Найти уравнение плоскости, параллельной оси Oz и проходящей через точки A(2, 3, -1) и B(-1, 2, 4).
Уравнение плоскости, параллельной оси Oz, имеет вид
(так как плоскость по условию задачи параллельна оси Oz, то в ее уравнении отсутствует координата z).
Если плоскость проходит через точку, то координаты этой точки удовлетворяют уравнению плоскости. Подставляя координаты точек A и B в уравнении (1), получим два уравнения:
Для определения коэффициентов A, B и D имеем систему двух однородных линейных уравнений с тремя неизвестными. Составляем матрицу коэффициентов этих уравнений
Тогда по формулам (25) получаем
Подставляя найденные значения A, B и C в (1), получим
После сокращения на t уравнение искомой плоскости приобретает вид
Проверьте правильность решения подстановкой в полученное уравнение сначала координат точки A, а потом координат точки B. Каждый раз в левой части должен получиться ноль.
- Уравнения плоскости: общее, через три точки, нормальное
- Плоскость, общее уравнение плоскости
- Решить задачу на уравнения плоскости самостоятельно, а затем посмотреть решение
- Уравнение плоскости, проходящей через три точки
- Нормальное уравнение плоскости. Расстояние от точки до плоскости
- Задача 22243 3. Составить уравнения плоскости.
- Условие
- Решение
- 📹 Видео
Видео:3. Частные случаи общего уравнения плоскости Неполные уравнения плоскостиСкачать

Уравнения плоскости: общее, через три точки, нормальное
Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Плоскость, общее уравнение плоскости
Чтобы получить общее уравнение плоскости, разберём плоскость, проходящую через заданную точку.
Пусть в пространстве есть три уже известные нам оси координат — Ox, Oy и Oz. Подержим лист бумаги так, чтобы он оставался плоским. Плоскостью будет сам лист и его продолжение во всех направлениях.
Пусть P произвольная плоскость в пространстве. Всякий перпендикулярный ей вектор называется вектором нормали к этой плоскости. Естественно, речь идёт о ненулевом векторе.
Если известна какая-нибудь точка 

Итак, условия, которыми задаётся уравнение плоскости, есть. Чтобы получить само уравнение плоскости, имеющее приведённый выше вид, возьмём на плоскости P произвольную точку M с переменными координатами x, y, z. Эта точка принадлежит плоскости только в том случае, когда вектор 


Вектор 



Теперь, используя формулу скалярного произведения векторов 


Так как точка M(x; y; z) выбрана на плоскости произвольно, то последнему уравнению удовлетворяют координаты любой точки, лежащей на плоскости P. Для точки N, не лежащей на заданной плоскости, 
Перед решением задач может пригодиться урок о декартовой системе координат. Также хорошо бы владеть материалом о скалярном произведении векторов.
Пример 1. Составить уравнение плоскости, проходящей через точку 

Решение. Используем формулу (1), еще раз посмотрим на неё:

В этой формуле числа A , B и C координаты вектора 

Вычисления очень простые: подставляем эти числа в формулу и получаем

Умножаем всё, что нужно умножить и складываем просто числа (которые без букв). Результат:

Требуемое уравнение плоскости в этом примере оказалось выражено общим уравнением первой степени относительно переменных координат x, y, z произвольной точки плоскости.
Итак, уравнение вида

называется общим уравнением плоскости.
Пример 2. Построить в прямоугольной декартовой системе координат плоскость, заданную уравнением 
Решение. Для построения плоскости необходимо и достаточно знать какие-либо три её точки, не лежащие на одной прямой, например, точки пересечения плоскости с осями координат.
Как найти эти точки? Чтобы найти точку пересечения с осью Oz , нужно в уравнение, данное в условии задачи, вместо икс и игрека подставить нули: x = y = 0 . Поэтому получаем z = 6 . Таким образом, заданная плоскость пересекает ось Oz в точке A(0; 0; 6) .
Точно так же находим точку пересечения плоскости с осью Oy . При x = z = 0 получаем y = −3 , то есть точку B(0; −3; 0) .
И, наконец, находим точку пересечения нашей плоскости с осью Ox . При y = z = 0 получим x = 2 , то есть точку C(2; 0; 0) . По трём полученным в нашем решении точкам A(0; 0; 6) , B(0; −3; 0) и C(2; 0; 0) строим заданную плоскость.
Рассмотрим теперь частные случаи общего уравнения плоскости. Это случаи, когда те или иные коэффициенты уравнения (2) обращаются в нуль.
1. При D = 0 уравнение 
2. При A = 0 уравнение 



3. При A = D = 0 уравнение 


4. При A = B = 0 уравнение 


5. При A = B = D = 0 уравнение 
Пример 3. Составить уравнение плоскости P , проходящей через ось Oy и точку 
Решение. Итак, плоскость проходит через ось Oy . Поэтому в её уравнении y = 0 и это уравнение имеет вид 

Поэтому среди её координат есть такие, которые можно подставить в уравнению плоскости, которое мы уже вывели (
Среди них x = 2 , z = 3 . Подставляем их в уравнение общего вида и получаем уравнение для нашего частного случая:
Оставляем 2A в левой части уравнения, переносим 3C в правую часть и получаем
Подставив найденное значение A в уравнение 


Это и есть уравнение, требуемое в условии примера.
Решить задачу на уравнения плоскости самостоятельно, а затем посмотреть решение
Пример 4. Определить плоскость (или плоскости, если больше одной) относительно координатных осей или координатных плоскостей, если плоскость (плоскости) задана уравнением 
Видео:Составьте уравнение плоскости, проходящей через ось Оу и точку M (3;2;4).Скачать

Уравнение плоскости, проходящей через три точки
Как уже упоминалось, необходимым и достаточным условием для построения плоскости, кроме одной точки и вектора нормали, являются также три точки, не лежащие на одной прямой.
Пусть даны три различные точки 











Используя выражение смешанного произведения в координатах, получим уравнение плоскости

После раскрытия определителя это уравнение становится уравнением вида (2), т.е. общим уравнением плоскости.
Пример 5. Составить уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой:


и определить частный случай общего уравнения прямой, если такой имеет место.
Решение. По формуле (3) имеем:
Получили общее уравнение плоскости


Это уравнение, в котором A = 0, т.е. оно определяет плоскость, параллельную оси Ox.
Видео:455. Уравнение плоскости, параллельной осиСкачать

Нормальное уравнение плоскости. Расстояние от точки до плоскости
Нормальным уравнением плоскости называется её уравнение, записанное в виде

где 

Нормалью к плоскости называется вектор, направление которого совпадает с направлением прямой, проведённой через начало координат перпендикулярно данной плоскости. (Есть полная аналогия с нормалью к прямой на плоскости, с той лишь разницей, что нормальное уравнение прямой существует в двух измерениях, а нормальное уравнение плоскости — в трёх).
Пусть M — какая угодно точка пространства. Для нахождения отклонения 

Это правило позволяет найти и расстояние от точки M до плоскости: расстояние равно модулю отклонения, т.е.

так как расстояние не может быть отрицательным числом.
Общее уравнение плоскости
приводится к нормальному виду почленным умножением на нормирующий множитель, определяемый формулой

Знак нормирующего множителя берётся противоположным знаку свободного члена 
Пример 6. Привести уравнение плоскости 
Решение. Вычислим нормирующий множитель:

Знак нормирующего множителя положительный, то есть, противоположен знаку свободного члена в общем уравнении плоскости. Умножим общее уравнение почленно на нормирующий множитель и получим требуемое в условии примера нормальное уравнение плоскости:

Пример 7. Вычислить величину отклонения и расстояния от точки до прямой, если точка задана координатами (-2; -4; 3) , а плоскость задана общим уравнением 
Решение. Сначала приведём уравнение плоскости к нормальному виду. Вычислим нормирующий множитель:

Знак нормирующего множителя отрицательный, то есть, противоположен знаку свободного члена в общем уравнении плоскости. Умножим общее уравнение почленно на нормирующий множитель и получим нормальное уравнение плоскости:

Вычислим отклонение точки от плоскости:
Найдём теперь расстояние от точки до плоскости как модуль отклонения:
Видео:1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

Задача 22243 3. Составить уравнения плоскости.
Условие
3. Составить уравнения плоскости, проходящей через:
1) ось Oz и точку А(2; -3; 4);
2) точку А параллельно плоскости Оxy.
Решение
1) Значит плоскость проходит через начало координат и имеет вид
Ах+Ву+Сz=0
базисный вектор vector оси Оz имеет координаты
(0;0;1)
Поэтому точка (0;0;1) принадлежит плоскости
Ax+By+Cz=0
A*0+B*0+C*1=0⇒ C=0
Подставляем координаты точки А
2A-3B=0
A=3B/2
Ax+By+Cz=0
(3B/2)x+By=0
Cокращаем на В
3х+2у=0
2)
Нормальный вектор этой плоскости — базисный вектор
vector
Поэтому вектор vector имеет координаты:
vector=(0,0;1)
Значит A=0, B=0, C=1
Уравнение плоскости имеет вид:
z+D=0.
Чтобы найти D подставляем координаты точки А
4+D=0
D=-4
Уравнение плоскости:
z-4=0
О т в е т. а) 3х+2у=0
б) z-4=0
📹 Видео
10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать

Уравнение плоскости через 2 точки параллельно векторуСкачать

5. Нормальное уравнение плоскости выводСкачать

Уравнение плоскости через 3 точкиСкачать

11 класс, 8 урок, Уравнение плоскостиСкачать

Уравнение плоскости через точку и нормальСкачать

Видеоурок "Уравнение плоскости в отрезках"Скачать

2. Уравнение плоскости примеры решения задач #1Скачать

Видеоурок "Уравнение плоскости по трем точкам"Скачать

Частные случаи уравнения плоскости. 1 часть. 11 класс.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Как построить точку, симметричную точке А(5;-3) относительно оси Оу Как решить задачу по геометрииСкачать

Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать







