Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

М 1000 м 500 м 6,28 м

Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ, имеет вид ξ= 0,01sin10 3 (t – Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет). Длина волны равна …..

М 1000 м 500 м 6,28 м

Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ, имеет вид ξ= 0,01sin10 3 (t – Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет). Длина волны равна …..

М 0,628 м 100 м 6,28 м

Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ, имеет вид ξ= 0,01sin10 3 (t – Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет). Длина волны равна …..

М 0,314 м 50 м 6,28 м

На рисунках изображены зависимости от времени координаты и ускорения материальной точки, колеблющейся по гармоническому закону.

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетУравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

Циклическая частота колебаний точки равна ….

1 с -1 3 с -1 4 с -1 2 с -1

Уравнение движения пружинного маятника Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетявляется дифференциальным уравнением .

Вынужденных колебаний свободных незатухающих колебаний

Видео:10й класс; Физика; "Уравнение плоской волны"Скачать

10й класс; Физика; "Уравнение плоской волны"

Волновая природа света

НазваниеВолновая природа света
АнкорFEPO_2005_fizika_-_moi_otvety.docx
Дата03.11.2017
Размер193.97 Kb.
Формат файлаУравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет
Имя файлаFEPO_2005_fizika_-_moi_otvety.docx
ТипДокументы
#10071
страница3 из 3
Подборка по базе: 7. Путешествуем вокруг света.doc, 7 кл-ЗАКОН И ПРИРОдА.docx, Кроссворд Природа Алтая.docx, статья Он весь дитя добра и света.docx, Влияние света тепла и влаги на рост растений.docx, быть может вся природа мозаика цветов.docx, ОВЗ природа.docx, план работы на гд света профелактики.docx, Влияние климата на жилища людей в разных частях света.docx, Интерферениция и дифракция света.ppt

1. Уравнение плоской синусоидальной волны, распространяющейся вдоль оси OХ, имеет вид Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет. Длина волны (в м) равна…

2. Уравнение плоской синусоидальной волны, распространяющейся вдоль оси OХ, имеет вид Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет. Период (в мс) равен…

3. Уравнение плоской синусоидальной волны, распространяющейся вдоль оси OХ со скоростью 500 м/с, имеет вид Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет. Волновое число k (в м -1 ) равно…

4. Уравнение плоской синусоидальной волны, распространяющейся вдоль оси OХ со скоростью 500 м/с, имеет видУравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет. Циклическая частота в (с -1 ) равна…

5. Уравнение плоской синусоидальной волны, распространяющейся вдоль оси OХ, имеет вид Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет. Длина волны (в м) равна …

Уравнение гармонических колебаний

1. Материальная точка совершает гармонические колебания с амплитудой А=4см и периодом Т=2с. Если смещение точки в момент времени, принятый за начальный, равно своему максимальному значению, то точка колеблется в соответствии с уравнением (в СИ)…

С)Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

2. Материальная точка совершает гармонические колебания с амплитудой А=4см и частотой =2Гц. Если смещение точки в момент времени, принятый за начальный, равно нулю, то точка колеблется в соответствии с уравнением (в СИ)…

d)Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

3. Материальная точка совершает гармонические колебания с амплитудой А=4см и частотой =2Гц. Если смещение точки в момент времени, принятый за начальный, равно своему максимальному значению, то точка колеблется в соответствии с уравнением (в СИ)…

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

4. Материальная точка совершает гармонические колебания с амплитудой А=4см и периодом Т=2с. Если смещение точки в момент времени, принятый за начальный, равно 2см, то точка колеблется в соответствии с уравнением (в СИ)…

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

5. Материальная точка совершает гармонические колебания с амплитудой А=4см и частотой =2Гц. Если смещение точки в момент времени, принятый за начальный, равно 2см, то точка колеблется в соответствии с уравнением (в СИ)…

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

Уравнение Шредингера (конкретные ситуации)

1. Вероятность обнаружить электрон на участке (a,b) одномерного потенциального ящика с бесконечно высокими стенками вычисляется по формуле Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет, где Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет– плотность вероятности, определяемая Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет-функцией. Если Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет-функция имеет вид, указанный на рисунке, то вероятность обнаружить электрон на участке

(Считает по интегралу в зависимости от заданных границ)

Уравнения свободных и вынужденных колебаний

1. Уравнение движения пружинного маятника Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетявляется дифференциальным уравнением …

Решение: 1) Вынужденные колебания: Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетили Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет, где x – смещение колеблющегося тела из положения равновесия; δ=b/m – коэффициент затухания, Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет– собственная частота той же колебательной системы, F0 – амплитуда вынуждающей силы, k – коэффициент жёсткости пружины, m – масса тела.

2) Свободные затухающие колебания: Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетили Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет.

3) Свободные незатухающие колебания: Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетили Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет.
3. Свободные незатухающие колебания заряда конденсатора в колебательном контуре описываются уравнением…

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

4. Свободные затухающие колебания заряда конденсатора в колебательном контуре описываются уравнением…

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

5. Вынужденные колебания заряда конденсатора в колебательном контуре описываются уравнением…

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

Уравнения Шредингера (общие свойства)

1. Стационарным уравнением Шредингера для частицы в трехмерном ящике с бесконечно высокими стенками является уравнение…Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

2. Стационарным уравнением Шредингера для частицы в одномерном ящике с бесконечно высокими стенками является уравнение…c) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

3. Стационарным уравнением Шредингера для электрона в водородоподобном ионе является уравнение… Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

4. Нестационарным уравнением Шредингера является уравнение… Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

1. На рисунке представлены две вольтамперные характеристики вакуумного фотоэлемента. Если Е – освещенность фотокатода, а  – частота падающего на него света, то справедливо следующее утверждение…

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

#Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

2. На рисунке представлены две вольтамперные характеристики вакуумного фотоэлемента. Если Е – освещенность фотокатода, а  – длина волны падающего на него света, то справедливо следующее утверждение…

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

3. На рисунке представлены две вольтамперные характеристики вакуумного фотоэлемента. Если Е – освещенность фотокатода, а  – длина волны падающего на него света, то справедливо следующее утверждение…

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

4. На рисунке представлены две вольтамперные характеристики вакуумного фотоэлемента. Если Е – освещенность фотокатода, а  – длина волны падающего на него света, то справедливо следующее утверждение…

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

Энергия волны. Перенос энергии волной

1. На рисунке показана ориентация векторов напряженности электрического (Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет) и магнитного (Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет) полей в электромагнитной волне. Вектор плотности потока энергии электромагнитного поля ориентирован в направлении…

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

3. На рисунке показана ориентация векторов напряженности электрического () и магнитного () полей в электромагнитной волне. Вектор плотности потока энергии электромагнитного поля ориентирован в направлении…

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетa) 4

5. На рисунке показана ориентация векторов напряженности электрического () и магнитного () полей в электромагнитной волне. Поток энергии электромагнитного поля ориентирован в направлении…

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетa) 4

6. При увеличении в 2 раза амплитуды колебаний векторов напряженности электрического и магнитного полей плотность потока энергии … a) увеличится в 4 раза

7. При уменьшении в 2 раза амплитуды колебаний векторов напряженности электрического и магнитного полей плотность потока энергии …c) уменьшится в 4 раза

8. Если увеличить в 2 раза объемную плотность энергии и при этом увеличить в 2 раза скорость распространения упругих волн, то плотность потока энергии…b) увеличится в 4 раза

9. Если уменьшить в 2 раза объемную плотность энергии при неизменной скорости распространения упругих волн, то плотность потока энергии… b) уменьшится в 4 раза

10. Если увеличить в 2 раза объемную плотность энергии и при этом уменьшить в 2 раза скорость распространения упругих волн, то плотность потока энергии…a) останется неизменной

11. Плотность потока электромагнитной энергии имеет размерность…d) В·А/м 2

12. Плотность потока энергии упругой волны имеет размерность…c) Дж/м 2

Эффект Комптона. Световое давление

1. На рисунке показаны направления падающего фотона (), рассеянного фотона (’) и электрона отдачи (e). Угол рассеяния 90°, направление движения электрона отдачи составляет с направлением падающего фотона угол Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет. Если импульс падающего фотона Pф, то импульс электрона отдачи равен…

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

РешениеУравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет/Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

2. На рисунке показаны направления падающего фотона (), рассеянного фотона (’) и электрона отдачи (e). Угол рассеяния 90°, направление движения электрона отдачи составляет с направлением падающего фотона угол . Если импульс электрона отдачи Pе, то импульс падающего фотона равен…Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

3. На рисунке показаны направления падающего фотона (), рассеянного фотона (’) и электрона отдачи (e). Угол рассеяния 90°, направление движения электрона отдачи составляет с направлением падающего фотона угол . Если импульс электрона отдачи Pе, то импульс рассеянного фотона равен…

5. Если увеличить в 2 раза объемную плотность световой энергии, то давление света …b) увеличится в 2 раза

6. Если зачерненную пластинку, на которую падает свет, заменить на зеркальную той же площади, то световое давление …c) увеличится 2 раза

7. Если зеркальную пластинку, на которую падает свет, заменить на зачерненную той же площади, то световое давление … b) уменьшится 2 раза

Видео:Урок 370. Механические волны. Математическое описание бегущей волныСкачать

Урок 370. Механические волны. Математическое описание бегущей волны

Дисциплина: Физика тема: 060 Механические колебания и волны (стр. 3 )

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетИз за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

2) ∆ц = Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

3) ∆ц = Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

16. [Уд1] (ВО1) Два гармонических колебания происходят с одинаковыми периодами в одном направлении с амплитудами А1 = 4 см и А2 = 3 см. Разность фаз складываемых колебаний равна ∆ц = Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет. Амплитуда их результирующего колебания составляет … см.

Тема: 060 Механические колебания и волны

V064 – П Волновое движение

S064 – П Волновое движение — 10 заданий

1. [Уд1] (ВО1) Решением волнового уравнения Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетявляется уравнение плоской монохроматической волны ξ, которая распространяется вдоль направления оси Ох. Это уравнение представлено формулой

1) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

2) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

3) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

4) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

2. [Уд1] (ВО1) Уравнение плоской синусоидальной волны, распространяющейся вдоль оси Ох со скоростью v = 500 м/с, имеет вид о = 0,01 sin (щt – 2х). Циклическая частота щ равна … рад·с-1.

3. [Уд1] (ВО1) Уравнение плоской монохроматической волны ξ, которая распространяется вдоль положительного направления оси Ох представлено формулой

1) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

2) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

3) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

4) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

4. [Уд1] (ВО1) Уравнение сферической монохроматической волны ξ представлено формулой

1) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

2) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

3) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

4) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

5. [Уд1] (ВО1) Уравнение стоячей волны ξ представлено формулой

1) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

2) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

3) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

4) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

6. [Уд1] (ВО1) При интерференции двух волн результирующая волна характеризуется изменением

1) частоты волны

3) распределения энергии в пространстве

4) периода колебаний

7. [Уд1] (ВО1) Источник колебаний, находится в упругой среде, и точки этой среды находятся на расстоянии Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетм от источника. Частота колебаний Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетГц, фазовая скорость волны Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетм/с. Разность фаз Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетравна … рад.

8. [Уд1] (ВО1) Если разность фаз колебаний источника волн в упругой среде равна Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет= 0,5р рад, и точки этой среды находятся на расстоянии Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетм от источника. Частота колебаний составляет Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетГц, тогда фазовая скорость волны равна … м/с.

9. [Уд1] (О) Точки пространства, в которых амплитуда колебаний стоячей волны, равна нулю, называются … стоячей волны.

10. [Уд1] (ВО1) В стоячей волне расстояния между двумя соседними пучностями равно

C064 – П Волновое движение (графики) – 4 задания

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

1. [Уд1] (ВО1) В упругой среде в положительном направлении оси 0x распространяется плоская волна. На рисунке приведен график зависимости смещения о частицы среды от времени t в произвольной точке оси 0х. Циклическая частота волны … рад/c.

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

2. [Уд1] (ВО1) В упругой среде в положительном направлении оси 0x распространяется плоская волна. На рисунке приведен график зависимости смещения о частицы среды от времени t в произвольной точке оси 0х. Если длина волны равна 40 м, то скорость распространения составляет … м/c.

3. [Уд1] (ВО1) На рисунке приведена моментальная «фотография» модели плоской поперечной гармонической волны в момент времени t = 6 с. Источник колебаний находится в точке с координатой х = 0. В начальный момент времени (t = 0) все частицы среды находились в покое. Фазовая скорость волны равна … м/c.

4. [Уд1] (ВО1) На рисунке приведена моментальная «фотография» модели плоской поперечной гармонической волны в момент времени t = 6 с. Источник колебаний находится в точке с координатой х = 0. В начальный момент времени (t = 0) все частицы среды находились в покое. Циклическая частота волны равна … рад/c.

Тема: 240 Электромагнитная индукция

Видео:Получение уравнения плоской бегущей волны.Скачать

Получение уравнения плоской бегущей волны.

v241П Электромагнитная индукция. Закон Фарадея

s241 Сингл П (Магнитный поток, самоиндукция, индуктивность, энергия МП) – 19 заданий

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

1. [Уд1] (О) Неподвижный проводящий контур находится в изменяющемся со временем магнитном поле. Вызывают появление ЭДС индукции в контуре силы … электрического поля.

2. [Уд1] (ВО1) Линии индукции магнитного поля пронизывают рамку площадью S = 0,5 м2 под углом б = 30° к ее плоскости, создавая магнитный поток, равный Ф = 2 Вб. Модуль индукции магнитного поля равен … Тл.

3. [Уд1] (ВО1) Потокосцепление, пронизывающее катушку, концы которой соединены между собой, сопротивлением R в магнитном поле равно Ψ1. При изменении направления вектора магнитной индукции Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетна противоположное, через катушку протекает заряд q. Верное выражение для заряда соответствует формуле

1) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

2) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

3) Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

4. [Уд1] (ВО1) Магнитный поток Φ, сцепленный с проводящим контуром, изменяется со временем так, как показано на рисунке под номером 1.

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

График, соответствующий зависимости от времени ЭДС индукции εi, возникающей в контуре представлен на рисунке

Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет

5. [Уд1] (ВО1) В одной плоскости с прямолинейным проводником, по которому течет возрастающий со временем ток, находится проволочная квадратная рамка. Индукционный ток в рамке направлен 1) по часовой стрелке

2) против часовой стрелки

3) индукционный ток в рамке не возникает

4) направление может быть любым

6. [Уд1] (ВОМ) Для получения ЭДС индукции в проводящем контуре, находящемся в магнитном поле, можно изменять со временем:

1) площадь контура;

2) угол между нормалью к плоскости контура и вектором Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеетмагнитной индукции;

3) модуль вектора Уравнение плоской синусоидальной волны распространяющейся вдоль оси ох имеет.

Силы Лоренца являются сторонними силами в случаях

7. [Уд1] (ВО1) По обмотке соленоида индуктивностью L = 0,20 Гн течет ток силой I = 10 А. Энергия W магнитного поля соленоида равна ….… Дж.

8. [Уд1] (ВО1) Проводник длиной l = 1,0 м движется со скоростью v = 5,0 м/с перпендикулярно к линиям индукции однородного магнитного поля. Если на концах проводника возникает разность потенциалов U = 0,02 В, то индукция магнитного поля В равна

9. [Уд1] (ВО1) Магнитный поток Φ, сцепленный с проводящим контуром, изменяется со временем так, как показано на рисунке под номером 1. График, соответствующий зависимости от времени ЭДС индукции εi, возникающей в контуре, представлен на рисунке под номером

🎦 Видео

Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.Скачать

Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.

Билет №34 "Электромагнитные волны"Скачать

Билет №34 "Электромагнитные волны"

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Распространение волн в упругих средах. Звуковые волны | Физика 11 класс #18 | ИнфоурокСкачать

Распространение волн в упругих средах. Звуковые волны | Физика 11 класс #18 | Инфоурок

Распространение колебаний в среде. Волны | Физика 9 класс #28 | ИнфоурокСкачать

Распространение колебаний в среде. Волны | Физика 9 класс #28 | Инфоурок

Урок 374. Энергия, переносимая волной. Интенсивность сферической волныСкачать

Урок 374. Энергия, переносимая волной. Интенсивность сферической волны

Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать

Аналитическая геометрия, 5 урок, Уравнение плоскости

Урок 384. Излучение электромагнитных волн.Скачать

Урок 384. Излучение электромагнитных волн.

Уравнение плоскости. 11 класс.Скачать

Уравнение плоскости. 11 класс.

Урок 454. Понятие о волновой функцииСкачать

Урок 454. Понятие о волновой функции

Волновая функция (видео 5) | Квантовая физика | ФизикаСкачать

Волновая функция (видео 5) | Квантовая физика | Физика

Раскрытие тайн электромагнитной волныСкачать

Раскрытие тайн электромагнитной волны

Электромагнитные волны и уравнения Максвелла — Эмиль АхмедовСкачать

Электромагнитные волны и уравнения Максвелла — Эмиль Ахмедов

Урок 382. Распространение волн в неоднородных средах. Рефракция. Дифракция.Скачать

Урок 382. Распространение волн в неоднородных средах. Рефракция. Дифракция.

Урок 383. Вихревое электрическое поле. Ток смещенияСкачать

Урок 383. Вихревое электрическое поле. Ток смещения

Парадокс электромагнитной волныСкачать

Парадокс электромагнитной волны

Билеты №32, 33 "Уравнения Максвелла"Скачать

Билеты №32, 33 "Уравнения Максвелла"
Поделиться или сохранить к себе: