Если даны не параллельные прямые L1 и L2, тогда плоскость, проходящая через прямую L1 и параллельная прямой L2 представляется уравнением:
Это и есть уравнение плоскости, проходящей через данную прямую и параллельной другой данной прямой.
х1, y1, z1 — координаты какой-либо точки прямой L1
ι 1, m1, n1 — направляющие коэффициенты прямой L1
ι 2, m2, n2 — направляющие коэффициенты прямой L2
Видео:10. Параллельность и перпендикулярность плоскостей Решение задачСкачать
Уравнение плоскости, проходящей через данную прямую параллельно другой прямой онлайн
С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через прямую L1 параллельно другой прямой L2 (прямые L1 и L2 не параллельны). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямых (канонический или параметрический) введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:Найти уравнение плоскости проходящей через прямую и перпендикулярно плоскостиСкачать
Уравнение плоскости, проходящей через данную прямую параллельно другой прямой − теория, примеры и решения
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2, которые не параллельны:
. | (1) |
. | (2) |
Задача заключается в построении уравнения плоскости α, проходящей через прямую L1 параллельно прямой L2(Рис.1).
Прамая L1 должна лежать на искомой плоскости α, следовательно точка M1 должна нежать на плоскости α.
Уравнение плоскости можно записать формулой
Ax+By+Cz+D=0. | (3) |
и поскольку M1(x1, y1, z1) принадлежит этой плоскости, то справедливо следующее равенство:
Ax1+By1+Cz1+D=0. | (4) |
Для того, чтобы плоскость α проходила через прямую L1, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q1 прямой L1, т.е. скалярное произведение этих векторов должен быть равным нулю:
Am1+Bp1+Cl1=0 | (5) |
Для того, чтобы плоскость α была параллельна прямой L2, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q2 прямой L2, т.е. скалярное произведение этих векторов должен быть равным нулю:
Am2+Bp2+Cl2=0 | (6) |
Таким образом мы должны решить систему трех уравнений с четыремя неизвестными (4)−(6). Представим систему линейных уравнений (4)−(6) в матричном виде:
(7) |
Решив однородную систему линейных уравнений (7) найдем частное решение. (как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн). Подставляя полученные коэффициенты A, B, C и D в уравнение (3), получим уравнение плоскости, проходящей через прямую L1 параллельно прямой L2.
Пример 1. Найти уравнение плоскости α, проходящей через прямую L1:
(8) |
паралленьно другой прямой L2 :
(9) |
Поскольку плоскость проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(1, 1, 5) и нормальный вектор плоскости n=<A, B, C> перпендикулярна направляющему вектору q1=<m1, p1, l1>= прямой L1. Тогда уравнение плоскости должна удовлетворять условию:
(10) |
а условие параллельности прямой L1 и искомой плоскости α представляется следующим равенством:
(11) |
Так как плоскость α должна быть параллельной прямой L2, то должна выполнятся условие:
(12) |
(13) |
(14) |
(15) |
Представим эти уравнения в матричном виде:
(16) |
Решим систему линейных уравнений (16) отностительно A, B, C, D:
(17) |
Так как искомая плоскость проходит через точку M1 и имеет нормальный вектор n=<A, B, C>= то она может быть представлена формулой:
Ax+By+Cz+D=0 | (18) |
Подставляя значения A,B,C,D в (17), получим:
(18) |
Уравнение плоскости можно представить более упрощенном виде, умножив на число −24:
13x−4y+3z−24=0 | (19) |
Ответ: Уравнение плоскости, проходящей через прямую (1) параллельно прямой (2) имеет вид (19).
Пример 2. Найти уравнение плоскости α, проходящей через прямую L1:
(20) |
q1=<m1, p1, l1>= |
q2=<m2, p2, l2>= |
Поскольку плоскость проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(−2, 0, 1) и нормальный вектор плоскости n=<A, B, C> перпендикулярна направляющему вектору q1=<m1, p1, l1>= прямой L1. Тогда уравнение плоскости должна удовлетворять условию:
Ax1+By1+Cz1+D=0 | (22) |
а условие параллельности прямой L1 и искомой плоскости α представляется следующим равенством:
(23) |
Так как плоскость α должна быть параллельной прямой L2, то должна выполнятся условие:
(24) |
A(−2)+B·0+C·1+D=0, | (25) |
A·5+B(−8)+C·3=0, | (26) |
A·1+B·1+C·1=0, | (27) |
Представим эти уравнения в матричном виде:
(28) |
Решим систему линейных уравнений (28) отностительно A, B, C, D:
(29) |
Так как искомая плоскость проходит через точку M1 и имеет нормальный вектор n=<A, B, C>= то она может быть представлена формулой:
Ax+By+Cz+D=0 | (30) |
Подставляя значения A,B,C,D в (30), получим:
(31) |
Уравнение плоскости можно представить более упрощенном виде, умножив на число 35:
11x+2y−13z+35=0 | (32) |
Ответ: Уравнение плоскости, проходящей через прямую (1) параллельно прямой (2) имеет вид (32).
Видео:Уравнение плоскости через 2 точки параллельно прямойСкачать
Задача 21728 Найти уравнение плоскости проходящей.
Условие
Найти уравнение плоскости проходящей через прямую (x-1)/2=(y+2)/1=z/3 параллельной прямой (x+1)/2=(y-2)/3=(z-2)/-5
Решение
Искомое уравнение плоскости имеет вид:
Ax+By+Cz+D=0
Нормальный вектор этой плоскости имеет координаты
vector=(A;B;C).
Так как искомая плоскость проходит через заданную прямую,
то она проходит и через точку (1;- 2; 0).
Подставим координаты точки в уравнение плоскости:
A-2B+D=0
Так как искомая плоскость проходит через заданную прямую,
то она параллельна заданной прямой. В этом случае, направляющий вектор прямой и нормальный вектор искомой плоскости перпендикулярны, а значит их скалярное
произведение равно 0:
vector*vector =0
2A+B+3C=0
Так как искомая плоскость параллельна и прямой с
направляющим вектором vector, то направляющий вектор
прямой и нормальный вектор искомой плоскости
перпендикулярны, а значит их скалярное
произведение равно 0:
vector*vector =0
2A+3B-5C=0
Подставляем в первое
-3,5С-2*4С+D=0
D=11,5C
Уравнение плоскости имеет вид
-3,5Сx+4Сy+Сz+11,5С=0
Сокращаем на С
-3,5х+4у+z+11,5=0
-7x+8y+2z+23=0
🔍 Видео
12. Уравнения прямой в пространстве Решение задачСкачать
Математика без Ху!ни. Уравнение плоскости.Скачать
4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать
1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать
Записать уравнение прямой параллельной или перпендикулярной данной.Скачать
Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать
ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать
Параллельные прямые | Математика | TutorOnlineСкачать
2. Уравнение плоскости примеры решения задач #1Скачать
3. Частные случаи общего уравнения плоскости Неполные уравнения плоскостиСкачать
Аналитическая геометрия, 6 урок, Уравнение прямойСкачать
Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать
Уравнение плоскости через 2 точки параллельно векторуСкачать
Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать
Уравнение параллельной прямойСкачать
Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать