической волны ξ, которая распространяется вдоль положительного направления оси Ох представлено формулой 1) 2) 3) 4) 4. [Уд1] (ВО1) Уравнение сферической монохроматической волны ξ представлено формулой 1) 2) 3) 4) 5. [Уд1] (ВО1) Уравнение стоячей волны ξ представлено формулой 1) 2) 3) 4) 6. [Уд1] (ВО1) При интерференции двух волн результирующая волна характеризуется изменением 1) частоты волны 3) распределения энергии в пространстве 4) периода колебаний 7. [Уд1] (ВО1) Источник колебаний, находится в упругой среде, и точки этой среды находятся на расстоянии 8. [Уд1] (ВО1) Если разность фаз колебаний источника волн в упругой среде равна 9. [Уд1] (О) Точки пространства, в которых амплитуда колебаний стоячей волны, равна нулю, называются … стоячей волны. 10. [Уд1] (ВО1) В стоячей волне расстояния между двумя соседними пучностями равно C064 – П Волновое движение (графики) – 4 задания 1. [Уд1] (ВО1) В упругой среде в положительном направлении оси 0x распространяется плоская волна. На рисунке приведен график зависимости смещения о частицы среды от времени t в произвольной точке оси 0х. Циклическая частота волны … рад/c. 2. [Уд1] (ВО1) В упругой среде в положительном направлении оси 0x распространяется плоская волна. На рисунке приведен график зависимости смещения о частицы среды от времени t в произвольной точке оси 0х. Если длина волны равна 40 м, то скорость распространения составляет … м/c. 3. [Уд1] (ВО1) На рисунке приведена моментальная «фотография» модели плоской поперечной гармонической волны в момент времени t = 6 с. Источник колебаний находится в точке с координатой х = 0. В начальный момент времени (t = 0) все частицы среды находились в покое. Фазовая скорость волны равна … м/c. 4. [Уд1] (ВО1) На рисунке приведена моментальная «фотография» модели плоской поперечной гармонической волны в момент времени t = 6 с. Источник колебаний находится в точке с координатой х = 0. В начальный момент времени (t = 0) все частицы среды находились в покое. Циклическая частота волны равна … рад/c. Тема: 240 Электромагнитная индукция Видео:Получение уравнения плоской бегущей волны.Скачать v241П Электромагнитная индукция. Закон Фарадеяs241 Сингл П (Магнитный поток, самоиндукция, индуктивность, энергия МП) – 19 заданий1. [Уд1] (О) Неподвижный проводящий контур находится в изменяющемся со временем магнитном поле. Вызывают появление ЭДС индукции в контуре силы … электрического поля. 2. [Уд1] (ВО1) Линии индукции магнитного поля пронизывают рамку площадью S = 0,5 м2 под углом б = 30° к ее плоскости, создавая магнитный поток, равный Ф = 2 Вб. Модуль индукции магнитного поля равен … Тл. 3. [Уд1] (ВО1) Потокосцепление, пронизывающее катушку, концы которой соединены между собой, сопротивлением R в магнитном поле равно Ψ1. При изменении направления вектора магнитной индукции 1) 2) 3) 4. [Уд1] (ВО1) Магнитный поток Φ, сцепленный с проводящим контуром, изменяется со временем так, как показано на рисунке под номером 1. График, соответствующий зависимости от времени ЭДС индукции εi, возникающей в контуре представлен на рисунке 5. [Уд1] (ВО1) В одной плоскости с прямолинейным проводником, по которому течет возрастающий со временем ток, находится проволочная квадратная рамка. Индукционный ток в рамке направлен 1) по часовой стрелке 2) против часовой стрелки 3) индукционный ток в рамке не возникает 4) направление может быть любым 6. [Уд1] (ВОМ) Для получения ЭДС индукции в проводящем контуре, находящемся в магнитном поле, можно изменять со временем: 1) площадь контура; 2) угол между нормалью к плоскости контура и вектором 3) модуль вектора Силы Лоренца являются сторонними силами в случаях 7. [Уд1] (ВО1) По обмотке соленоида индуктивностью L = 0,20 Гн течет ток силой I = 10 А. Энергия W магнитного поля соленоида равна ….… Дж. 8. [Уд1] (ВО1) Проводник длиной l = 1,0 м движется со скоростью v = 5,0 м/с перпендикулярно к линиям индукции однородного магнитного поля. Если на концах проводника возникает разность потенциалов U = 0,02 В, то индукция магнитного поля В равна 9. [Уд1] (ВО1) Магнитный поток Φ, сцепленный с проводящим контуром, изменяется со временем так, как показано на рисунке под номером 1. График, соответствующий зависимости от времени ЭДС индукции εi, возникающей в контуре, представлен на рисунке под номером 💡 ВидеоБилет №34 "Электромагнитные волны"Скачать Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.Скачать Распространение колебаний в среде. Волны | Физика 9 класс #28 | ИнфоурокСкачать Математика без Ху!ни. Уравнение плоскости.Скачать Распространение волн в упругих средах. Звуковые волны | Физика 11 класс #18 | ИнфоурокСкачать Уравнение плоскости. 11 класс.Скачать Урок 454. Понятие о волновой функцииСкачать Урок 384. Излучение электромагнитных волн.Скачать Урок 374. Энергия, переносимая волной. Интенсивность сферической волныСкачать Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать Электромагнитные волны и уравнения Максвелла — Эмиль АхмедовСкачать Урок 383. Вихревое электрическое поле. Ток смещенияСкачать Раскрытие тайн электромагнитной волныСкачать Урок 382. Распространение волн в неоднородных средах. Рефракция. Дифракция.Скачать Волновая функция (видео 5) | Квантовая физика | ФизикаСкачать Билеты №32, 33 "Уравнения Максвелла"Скачать Парадокс электромагнитной волныСкачать |