Уравнение плоскости проходящей через точку и нормаль по координатам

Уравнение плоскости онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через три точки, и уравнение плоскости, проходящей через одну точку и имеющий заданный нормаль плоскости. Дается подробное решение с пояснениями. Для построения уравнения плоскости выберите вариант задания исходных данных, введите координаты точек в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Уравнение плоскости, проходящей через три точки

Рассмотрим цель − вывести уравнение плоскости, проходящей через три различные точки M1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3), не лежащие на одной прямой. Так как эти точки не лежат на одной прямой, векторы Уравнение плоскости проходящей через точку и нормаль по координатами Уравнение плоскости проходящей через точку и нормаль по координатамне коллинеарны. Следовательно точка M(x, y, z) лежит в одной плоскости с точками M1, M2, M3 тогда и тольно тогда, когда векторы M1M2, M1M3 и Уравнение плоскости проходящей через точку и нормаль по координатамкомпланарны. Но векторы M1M2, M1M3, M1M компланарны тогда и только тогда, когда их смешанное произведение равно нулю. Используя смешанное произведение векторов M1M2, M1M3, M1M в координатах, получим необходимое и достаточное условие принадлежности точки M(x, y, z) к указанной плоскости:

Уравнение плоскости проходящей через точку и нормаль по координатам

Разложив определитель в левой части выражения, например, по первому столбцу и упростив, получим уравнение плоскости в общей форме, проходящий по точкам M1, M2, M3:

Пример 1. Построить уравнение плоскости, проходящую через точки A(1, 2, 1), B(4, 5, -4), С(2, 1, 2).

Уравнение плоскости проходящей через точку и нормаль по координатам(1)

Подставляя координаты точек A, B, C в (1), получим:

Уравнение плоскости проходящей через точку и нормаль по координатам
Уравнение плоскости проходящей через точку и нормаль по координатам

Разложим определитель по первому столбцу:

Уравнение плоскости проходящей через точку и нормаль по координатамУравнение плоскости проходящей через точку и нормаль по координатамУравнение плоскости проходящей через точку и нормаль по координатам
Уравнение плоскости проходящей через точку и нормаль по координатамУравнение плоскости проходящей через точку и нормаль по координатам
Уравнение плоскости проходящей через точку и нормаль по координатам

Уравнение плоскости, проходящей через точки A(1, 2, 1), B(4, 5, -4), С(2, 1, 2) имеет вид:

Уравнение плоскости проходящей через точку и нормаль по координатам

Видео:Уравнение плоскости через точку и нормальСкачать

Уравнение плоскости через точку и нормаль

Уравнение плоскости, проходящей через одну точку и имеющий нормаль n

Пример 2. Построить плоскость, проходящую через точку M0(-1, 2, 1) и имеюший нормаль n(1, 4/5, 1).

Уравнение плоскости проходящей через точку и нормаль по координатам(2)

Подставляя координаты векторов M0 и n в (2), получим:

Видео:1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

Онлайн калькулятор. Уравнение плоскости

Предлагаю вам воспользоваться онлайн калькулятором чтобы найти уравнение плоскости.

Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения плоскости и закрепить пройденный материал.

Видео:10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

Найти уравнение плоскости

Уравнение плоскости проходящей через точку и нормаль по координатам

Выберите метод решения исходя из имеющихся в задаче данных:

В задаче известны:

Ввод данных в калькулятор для составления уравнения плоскости

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для вычисления уравнения плоскости

  • Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.

Теория. Уравнение плоскости.

Плоскость — поверхность, содержащая полностью каждую прямую, соединяющую любые её точки

В зависимости от условий задачи уравнение плоскости можно составить следующими способами:

    Если заданы координаты трех точек A( x 1, y 1, z 1), B( x 2, y 2, z 2) и C( x 3, y 3, z 3), лежащих на плоскости, то уравнение плоскости можно составить по следующей формуле

x — x 1y — y 1z — z 1= 0
x 2 — x 1y 2 — y 1z 2 — z 1
x 3 — x 1y 3 — y 1z 3 — z 1


Если заданы координаты точки A( x 1, y 1, z 1) лежащей на плоскости и вектор нормали n = , то уравнение плоскости можно составить по следующей формуле:

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Нормальное уравнение плоскости: описание, примеры, решение задач

Статья раскрывает суть нормального (нормированного) уравнения и показывает, при каких видах задач его чаще всего применяют. Рассмотрим выведение нормального уравнения плоскости с примерами решений. Приведем примеры приведения общего уравнения плоскости к нормальному виду. Решим задачи по нахождению расстояния от точки до плоскости при помощи нормального уравнения плоскости.

Видео:Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать

Аналитическая геометрия, 5 урок, Уравнение плоскости

Нормальное уравнение плоскости – описание и пример

Возьмем прямоугольную систему координат О х у z трехмерного пространства. Если плоскость удалена на расстояние p ≥ 0 в положительном направлении нормального вектора n → . Возьмем за единицу длину вектора n → . Получим, что координатами направляющего косинуса являются n → = ( cos α , cos β , cos γ ) , тогда n → = cos 2 α , cos 2 β , cos 2 γ = 1 .

Примем обозначение O N за расстояние от точки до плоскости, таким образом, точка N принадлежит плоскости, где длиной отрезка O N будет значение p . Представим это на рисунке, изображенном ниже.

Уравнение плоскости проходящей через точку и нормаль по координатам

Теперь найдем уравнение заданной плоскости.

В трехмерном пространстве обозначим точку M ( x , y , z ) . Отсюда получим, что O M → , являющийся ее радиус вектором, с координатами ( x , y , z ) . Запись примет вид O M → = ( x , y , z ) . Отсюда получаем, что плоскость определена множеством точек M ( x , y , z ) , тогда числовая проекция вектора O M → по направлению n → равна значению p . Запись принимает вид n p n → O M → = p . Рассмотрим на приведенном ниже рисунке.

Уравнение плоскости проходящей через точку и нормаль по координатам

Из вышесказанного получим, что определение скалярного произведения векторов по формуле n → = ( cos α , cos β , cos γ ) и O M → = ( x , y , z ) в результате дают равенство

n → , O M → = n → · O M → · cos n ⇀ , O M → ^ = n → · n p n → O M → = 1 · p = p

Данная формула представляет скалярное произведение в координатной форме. Тогда получаем следующее выражение:

n → , O M → = cos α · x + cos β · y + cos γ · z

При сопоставлении двух последних равенств получаем уравнение плоскости такого вида cos α · x + cos β · y + cos γ · z = p . Упростим выражения. Для этого необходимо перенести значение p в левую сторону, получим cos α · x + cos β · y + cos γ · z — p = 0 .

cos α · x + cos β · y + cos γ · z — p = 0 называют нормальным уравнением плоскости или уравнением плоскости в нормальном виде. Реже его называют нормированным уравнением заданной плоскости.

Теперь заданное в прямоугольной системе координат О х у z нормальное уравнение принимает вид cos α · x + cos β · y + cos γ · z — p = 0 . Р имеет значение расстояния положительного направления единичного нормального вектора плоскости n → = ( cos α , cos β , cos γ ) .

Чаще всего косинус не представляется явно в уравнении плоскости, потому как cos α , cos β и cos γ является некоторыми действительными числами, сумма квадратов которых равна единице.

Рассмотрим пример нормального уравнения плоскости.

Если имеется плоскость, заданная в прямоугольной системе координат O x y z при помощи уравнения нормального вида, — 1 4 · x — 3 4 · y + 6 4 · z — 7 = 0 .

Отсюда cos α = — 1 4 , cos β = — 3 4 , cos γ = 6 4 .

Из выражения находим, что — 1 4 , — 3 4 , 6 4 — координаты нормального вектора плоскости n → . Его длина вычисляется из формулы n → = — 1 4 2 + — 3 4 2 + 6 4 2 = 1 . Плоскость располагается относительно координат в направлении вектора n → на расстоянии 7 единиц, потому как p = 7 .

Отсюда ясно, что нормальное уравнение плоскости представляет собой общее уравнение плоскости A x + B y + C z + D = 0 , где A , B , C – некоторые действительные числа, при которых длина нормального вектора плоскости n → = ( A , B , C ) равняется 1 , причем D является неотрицательным числом.

Чтобы выявить, является представленное уравнение нормальным уравнением плоскости, необходимо выполнение обоих условий n → = cos 2 α + cos 2 β + cos 2 γ = 1 и p ≥ 0 , тогда получим уравнение плоскости нормального вида. При невыполнении хотя бы одного условия, уравнение не является нормальным.

Рассмотрим на примере.

Выявить уравнение плоскости нормального вида из заданных уравнений:

1 7 x — 4 7 y + 4 2 7 — 3 = 0 1 3 x + 7 6 y — 5 6 z + 2 5 = 0 1 3 x + 1 2 y + 1 4 z — 11 = 0

Начнем решение с первого уравнения. Для этого необходимо проверить, равняется ли длина нормального вектора n → = 1 7 , — 4 7 , 4 2 7 единице.

Вычисляем длину по формуле и получаем: n → = 1 7 2 + — 4 7 2 + 4 2 7 2 = 1 49 + 16 49 + 32 49 = 1

Необходимо поработать с числом p , так как его значение должно быть положительным. Это верно, так как p = 3 . Значит, первое заданное уравнение плоскости можно считать уравнением плоскости в нормальном виде.

Второе уравнение из заданных нельзя считать нормальным уравнением плоскости, так как условие p ≥ 0 не выполняется, ибо в данном уравнении p = — 2 5 .

Третье уравнение имеет нормальный вектор с координатами n → = 1 3 , 1 2 , 1 4 , длина которого не равняется единице из вычислений:

n → = 1 3 2 + 1 2 2 + 1 4 2 = 1 9 + 1 4 + 1 16 = 61 12 ≠ 1

Отсюда следует, что его нельзя считать за уравнение плоскости в нормальном виде.

Ответ: 1 7 x — 4 7 y + 4 2 7 z — 3 = 0 уравнение является нормальным уравнением плоскости.

Видео:4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать

4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примеры

Приведение общего уравнения плоскости к нормальному виду

Для приведения уравнения плоскости A x + B y + C z + D = 0 к нормальному виду, обе части умножаются на нормированный множитель ± 1 A 2 + B 2 + C 2 . Знак определятся по числу D , он должен быть противоположным значения числа D .

Когда D = 0 , знак может быть любым.

Нормальным уравнением плоскости считается общее уравнение плоскости после умножения на нормирующий множитель, потому как длина вектора с кооординатами ± A A 2 + B 2 + C 2 , ± B A 2 + B 2 + C 2 , ± C A 2 + B 2 + C 2 равна 1 .

Отсюда получаем, что ± A A 2 + B 2 + C 2 , ± B A 2 + B 2 + C 2 , ± C A 2 + B 2 + C 2 = A 2 + B 2 + C 2 A 2 + B 2 + C 2 = 1 .

Знак множителя необходим для того, что проверять выполнимость условия p ≥ 0 .

Привести уравнение 2 x — 3 y + z + 5 = 0 к нормальному виду.

Из условия имеем, что A = 2 , B = — 3 , C = 1 , D = 5 . Исходя из того, что D является положительным числом, нормирующий множитель дожжен иметь противоположный знак. Отсюда получим, что получим отрицательный результат.

— 1 A 2 + B 2 + C 2 = — 1 2 2 + ( — 3 ) 2 + 1 2 = — 1 14

Чтобы получить искомое нормальное уравнение плоскости, обе части уравнения необходимо умножить на нормирующий множитель. Получим:

— 1 14 · 2 x — 3 y + z + 5 = — 1 14 · 0 ⇔ ⇔ — 2 14 x + 3 14 y — 1 14 z — 5 14 = 0

Ответ: — 2 14 x + 3 14 y — 1 14 z — 5 14 = 0 .

Написать нормальное уравнение плоскости, если оно задано уравнением 3 x — 4 z = 0 прямоугольной системы координат O x y z .

Из условия видно, что A = 3 , B = 0 , C = — 4 , D = 0 . Знака перед множителем нет, потому как D = 0 . Значит, возьмем со знаком « + ». Получаем выражение вида:

1 A 2 + B 2 + C 2 = 1 3 2 + 0 2 + ( — 4 ) 2 = 1 5

При умножении обеих частей уравнения на нормирующий множитель, получаем уравнение плоскости нормального вида 3 5 x — 4 5 z = 0 .

Ответ: 3 5 x — 4 5 z = 0 .

Видео:Уравнение плоскости через 3 точкиСкачать

Уравнение плоскости через 3 точки

Нахождение расстояния от точки до плоскости

Теперь раскроем тему нормального уравнения плоскости, где уравнение плоскости нормального вида применимо для нахождения расстояния от заданной точки в пространстве до плоскости.

При заданной системе координат О х у z трехмерного пространства имеем плоскость с уравнением cos α · x + cos β · y + cos γ · z — p = 0 , где необходимо определить расстояние от p до точки M 0 ( x 0 , y 0 , z 0 ) заданной плоскости. Его вычисляют по формуле p = cos α · x 0 + cos β · y 0 + cos γ · z 0 — p . Само расстояние является числом, которое получается при подстановке координат точки в левую сторону уравнения. Для вывода формулы необходимо обратиться к статье расстояния от точки до плоскости.

Имеется уравнение плоскости вида — 1 3 x + 2 3 y — 2 3 z — 1 = 0 , которое располагается в прямоугольной системе координат. Определить расстояние от точки с координатами M 0 ( 1 , — 3 , 0 ) до плоскости.

Координаты точки M необходимо подставить в левую часть уравнения плоскости. Тогда получаем:

— 1 3 · 1 + 2 3 · ( — 3 ) — 2 3 · 0 — 1 = 0

Искомое расстояние – величина абсолютная, значит p = — 3 1 3 = 3 1 3 .

Если плоскость задана другим уравнением, а необходимо произвести вычисление от заданной точки до плоскости, необходимо привести уравнение к виду нормального уравнения плоскости, используя формулу p = cos α · x 0 + cos β · y 0 + cos γ · z 0 — p .

Найти расстояние от заданной точки с координатами M 0 ( 5 , — 1 , 2 ) до плоскости x 5 + y — 2 + z 4 = 1 .

По условию имеем уравнение плоскости в отрезках. Это значит, что необходимо привести его к нормальному уравнению плоскости. Для этого переходим к общему уравнению, после чего приведем к нормальному виду.

Получаем: x 5 + y — 2 + z 4 = 1 ⇔ 1 5 x — 1 2 y + 1 4 z — 1 = 0

Для вычисления нормирующего множителя применяем: 1 1 5 2 + — 1 2 2 + 1 4 2 = 1 141 25 · 16 = 20 141

Обе части уравнения 1 5 x — 1 2 y + 1 4 z — 1 = 0 умножаем на нормирующий множитель. Теперь получено нормальное уравнение исходной плоскости вида:

4 141 x — 10 141 y + 5 141 z — 20 141 = 0

Отсюда видно, что cos α = 4 141 , cos β = — 10 141 , cos γ = 5 141 , p = — 20 141 , x 0 = 5 , y 0 = — 1 , z 0 = 2

Все имеющиеся данные помогут использовать формулу для нахождения искомого расстояния от точки до плоскости:

p = cos α · x 0 + cos β · y 0 + cos γ · z 0 — p = 4 141 · 5 — 10 141 · — 1 + 5 141 · 2 — 20 141 = 20 141

💡 Видео

Видеоурок "Уравнение плоскости по трем точкам"Скачать

Видеоурок "Уравнение плоскости по трем точкам"

Составьте уравнение плоскости, проходящей через ось Оу и точку M (3;2;4).Скачать

Составьте уравнение плоскости, проходящей через ось Оу и точку M (3;2;4).

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

5. Нормальное уравнение плоскости выводСкачать

5. Нормальное уравнение плоскости вывод

Метод координат Урок №2 2 Нахождение уравнения плоскости по трем точкамСкачать

Метод координат  Урок №2 2  Нахождение уравнения плоскости по трем точкам

Уравнение плоскости через 2 точки параллельно векторуСкачать

Уравнение плоскости через 2 точки параллельно вектору

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

Уравнение плоскости. 11 класс.Скачать

Уравнение плоскости. 11 класс.

Видеоурок "Уравнение плоскости в отрезках"Скачать

Видеоурок "Уравнение плоскости в отрезках"

2. Уравнение плоскости примеры решения задач #1Скачать

2. Уравнение плоскости примеры решения задач #1

Уравнения касательной и нормали к кривой, заданной в неявном видеСкачать

Уравнения касательной и нормали к кривой, заданной в неявном виде
Поделиться или сохранить к себе: