Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Уравнение плоской бегущей волны

Для большинства задач, связанных с волнами, важно знать состояние колебаний различных точек среды в тот или иной момент времени. Состояния точек среды будут определены, если известны амплитуды и фазы их колебаний. Для поперечных волн необходимо еше знать характер поляризации. Для плоской линейно-поляризованной волны достаточно иметь выражение, позволяющее определить смещение с(х, t) из положения равновесия любой точки среды с координатой х, в любой момент времени t. Такое выражение называется уравнением волны.

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Рис. 2.21. Бегущая волна

Рассмотрим так называемую бегущую волну, т.е. волну с плоским волновым фронтом, распространяющуюся в каком-либо одном определенном направлении (например, вдоль оси х). Пусть частицы среды, непосредственно примыкающие к источнику плоских волн, совершают колебания по гармоническому закону; %(0, /) = = ЛсобсоГ (рис. 2.21). На рисунке 2.21, а через ^(0, t) обозначено смещение частиц среды, лежащих в перпендикулярной рисунку плоскости и имеющих в выбранной системе координат координату х = 0 в момент времени t. Начало отсчета времени выбрано так, чтобы начальная фаза колебаний, определенных через косинусоидальную функцию, была равна нулю. Ось х совместим с лучом, т.е. с направлением распространения колебаний. В этом случае фронт волны перпендикулярен оси х, так что частицы, лежащие в этой плоскости, будут совершать колебания в одной фазе. Сам фронт волны в данной среде перемещается вдоль оси х со скоростью и распространения волны в данной среде.

Найдем выражение ?(х, t) смещения частиц среды, удаленных от источника на расстояние х. Это расстояние фронт волны проходит

за время Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц средыСледовательно, колебания частиц, лежащих в плоскости, удаленной от источника на расстояние х, будут отставать по времени на величину т от колебаний частиц, непосредственно примыкающих к источнику. Эти частицы (с координатой х) также будут совершать гармонические колебания. В отсутствие затухания амплитуда А колебаний (в случае плоской волны) не будет зависеть от координаты х, т.е.

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Это и есть искомое уравнение тоской бегущей волны (не путать с волновым уравнением, рассматриваемым ниже!). Уравнение, как уже отмечалось, позволяет определить смещение % частицы среды с координатой х в момент времени t. Фаза колебаний Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц средызависит

от двух переменных: от координаты х частицы и времени t. В данный фиксированный момент времени фазы колебаний различных частиц будут, вообще говоря, различны, но можно выделить такие частицы, колебания которых будут происходить в одинаковой фазе (синфазно). Можно также считать, что разность фаз колебаний этих частиц равна 2пт (где т = 1, 2, 3. ). Кратчайшее расстояние между двумя частицами бегущей волны, колеблющимися в одинаковой фазе, называется длиной волны X.

Найдем связь длины волны X с другими величинами, характеризующими распространение колебаний в среде. В соответствии с введенным определением длины волны можно написать

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

или после сокращений Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц средыТак как Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды, то Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Это выражение позволяет дать иное определение длины волны: длина волны есть расстояние, на которое успевают распространиться колебания частиц среды за время, равное периоду колебаний.

Уравнение волны обнаруживает двойную периодичность: по координате и по времени: ^(х, t) = Z,(x + nk, t) = l,(x, t + mT) = Цх + пХ, ml), где пит — любые целые числа. Можно, например, фиксировать координаты частиц (положить х = const) и рассматривать смещение их как функцию времени. Или, наоборот, фиксировать момент времени (принять t = const) и рассматривать смещение частиц как функцию координат (мгновенное состояние смещений — мгновенная фотография волны). Так, находясь на пристани можно с помощью фотоаппарата в момент времени t сфотографировать морскую поверхность, но можно, бросив щепку в море (т.е. зафиксировав координату х), следить за ее колебаниями во времени. Оба эти случая приведены в виде графиков на рис. 2.21, а—в.

Уравнение волны (2.125) можно переписать иначе

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Отношение Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц средыобозначается к и называется волновым числом

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Так как Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды, то

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Волновое число, таким образом, показывает, какое число длин волн укладывается в отрезке 2л единиц длины. Введя волновое число в уравнение волны, получим уравнение бегущей в положительном направлении Ох волны в наиболее часто употребляемом виде

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Найдем выражение, связывающее разность фаз Дер колебаний двух частиц, принадлежащих разным волновым поверхностям Х и х2. Воспользовавшись уравнением волны (2.131), запишем: Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Если обозначить Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц средыили согласно (2.130)

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Плоская бегущая волна, распространяющаяся в произвольном направлении, описывается в общем случае уравнением

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

где г —радиус-вектор, проведенный из начала координат к частице, лежащей на волновой поверхности; к — волновой вектор, равный по модулю волновому числу (2.130) и совпадающий по направлению с нормалью к волновой поверхности в направлении распространении волны.

Возможна также комплексная форма записи уравнения волны. Так, например, в случае плоской волны, распространяющейся вдоль оси х

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

а в общем случае плоской волны произвольного направления

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Уравнение волны в любой из перечисленных форм записи может быть получено как решение дифференциального уравнения, называемого волновым уравнением. Если мы знаем решение этого уравнения в форме (2.128) или (2.135) — уравнение бегущей волны, то найти само волновое уравнение не составляет труда. Продифференцируем 4(х, t) = % из (2.135) дважды по координате и дважды времени и получим Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

выражая ?, через полученные производные и сравнивая результаты, получим

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Имея в виду соотношение (2.129), запишем

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Это и есть волновое уравнение для одномерного случая.

В общем виде для ?, = с(х, у, z, /) волновое уравнение в декартовых координатах выглядит так

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

или в более компактном виде:

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

где Д — дифференциальный оператор Лапласа Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Фазовой скоростью называется скорость распространения точек волны, колеблющихся в одинаковой фазе. Иными словами — это скорость перемещения «гребня», «впадины», либо любой другой точки волны, фаза которой фиксирована. Как уже отмечалось ранее, фронт волны (а следовательно, и любая волновая поверхность) перемещается вдоль оси Ох со скоростью и. Следовательно, скорость распространения колебаний в среде совпадает со скоростью перемещения данной фазы колебаний. Поэтому скорость и, определяемую соотношением (2.129), т.е. Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

принято называть фазовой скоростью.

Тот же результат можно получить, найдя скорость точек среды, удовлетворяющих условию постоянства фазы со/ — fee = const. Отсюда находится зависимость координаты от времени(со/ — const) и скорость перемещения данной фазы Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

что совпадает с (2.142). Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Плоская бегущая волна, распространяющаяся в отрицательном направлении оси Ох, описывается уравнением

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Действительно, в этом случае фазовая скорость отрицательна Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Фазовая скорость в данной среде может зависеть от частоты колебаний источника. Зависимость фазовой скорости от частоты называется дисперсией, а среды, в которых имеет место эта зависимость, называются диспергирующими средами. Не следует думать, однако, что выражение (2.142) и есть указанная зависимость. Дело в том, что в отсутствие дисперсии волновое число к прямо пропорционально

со и поэтому Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды. Дисперсия имеет место лишь в том случае, когда со зависит от к нелинейно).

Бегущая плоская волна называется монохроматической (имеющей одну частоту), если колебания в источнике гармонические. Монохроматическим волнам отвечает уравнение вида (2.131).

Для монохроматической волны угловая частота со и амплитуда А не зависят от времени. Это значит, что монохроматическая волна безгранична в пространстве и бесконечна во времени, т.е. представляет собой идеализированную модель. Всякая реальная волна, как бы тщательно ни поддерживалось постоянство частоты и амплитуды, монохроматической не является. Реальная волна не длится бесконечно долго, а начинается и кончается в определенные моменты времени в определенном месте, и, следовательно, амплитуда такой волны есть функция времени и координаты этого места. Однако чем длиннее интервал времени, в течение которого поддерживаются постоянными амплитуда и частота колебаний, тем ближе к монохроматической данная волна. Часто в практике монохроматической волной называют достаточно большой отрезок волны, в пределах которого частота и амплитуда не изменяются, подобно тому, как изображают на рисунке отрезок синусоиды, и называют его синусоидой.

Видео:Получение уравнения плоской бегущей волны.Скачать

Получение уравнения плоской бегущей волны.

Задано уравнение плоской бегущей волны ξ(x, t) = 5⋅10−3 cos(628t − 2x), найти частоту колебаний частиц среды ν, длину волны λ, фазовую скорость

Видео:Урок 370. Механические волны. Математическое описание бегущей волныСкачать

Урок 370. Механические волны. Математическое описание бегущей волны

Ваш ответ

Видео:10й класс; Физика; "Уравнение плоской волны"Скачать

10й класс; Физика; "Уравнение плоской волны"

решение вопроса

Видео:Распространение колебаний в среде. Волны | Физика 9 класс #28 | ИнфоурокСкачать

Распространение колебаний в среде. Волны | Физика 9 класс #28 | Инфоурок

Похожие вопросы

  • Все категории
  • экономические 43,410
  • гуманитарные 33,633
  • юридические 17,906
  • школьный раздел 608,042
  • разное 16,856

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Распространение волн в упругих средах. Звуковые волны | Физика 11 класс #18 | ИнфоурокСкачать

Распространение волн в упругих средах. Звуковые волны | Физика 11 класс #18 | Инфоурок

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды

2018-05-31 Уравнение плоской бегущей волны распространяющейся вдоль оси x задано смещением частиц среды
Уравнение бегущей плоской звуковой волны имеет вид $chi = 60 cos (1800t — 5,3x)$, где $chi$ в микрометрах, $t$ в секундах, $x$ в метрах. Найти:
а) отношение амплитуды смещения частиц среды к длине волны;
б) амплитуду колебаний скорости частиц среды и ее отношение к скорости распространения волны;
в) амплитуду колебаний относительной деформации среды и ее связь с амплитудой колебания скорости частиц среды.

$xi = 60 cos (1800 t 5 cdot 3 x)$

$xi = a cos ( omega t — kx)$, где $a = 60 cdot 10^ м$
$omega = 1800 $ в секунду и $k = 5,3$ на метр

и $k = frac$, поэтому $v = frac = 340 м/с$

Таким образом, амплитуда колебаний скорости

$left ( frac right )_ $ или $v_ = a omega = 0,11 м / с$ (1)

и искомое отношение амплитуды колебаний скорости к скорости распространения волны

(в) Относительная деформация $= frac = ak sin ( omega t — kx) $

Таким образом, относительная амплитуда деформации

$= left ( frac right )_ = ak = (60 cdot 10^ cdot 5,3) м = 3,2 cdot 10^ м$ (2)

📺 Видео

Физика. 11 класс. Упругие механические волны. Уравнение бегущей и стоячей волны /16.11.2020/Скачать

Физика. 11 класс. Упругие механические волны. Уравнение бегущей и стоячей волны /16.11.2020/

Физика 9 класс. §28 Распространение колебаний в среде. ВолныСкачать

Физика 9 класс. §28 Распространение колебаний в среде. Волны

Якута А. А. - Механика - Волновое уравнение. Механические волны. Скорость распространения волнСкачать

Якута А. А. - Механика - Волновое уравнение. Механические волны. Скорость распространения волн

Упругие механические волны. 1 часть. 11 класс.Скачать

Упругие механические волны. 1 часть. 11 класс.

Физика 11 класс (Урок№2 - Механические волны.)Скачать

Физика 11 класс (Урок№2 - Механические волны.)

Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Урок 375. Стоячие волныСкачать

Урок 375. Стоячие волны

Лекция 2 ВолныСкачать

Лекция 2 Волны

5.6 Механические волны. Виды волнСкачать

5.6 Механические волны. Виды волн

Билеты № 35, 39 "Плоская волна, ее отражение. Давление излучения"Скачать

Билеты № 35, 39 "Плоская волна, ее отражение. Давление излучения"

Общая физика | Л23: Элементы теории волн. Волновое уравнение. Поперечные и продольные колебанияСкачать

Общая физика | Л23: Элементы теории волн. Волновое уравнение. Поперечные и продольные колебания

Тема 6. Распространение колебаний в упругой среде. Волны. Частота, длина, скорость распространенияСкачать

Тема 6. Распространение колебаний в упругой среде. Волны. Частота, длина, скорость распространения

Урок 454. Понятие о волновой функцииСкачать

Урок 454. Понятие о волновой функции

Парфенов К.В. - Олимпиадная физика для 11-го класса - 40. ВолныСкачать

Парфенов К.В. - Олимпиадная физика для 11-го класса - 40. Волны

Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.Скачать

Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.
Поделиться или сохранить к себе: