На практике часто встречаются задачи по расчётам параметров токов и напряжений в различных разветвлённых цепях. В качестве инструмента для расчётов используют правила Кирхгофа (в некоторой литературе их называют еще законами, хотя это не совсем корректно) – одни из фундаментальных правил, которые совместно с законами Ома позволяет определять параметры независимых контуров в самых сложных цепях.
Учёный Густав Киргхоф сформулировал два правила [1], для понимания которых введено понятие узла, ветви, контура. В нашей ситуации ветвью будем называть участок, по которому протекает один и тот же ток. Точки соединения ветвей образуют узлы. Ветви вместе с узлами образуют контуры – замкнутые пути, по которым течёт ток.
- Первое правило Кирхгофа
- Второе правило Киргхофа
- Закон Кирхгофа для магнитной цепи
- Примеры расчета цепей
- Первый и второй законы Кирхгофа
- Первый закон Кирхгофа
- Второй закон Кирхгофа
- Значение правил Кирхгофа
- Законы для магнитного поля
- Видео по теме
- Законы Кирхгофа для электрической и магнитной цепи
- Первый закон Кирхгофа
- Второй закон Кирхгофа
- Методы расчетов по первому и второму законам Кирхгофа
- Законы Кирхгофа для магнитной цепи
- 📸 Видео
Видео:Магнитные цепи - основные правила и законыСкачать
Первое правило Кирхгофа
Первое правило Густава Кирхгофа сформулировано исходя из закона сохранения заряда. Физик понимал, что заряд не может задерживаться в узле, а распределяется по ветвям контура, образующим это соединение.
Кирхгоф предположил, а впоследствии обосновал на основании экспериментов, что количество зарядов зашедших в узел такое же, как и количество тока вытекающего из него.
На рисунке 1 изображена простая схема, состоящая из контуров. Точками A, B, C, D обозначены узлы контура в центре схемы.
Рис. 1. Схема контура
Ток I1 входит в узел A, образованный ветвями контура. На схеме электрический заряд распределяется в двух направлениях – по ветвям AB и AD. Согласно правилу Кирхгофа, входящий ток равен сумме выходящих: I1 = I2 + I3.
На рисунке 2 представлен абстрактный узел, по ветвям которого течёт ток в разных направлениях. Если сложить векторы i1, i2, i3, i4 то, согласно первому правилу Кирхгофа, векторная сумма будет равняться 0: i1 + i2 + i3 + i4 = 0. Ветвей может быть сколько угодно много, но равенство всегда будет справедливым, с учётом направления векторов.
Запишем наши выводы в алгебраической форме, для общего случая:
Для использования этой формулы, требуется учитывать знаки. Для этого необходимо выбрать направление одного из векторов тока (не важно, какого) и обозначить его знаком «плюс». При этом знаки всех других величин определить, исходя от их направления, по отношению к выбранному вектору.
Чтобы избежать путаницы, ток, направленный в точку узла, принято считать положительным, а векторы, направленные от узла – отрицательными.
Изложим первое правило Кирхгофа, выраженное приведённой выше формулой: «Алгебраическая сумма сходящихся в определённом узле токов, равна нулю, если считать входящие токи положительными, а отходящими – отрицательными».
Первое правило дополняет второе правило, сформулированное Кирхгофом. Перейдём к его рассмотрению.
Видео:Урок 4. Расчет цепей постоянного тока. Законы КирхгофаСкачать
Второе правило Киргхофа
Из третьего уравнения Максвелла вытекает правило Кирхгофа для напряжений. Его ещё называют вторым законом.
Это правило гласит, что в замкнутом контуре, на резистивных элементах, алгебраическая сумма напряжений (включая внутренние), равна сумме ЭДС, присутствующих в этом же замкнутом контуре.
При этом токи и ЭДС, векторы которых совпадают с направлением (выбирается произвольно) обхода контура, считаются положительными, а встречные к обходу токи – отрицательными.
Рис. 4. Иллюстрация второго правила Кирхгофа
Формулы, которые изображены на рисунке применяются в частных случаях для вычисления параметров простых схем.
Формулировки уравнений общего характера:
, где где Lk и Ck – это индуктивности и ёмкости, соответственно.
Линейные уравнения справедливы как для линейных, так и для нелинейных линеаризованных цепей. Они применяются при любом характере временных изменений токов и напряжений, для разных источников ЭДС. При этом законы Кирхгофа справедливы и для магнитных цепей. Это позволяет выполнять вычисления для поиска соответствующие параметров.
Видео:Решение задачи. Расчет электрической цепи по законам КирхгофаСкачать
Закон Кирхгофа для магнитной цепи
Применение независимых уравнений возможно и при расчётах магнитных цепей. Сформулированные выше правила Кирхгофа справедливы и для вычисления параметров магнитных потоков и намагничивающих сил.
То есть, для магнитных потоков первое правило Кирхгофа можно выразить словами: «Алгебраическая сумма всевозможных магнитных потоков относительно узла магнитной цепи равняется нулю.
Сформулируем второе правило для намагничивающих сил F: «В замкнутом магнитном контуре алгебраическая сумма намагничивающих сил приравнивается к сумме магнитных напряжений». Данное утверждение выражается формулой: ∑F=∑U или ∑Iω = ∑НL, где ω – количество витков, H – напряжённость магнитного поля, символ L обозначает длину средней линии магнитопровода. ( Условно принимается, что каждая точка этой линии совпадает с линиями магнитной индукции).
Второе правило, применяемое для вычисления магнитных цепей, есть не что иное, как альтернативная форма представления закона полного тока.
Примечание: Составляя уравнения с использованием формул, вытекающих из правил Кирхгофа, надо прежде определиться с положительным направлением потоков, функционирующих в ветвях, сопоставив их с направлением обходов существующих контуров.
При совпадении векторов магнитного потока с направлениями обхода (на некоторых участках), падение напряжения на этих ветвях берём со знаком « + », а встречные ему – со знаком « – ».
Видео:Применение законов Кирхгофа при решении задачСкачать
Примеры расчета цепей
Рассмотрим ещё раз рисунок 3. На нём изображено 4 разнонаправленных вектора: i1, i2, i3, i4. Из них – два входящие ( i2, i3) и два исходящие из узла (i1, i4). Положительными будем считать те векторы, которые направлены в точку соединения ветвей, а остальные – отрицательными.
Тогда, по формуле Кирхгофа, составим уравнение и запишем его в следующем виде: – i1 + i2 + i3 – i4 = 0.
На практике такие узлы являются частью контуров, обходя которые можно составить ещё несколько линейных уравнений с этими же неизвестными. Количество уравнений всегда достаточно для решения задачи.
Рассмотрим алгоритм решения на примере рис. 5.
Рис. 5. Пример для расчёта
Схема содержит 3 ветви и два узла, которые образуют три пары по два независимых контура:
Запишем независимое уравнение, выполняющееся, например, в точке а. Из первого правила Кирхгофа вытекает: I1 + I2 – I3 = 0.
Воспользуемся вторым правилом Кирхгофа. Для составления уравнений можно выбрать любой из контуров, но нам необходимы контуры с узлом а, так как для него мы уже составили уравнение. Это будут контуры 1 и 2.
Пишем уравнения:
Решаем систему уравнений:
Так как значения R и E известны (см. рисунок 5), мы придём к системе уравнений:
Решая эту систему, получим:
Потенциал узла а равен: Ua = I3*R3 = 3,55 × 3 = 10,65 В. Чтобы убедиться в верности наших расчётов, проверим выполнение второго правила по отношению к контуру 3:
E1 – E2 + I1R1+ I2R2 = 12 – 15 + 1,36 – 4,38 = – 0,02 ≈ 0 (с учётом погрешностей, связанных с округлениями чисел при вычислениях).
Если проверка выполнения второго правила успешно завершена, то расчёты сделаны правильно, а полученные данные являются достоверными.
Применяя правила (законы) Кирхгофа можно вычислять параметры электрической энергии для магнитных цепей.
Видео:Законы Кирхгофа - самое простое и понятное объяснение этих законовСкачать
Первый и второй законы Кирхгофа
Некоторые электрические цепи можно изобразить в виде простого контура, содержащего источник питания и небольшое количество деталей — резисторов, конденсаторов или других. Но существуют и большие схемы, включающие в себя несколько замкнутых ветвей. В этих случаях важно точно рассчитать электрические параметры на любом рассматриваемом участке. Законы Кирхгофа позволяют их определить путём составления и решения нескольких простых уравнений.
Видео:Лекция 117. Правила КирхгофаСкачать
Первый закон Кирхгофа
Закон Ома описывает взаимосвязь между напряжением, сопротивлением и силой тока в простых одноконтурных цепях. На практике чаще встречаются сложные разветвленные цепи, состоящие из нескольких контуров и многих узлов, которые невозможно описать, применяя стандартные правила для расчета последовательных и параллельных цепей.
Определить напряжение и силу тока в разветвленных цепях позволяют правила Кирхгофа, которые в технической литературе обычно называют законами Кирхгофа. Хотя более корректным следует считать название «правила», поскольку они не являются фундаментальными законами природы. Например, первое правило Кирхгофа вытекает из закона сохранения заряда. Оно гласит, что сумма всех токов в каждом узле электроцепи равна нулю.
Формулировка закона требует уточнения следующих терминов:
- Узел — это определённое место на схеме, в котором сходится 3 или большее количество проводов. Узлами можно назвать точки, расположенные на протяжении 1 провода, если в этих местах подсоединены ещё провода.
- Движение тока, направленного к определённому узлу, условно называют положительным, противоположное — отрицательным.
Закон Кирхгофа, если говорить простыми словами, может быть сформулирован так: сколько токов втекает в узел, столько же и вытекает. Это свидетельствует о непрерывности тока для электрической цепи. Поэтому существует ещё одна формула, выражающая первое правило Кирхгофа:
Здесь с одной стороны знака равенства рассматриваются токи, входящие в определённый узел, а с другой — выходящие.
При использовании первого закона Кирхгофа для цепи переменного тока применяются мгновенные значения напряжений, которые принято обозначать буквой İ. Расчеты в этом случае проводятся по уравнению, представленному в комплексной форме.
Видео:Магнитные цепиСкачать
Второй закон Кирхгофа
Когда рассматривается электрическая цепь, подключённая к источнику тока, в каждой её точке имеется определённый потенциал. Разность между ними создаёт электрическое поле, которое вызывает перемещение зарядов.
Цепь представляет собой замкнутый контур, по которому движутся электроны. Электрическое поле выполняет определённую работу по их перемещению. Каждый заряд перемещается по цепи, а затем под действием ЭДС источника замыкает круг.
Второй закон Кирхгофа гласит, что работа по перемещению заряда вдоль любого контура электроцепи с возвратом в начальную точку равна нулю. В этой формулировке подразумевается любой замкнутый контур, причем как тот, который включает источник питания, так и о тот, где его нет.
Работа электрического поля при перемещении заряда в рассматриваемом случае представляет собой сумму падений напряжения для каждого из участков контура. Таким образом, второе правило или закон Кирхгофа гласит, что сумма напряжений всех ветвей в контуре равняется нулю. Это можно выразить в виде следующего уравнения:
Если напряжение и направление обхода контура совпадают, то U записывают со знаком плюс, в противном случае — со знаком минус. Направление обхода выбранного контура может быть определено произвольным образом. Второе правило Густава Кирхгофа его не регламентирует.
Если в контуре есть один или несколько источников питания, то формулу можно выразить следующим образом:
Здесь имеется p источников питания, q участков контура. Сумма всех ЭДС имеющихся источников питания равна сумме падений напряжения.
Видео:Урок 14. Законы Кирхгофа простыми словами с примерамиСкачать
Значение правил Кирхгофа
Законы Кирхгофа выражают фундаментальные принципы физики. Их формулировки кажутся очень простыми и очевидными. Но на самом деле они представляют собой метод, позволяющий рассчитать электрические параметры сетей очень сложной конфигурации.
С помощью законов Кирхгофа можно составить систему независимых уравнений для расчета параметров электрической цепи. Важно, чтобы их количество было не меньше, чем число параметров, которые необходимо определить.
На приведённом рисунке представлена электроцепь, для которой будет проводиться расчёт. Используя первый закон или правило Кирхгофа, для узла A можно записать:
В этот узел входят два тока, а выходит один. Далее необходимо применить второе правило. Для этого можно выбрать внешний контур. Видно, что здесь имеется два источника тока и два резистора. Поэтому будут получены уравнения:
Здесь приведены 2 эквивалентные формулы. В левой части равенства учтены электродвижущие силы двух источников тока, в правой — падение напряжения на обоих резисторах с учётом направления токов. Ещё одно уравнение можно получить из 2 закона при обходе по правому внутреннему контуру:
В результате получена система, включающая в себя три уравнения с тремя неизвестными:
Используя конкретные данные, можно подставить в систему уравнений численные значения и найти, чему равна сила тока для каждой ветви, относящейся к узлу A. При расчётах важно понимать, что при достаточно сложной конфигурации электроцепи иногда бывает непросто определить направление силы тока для каждой ветви.
Первый и второй законы Густава Кирхгофа позволяют точно определить не только величину тока, но и его знак. Если в приведённом примере после вычисления искомых значений с помощью представленной системы уравнений окажется, что ток с индексом 2 принимает отрицательное значение, то это означает, что на самом деле он имеет направление, противоположное указанному на рисунке.
Видео:Урок 265. Задачи на правила КирхгофаСкачать
Законы для магнитного поля
Правила Кирхгофа нашли свое применение и при расчете магнитных цепей. Первый закон Кирхгофа для магнитной цепи выглядит так:
Проще говоря, сумма всех магнитных потоков, проходящих через узел, равняется нулю.
Второй закон в применении к магнитным полям звучит следующим образом: «Сумма магнитодвижущих сил в контуре равняется сумме магнитных напряжений». Формула выглядит так:
Кирхгофом выведены правила, имеющие абсолютный прикладной характер. С их помощью можно решать практические вопросы в электротехнике. Широкое применение этих правил объясняется простотой формулировки уравнений и возможностью их решения с применением стандартных способов линейной алгебры.
Видео:Первый закон Кирхгофа! Хочешь понять? Посмотри!Скачать
Видео по теме
Видео:Урок 263. Правила КирхгофаСкачать
Законы Кирхгофа для электрической и магнитной цепи
Видео:Расчет цепи с ИСТОЧНИКОМ ТОКА по законам КирхгофаСкачать
Первый закон Кирхгофа
Определение первого закона звучит так: «Алгебраическая сума токов, протекающих через узел, равна нулю». Можно сказать немного в другой форме: «Сколько токов втекло в узел, столько же и вытекло, что говорит о постоянстве тока».
Узлом цепи называют точку соединения трех и больше ветвей. Токи в таком случае распределяются пропорционально сопротивлениям каждой ветви.
Такая форма записи справедлива для цепей постоянного тока. Если использовать первый закон Кирхгофа для цепи переменного тока, то используются мгновенные значения напряжений, обозначаются буквой İ и записывается в комплексной форме, а метод расчета остаётся прежним:
Комплексная форма учитывает и активную и реактивную составляющие.
Видео:Правила Кирхгофа: пример расчёта цепи с источниками токаСкачать
Второй закон Кирхгофа
Если первый описывает распределение токов в ветвях, то второй закон Кирхгофа звучит так: «Сумма падений напряжений в контуре равна сумме всех ЭДС». Простыми словами формулировка звучит так: «ЭДС, приложенное к участку цепи, распределится по элементам данной цепи пропорционально сопротивлениям, т.е. по закону Ома».
Тогда как для переменного тока это звучит так: «Сумма амплитуд комплексных ЭДС равняется сумме комплексных падений напряжений на элементах».
Z – это полное сопротивление или комплексное сопротивление, в него входит и резистивная часть и реактивная (индуктивность и ёмкость), которая зависит от частоты переменного тока (в постоянном токе есть только активное сопротивление). Ниже представлены формулы комплексного сопротивления конденсатора и индуктивности:
Вот картинка, иллюстрирующая вышесказанное:
Видео:Цепи переменного тока. Найти токи в цепи по законам КирхгофаСкачать
Методы расчетов по первому и второму законам Кирхгофа
Давайте приступим к применению на практике теоретического материала. Чтобы правильно расставить знаки в уравнениях, нужно выбрать направление обхода контура. Посмотрите на схему:
Предлагаем выбрать направление по часовой стрелке и обозначить его на рисунке:
Штрих-пунктирной линией обозначено, как идти по контуру при составлении уравнений.
Следующий шаг – составить уравнения по законам Кирхгофа. Используем сначала второй. Знаки расставляем так: перед электродвижущей силой ставится минус, если она направлена против движения часовой стрелки (выбранное нами в предыдущем шаге направление), тогда для ЭДС направленного по часовой стрелке – ставим минус. Составляем для каждого контура с учетом знаков.
Для первого смотрим направление ЭДС, оно совпадает со штрих-пунтирной линией, ставим E1 плюс E2:
Знаки у IR (напряжения) зависят от направлением контурных токов. Здесь правило знаков такое же, как и в предыдущем случае.
IR пишется с положительным знаком, если ток протекает в сторону направления обхода контура. А со знаком «–», если ток течет против направления обхода контура.
Направление обхода контура — это условная величина. Нужна она только для расстановки знаков в уравнениях, выбирается произвольно и на правильность расчётов не влияет. В отдельных случаях неудачно выбранное направление обхода может усложнить расчёт, но это не критично.
Рассмотрим еще одну цепь:
Здесь целых четыре источника ЭДС, но порядок расчета тот же, сначала выбираем направление для составления уравнений.
Теперь нужно составить уравнения согласно первому закону Кирхгофа. Для первого узла (слева на схеме цифра 1):
I3 втекает, а I1, I4 вытекает, отсюда и знаки. Для второго:
Вопрос: «Узла четыре, а уравнения всего три, почему?». Дело в том, что число уравнений первого правила Кирхгофа равно:
Т.е. уравнений всего на 1 меньше, чем узлов, т.к. этого достаточно, чтобы описать токи во всех ветвях, советую еще раз подняться к схеме и проверить, все ли токи записаны в уравнениях.
Теперь перейдем к построению уравнений по второму правилу. Для первого контура:
Для второго контура:
Для третьего контура:
Если подставить значения реальных напряжений и сопротивлений, тогда выяснится, что первый и второй законы справедливы и выполняются. Это простые примеры, на практике приходится решать гораздо более объёмные задачи.
Вывод. Главное при расчётах с помощью первого и второго законов Кирхгофа – соблюдения правила составления уравнений, т.е. учитывать направления протекания токов и обхода контура для правильной расстановки знаков для каждого элемента цепи.
Видео:решение задачи составлением уравнений по правилам киргофа. Законы киргофа кратко на практикеСкачать
Законы Кирхгофа для магнитной цепи
В электротехнике также важны и расчёты магнитных цепей, оба закона нашли своё применение и здесь. Суть остаётся той же, но вид и величины изменяются, давайте рассмотрим этот вопрос подробнее. Сначала нужно разобраться с понятиями.
Магнитодвижущая сила (МДС) определяется произведением количества витков катушки, на ток через неё:
F=w*I
Магнитное напряжение – это произведение напряженности магнитного поля на ток, через участок, измеряется в Амперах:
Или магнитный поток через магнитное сопротивление:
L – средняя длина участка, μr и μ0 – относительная и абсолютная магнитная проницаемость.
Проводя аналогии запишем первый закон Кирхгофа для магнитной цепи:
То есть сумма всех магнитных потоков через узел равна нулю. Вы заметили, что звучит почти так же, как и для электрической цепи?
Тогда второй закон Кирхгофа звучит, как «Сумма МДС в магнитном контуре равна сумме UM (магнитных напряжений).
Магнитный поток равен:
Для переменного магнитного поля:
Он зависит только от напряжения на обмотке, но не от параметров магнитной цепи.
В качестве примера рассмотрим такой контур:
Тогда для ABCD получится такая формула:
Для контуров с воздушным зазором выполняются следующие соотношения:
А сопротивление воздушного зазора (справа на сердечнике):
Где S — это площадь сердечника.
Чтобы полностью усвоить материал и наглядно просмотреть некоторые нюансы использования правил, рекомендуем ознакомиться с лекциями, которые предоставлены на видео:
Открытия Густава Кирхгофа внесли весомый вклад в развитие науки, в особенности электротехники. С их помощью довольно просто рассчитать любой электрический или магнитный контур, токи в нём и напряжения. Надеемся, теперь вам стали более понятны правила Кирхгофа для электрической и магнитной цепи.
📸 Видео
Первый закон КирхгофаСкачать
Расчет цепи по законам КирхгофаСкачать
Законы Кирхгофа, теория и практическое применениеСкачать
Урок 20. Магнитная индукция, магнитный поток, магнитная цепьСкачать
Переходные процессы | Классический метод расчета переходных процессов. Теория и задачаСкачать