Уравнение первичной и вторичной диссоциации

Видео:ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIVСкачать

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIV

Диссоциация комплексных соединений

Многие комплексные соединения, имеющие внешнюю сферу, хорошо растворимы в воде. Все они являются сильными электролитами при диссоциации по первой ступени (так называемая первичная диссоциация).

Первичная диссоциация — это распад комплексного соединения на комплексный ион и ионы внешней сферы. Именно первая ступень диссоциации комплексного соединения определяет его принадлежность к тому или иному классу неорганических соединений:

Комплексные ионы так же подвергаются диссоциации (вторичная диссоциация), но все они являются слабыми электролитами:

[Ag (NH3)2] + Уравнение первичной и вторичной диссоциации[Ag(NH3)] + + NH3 ,

[Ag(NH3)] + Уравнение первичной и вторичной диссоциацииAg + + NH3 .

Суммарное уравнение: [Ag(NH3)2] + Уравнение первичной и вторичной диссоциацииAg + + 2NH3 .

Константа диссоциации, найденная для суммарного уравнения, называется константой нестойкости комплекса:

Kн ([Ag(NH3)2]) + = Уравнение первичной и вторичной диссоциации.

Чем меньше значение Кн , тем менее данный комплекс подвержен электролитической диссоциации, тем более он устойчив в растворе.

Видео:Электролитическая диссоциация кислот, оснований и солей. 9 класс.Скачать

Электролитическая диссоциация кислот, оснований и солей. 9 класс.

Комплексные соединения

Материалы портала onx.distant.ru

Состав комплексных соединений

Номенклатура комплексных соединений

Реакции образования комплексных соединений

Реакции разрушения комплексных соединений

Диссоциация комплексных соединений

Примеры решения задач

Задачи для самостоятельного решения

Видео:Константа нестойкости и диссоциация комплексных соединенийСкачать

Константа нестойкости и диссоциация комплексных соединений

Состав комплексных соединений

Уравнение первичной и вторичной диссоциации

Рис. 1. Состав комплексного соединения

Комплексное соединение, рисунок 1, состоит из внутренней и внешней сферы. Центральная частица, вокруг которой расположены окружающие ее лиганды, называется комплексообразователем. Число лигандов комплексообразователя называется координационным числом.

Видео:Механизм электролитической диссоциации. 9 класс.Скачать

Механизм электролитической диссоциации. 9 класс.

Номенклатура комплексных соединений

Комплексное соединение может состоять из комплексного катиона, комплексного аниона или может быть нейтральным.

Соединения с комплексными катионами . Вначале называют внешнесферный анион, затем перечисляют лиганды, затем называют комплексообразователь в родительном падеже (ему дается русское название данного элемента). После названия комплексообразователя в скобках римской цифрой указывается его степень окисления.

К латинскому названию анионного лиганда добавляется окончание “о” (F — — фторо, Cl — -хлоро, ОН — — гидроксо, CN — — циано и т.д). Аммиак обозначают термином “аммин”, СО – карбонил, NO – нитрозил, H2O – аква.

Число одинаковых лигандов называют греческим числительным: 2 –ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса, 7 – гепта и т.д.

Вначале перечисляют лиганды анионные, затем нейтральные, затем катионные. Например,

[Pt(NH3)5Cl]Cl3 – хлорид хлоропентаамминплатины (IV) .

Если в комплексе имеются несколько лигандов одинакового знака заряда, то они называются в алфавитном порядке:

Соединения с комплексными анионами. Вначале называют комплексный анион в именительном падеже: перечисляют лиганды, затем комплексообразователь (ему дается латинское название и к названию добавляется окончание “ат”). После названия комплексообразователя указывается его степень окисления. Затем в родительном падеже называется внешнесферный катион.

Na2[Zn(OH)4] – тетрагидроксоцинкат (II) натрия;

K4[Fe(CN)6] – гексацианоферрат (II) калия;

K2[СuCl4] – тетрахлорокупрат (II) калия.

Соединения без внешней сферы. Вначале называют лиганды, затем комплексообразователь в именительном падеже с указанием его степени окисления. Все название пишется слитно.

[Ni(CО)4] – тетракарбонилникель (0);

Видео:9 класс. Электролитическая диссоциация. Образование ионов.Скачать

9 класс. Электролитическая диссоциация. Образование ионов.

Реакции образования комплексных соединений

Комплексные соединения обычно получают действием избытка лигандов на содержащее комплексообразователь соединение. Координационное число, как правило, в 2 раза больше степени окисления комплексообразователя. Из этого правила бывают, однако, исключения.

Образование комплексных солей.

Если комплексообразователем является Fe 2+ или Fe 3+ , то координационные числа в обоих случаях равны шести:

Координационные числа ртути и меди, как правило, равны четырем:

Для большинства аква- и амминных комплексов ионов d-элементов координационное число равно шести:

Видео:Комплексные соединения. 1 часть. 11 класс.Скачать

Комплексные соединения. 1 часть. 11 класс.

Реакции разрушения комплексных соединений

Разрушение комплексных соединений происходит в результате:

      • образования малорастворимого соединения с комплексообразователем:
      • образования более прочного комплексного соединения с комплексообразователем или с лигандом:
      • действия любой сильной кислоты на гидрокомплексы; в этом случае образуется соль и вода:

Видео:Степень электролитической диссоциации. Сильные и слабые электролиты. 9 класс.Скачать

Степень электролитической диссоциации. Сильные и слабые электролиты. 9 класс.

Диссоциация комплексных соединений

Комплексные соединения в водных растворах практически полностью диссоциируют на внешнюю и внутреннюю сферы. В то же время комплексный ион диссоциирует в незначительной степени как ассоциированный электролит. Количественной характеристикой диссоциации внутренней сферы в растворе является константа нестойкости, представляющая собой константу равновесия процесса диссоциации комплексного иона.

Например , в растворе комплексное соединение [Ni(NH3)6]SO4 диссоциирует следующим образом:

Для комплексного иона [Ni(NH3)6] 2+ , диссоциирующего по уравнению

константа равновесия процесса диссоциации носит название константы нестойкости Кн. Для рассматриваемого процесса Кн равна

Кн = [Ni 2+ ]·[NH3] 6 / [[Ni(NH3)6] 2+ ] (1)

Величина, обратная Кн, называется константой устойчивости:

Она представляет собой константу равновесия процесса образования комплексного иона:

Константа нестойкости Кн связана с изменением энергии Гиббса процесса диссоциации комплекса уравнением:

ΔGT о = — RTln Кн (3)

Примеры решения задач:

Задача 1. Вычислите:

1) Концентрацию ионов NO3 — в 0,01 М растворе [Ag(NH3)2]NO3.

2) Концентрацию Ag + в 0,01 М растворе [Ag(NH3)2]NO3, содержащем 2 моль/л избыточного аммиака,
если Кн[Ag(NH3)2] + = 5,7× 10 — 8 при 298 К.

3) Величину ΔG o 298 процесса диссоциации комплексного иона.

[NO3 — ] = 0,01М, поскольку комплекс диссоциирует как сильный электролит на комплексный ион и ионы внешней сферы.

2) Комплексный ион диссоциирует незначительно:

Положение равновесия комплексного иона в присутствии избытка NH3 еще больше смещено влево.

Пусть продиссоциировало x моль/л комплексного иона, тогда образовалось x моль/л ионов Ag + и 2x моль/л аммиака. Суммарная концентрация аммиака равна (2x+2) моль/л. Концентрация недиссоциированного комплексного иона [Ag(NH3)2] + составляет: (0,01–x) моль/л.

Концентрация аммиака, связанная с диссоциацией комплексного иона, ничтожно мала по сравнению с избытком аммиака. Доля комплексного иона, подвергшегося диссоциации, также ничтожно мала. Значит,

Уравнение первичной и вторичной диссоциации

Следовательно, [Ag + ] = 1,43× 10 — 10 моль/л.

Константа нестойкости связана с изменением энергии Гиббса процесса диссоциации [Ag(NH3)2] + уравнением:

Значит, при Т = 298 К получаем:

ΔG о 298 = — 8,314× 298× ln5,7× 10 — 8 = 41326 Дж = 413,3 кДж.

Задача 2. Произойдет ли осаждение AgCl при сливании 0,01М раствора [Ag(NH3)2]NO3, содержащего 2 моль/л избыточного NH3, с равным объемом 0,5М раствора KCl, если при 298 К ПР(AgCl) = 1,73× 10 — 10 , Кн.[Ag(NH3)2] + = 5,7× 10 — 8 .

Решение. Осадок выпадет при условии: [Ag + ][Сl — ] > ПР(AgCl), т.е. если произведение концентраций ионов Ag + и Сl — в растворе будет больше ПР, то раствор окажется пересыщенным и из него будет выпадать осадок.

После смешения равных объемов растворов концентрации [Ag(NH3)2]NO3, NH3 и KCl уменьшатся в 2 раза и станут равными 5× 10 -3 , 1 и 0,25 М соответственно.

Найдем концентрацию [Ag + ] тем же способом, что и в предыдущей задаче,

откуда x = 2,85× 10 — 10 .

Значит, [Ag + ] = 2,85× 10 — 10 моль/л, а [Сl — ] = 0,25 моль/л.

Следовательно, произведение концентраций ионов равно:

[Ag + ][Сl — ] = 2,85× 10 — 10 × 0,25 = 7,1× 10 — 11 (моль/л) 2 .

Поскольку [Ag + ][Сl — ] = 7,1× 10 — 11 — 10 , то осадок не выпадет.

Задача 3. При какой концентрации ионов S 2- начнется выпадение осадка CdS из 0,6М раствора Na2[Cd(CN)4], содержащего 0,04 моль/л избыточного NaCN, если ПР(CdS) = 7,9× 10 — 27 , Кн[Cd(CN)4] 2- = 7,8× 10 — 18 .

Решение. Осадок выпадет при условии: [Cd 2+ ][S 2- ] > ПР(CdS), т.е. если произведение концентраций ионов Cd 2+ и S 2- в растворе будет больше ПР. Следовательно, выпадение осадка начнется при [S 2- ] > ПР(CdS):[Cd 2+ ].

Комплексный ион диссоциирует незначительно:

[Cd(CN)4] 2- → Cd 2+ + 4CN —

Пусть продиссоциировало x моль/л комплексного иона, тогда образовалось x моль/л ионов Cd 2+ и 4x моль/л ионов CN — . Суммарная концентрация ионов CN — равна (4x + 0,04) моль/л. Концентрация недиссоциированного комплексного иона [Cd(CN)4] 2- составляет: (0,6 – x) моль/л.

Кн[Cd(CN)4] 2- = [Cd 2+ ] · [CN — ] 4 / [[Cd(CN)4] 2- ]

Следовательно, [Cd 2+ ] = 1,8·10 — 12 моль/л.

Выпадение осадка начнется при [S 2- ] > 7,9·10 — 27 : 1,8·10 — 12 > 4,39·10 — 15 моль/л.

Видео:ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ кислот оснований и солей | Как писать УРАВНЕНИЯ ДИССОЦИАЦИЙСкачать

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ кислот оснований и солей | Как писать УРАВНЕНИЯ ДИССОЦИАЦИЙ

Задачи для самостоятельного решения

1. Назовите следующие комплексные соединения:

Na2[Pt(CN)4Cl2] – дихлоротетрацианоплатинат (IV) натрия;

2. Назовите следующие комплексные соединения

[Ni(NH3)6][PtCl4] – тетрахлороплатинат (II) гексаамминникеля (II).

3. Составьте уравнение химической реакции:

4. Составьте уравнение химической реакции:

5 . Составьте уравнение химической реакции:

6. Составьте уравнение химической реакции:

7. Составьте уравнение химической реакции:

Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Особенности строения, свойства и номенклатура комплексных соединений

Задача 182.
Для приведенных формул комплексных соединений: [Pt(NH3)4Br2]Cl2, [Ni(NH3)6]2[Fe(CN)6].
а) укажите внутреннюю и внешнюю координационные сферы, комплексообразователь и лиганды;
б) определите заряд комплекса, степень окисления и координационное число комплексообразователя;
в) классифицируйте соединения;
г) приведите названия;
д) напишите уравнения первичной и вторичной диссоциации и выражения констант
равновесия.
Решение:
1. [Pt(NH3)4Br2]Cl2
а) внутрення сфера — [Pt(NH3)4Br2] 2+ , внешня координационная сфера — 2Сl — ;
б) заряд комплекса (2+), степень окисления Pt (+4) и координационное число комплексообразователя (6);
в) катионная комплексная соль;
г) дибромотетраамминплатина(IV)хлорид или хлорид дибромоететраамминплатины (IV);
д) уравнение первичной диссоциации:

выражение константы равновесия:

а) внутрення сфера — [Fe(CN)6] 4- , внутренняя (внешня) координационная сфера — 2[Ni(NH3)6] 2+ ;
б) заряд комплексного аниона (4-), степень окисления Fe (+2) и координационное число комплексообразователя (6); заряд комплексного катиона (2+), степень окисления Ni (+2) и координационное число комплексообразователя (6);
в) двойной (ион-катионный) комплекс;
г) гексацианоферрат(II) 2 гексаамминникеля(II) или гексаамминникеля(II) гексацианоферрат(II)
д) уравнение первичной диссоциации:

Задача 183.
Надо назвать соединения, определить заряд комплекса и комплексообразователя в следующих соединениях. Написать выражение для константы нестойкости и реакцию диссоциации координационного соединения. Определить тип гибридизации и структурную форму комплекса.
(1.[Co(H2O)6]Cl3; 2.[Pt(H2O)(NH3)Cl2]; 3.Ca[PtCl6]; 4.[Pt(H2O)(NH3)I2].)
Решение:
1. [Co(H2O)6]Cl3
Название — хлорид гексааква хрома (III), заряд комплекса — (3+), заряд комплексообразователя Со — (3+).
Выражение константы нестойкости:

Со 3+ имеет d 2 sp 3 -гибридизацию.

[Cr(Н2О)6] 3+ имеет октаэдрическую конфигурацию.

2.[Pt(H2O)(NH3)Cl2] и 4.[Pt(H2O)(NH3)I2]

всё тоже только в названии вместо дихлоро. нужно дииодо.
дихлороамминакваплатина(II), заряд комплекса — (0), заряд комплексообразователя Pt — (2+).

Pt 2+ — dsp 2 -гибридизация. Плоскоквадратная структура комилекса.

3.Ca[PtCl6]
гексахлороплатинат(IV) кальция, заряд комплекса — (2-), заряд комплексообразователя Pt — (4+).
Выражение константы нестойкости:

Kн = [Pt 4+ ][Cl — ]6/[[PtCl6] 2- ].

[PtCl6]2- = Pt4+ + 6Cl-.

Pt 4+ имеет d 2 sp 3 -гибридизацию.
[PtCl6] 2- имеет октаэдрическую конфигурацию.

Видео:Основные положения теории электролитической диссоциации. Свойства ионов. 9 класс.Скачать

Основные положения теории электролитической диссоциации. Свойства ионов. 9 класс.

Комплексные ионы

Задача 184.
Как объяснить зеленую окраску раствора комплексного иона [Cu(H2O)2Cl4]2- и фиолетовую окраску раствора комплексного иона [Cu(еn)2]2+?
Решение:
При наличии на d-подуровне в ионе Cu 2+ 9 электронов суммарный спин в слабом и сильном поле получается одинаковым. Следовательно, на верхнем энергетическом подуровне имеется вакансия. Переход электронов с t2g на eg подуровень при поглощении кванта света и определяет окраску соединений меди (II). Различная окраска комплексных соединений комплексного иона Cu 2+ зависит от характера лигандов. Аквакомплексы меди (П) имеют в водном растворе голубую окраску, введение во внутреннюю сферу комплекса хлорид-ионов приводит к образованию смешанно-лигандного комплекса, что и вызывает изменение окраски раствора на зеленую. Объяснить это можно тем, что слабые лиганды Cl — и H2O. При этом октаэдрический, парамагнитный, внешнеорбитальный (высокопассивный) комплексный ион [Cu(H2O)2Cl4] 2- поглощает длину волн видимого спектра в диапозоне 510-550 нм.
Парамагнитный внутриорбитальный ион [Cu(еn)2] 2+ , образован лигандом сильного поля (еn), имеет линейную геометрическую структуру, гибридизация sp 2 . Ион [Cu(H2O)2Cl4] 2- имеет более высокий параметр поглощения энергии, чем ион [Cu(еn)2] 2+ и будет поглощать электромагнитные волны в диапазоне 390 — 440 нм, что и будет обусловливать фиолетовую окраску раствора.

Задача 185.
Даны растворы комплексных ионов с одинаковой молярной концентрацией: [Ni(NH3)4] 2+ (С1) и [Ni(CN)4] 2- (С2). В каком из двух растворов концентрация никеля будет больше? Напишите уравнения вторичной диссоциаци этих комплексных ионов.
Решение:
Известно, что чем устойчивее комплексный ион, тем меньшее численное значение имеет константа нестойкости данного комплексного иона и наоборот – чем большее численное значение имеет константа нестойкости комплексного иона, тем мене он устойчив. Так как константа нестойкости комплексного иона [Ni(NH3)4] 2+ больше чем у иона [Ni(CN)4] 2- (9,1•10 -8 > 1,0•10 -31 , то концентрация комплексообразователя (Ni) в растворе [Ni(NH3)4] 2+ больше чем в растворе [Ni(CN)4] 2- .
[Ni 2+ ](C1) = 9,1 • 10 -8 моль/л); [Ni 2+ ](C2) = 1,0 • 10 -31 моль/л).
Следовательно, [Ni 2+ ](C1) > [Ni 2+ ](C2).
Вторичная диссоциация комплексных ионов:

Задача 186.
Даны растворы комплексов с одинаковой молярной концентрацией: K2[Cd(CN)4](С1) и Cd[Co(CN)4](С2). Определите концентрации комплексообразователй и лигандов в этих растворах? Составьте схемы полной диссоциации этих комплексов.
Решение:
1. Схемы полной диссоциации комплексов:

K2[Cd(CN)4] = 2K + + Cd 2+ + 4CN — ;
Cd[Co(CN)4] = Co 2+ + Cd 2+ + 4CN — .

2. Определение концентраций комплексообразователей и лигандоов
Так как молярные концентрации комплексных соединений одинаковы, то концентрационными величинами можно пренебречь, тогда

[Cd 2+] (C1) = 1,4•10 -17 моль/л), [CN — ](C1) = 4 • 1,4•10 -17 моль/л;
[Cd 2+ ](C2) = 7,8•10 -6 моль/л), [CN — ](C2) = 4 • 7,8•10 -6 моль/л.

🌟 Видео

Электролитическая диссоциация | Химия ЕГЭ, ЦТСкачать

Электролитическая диссоциация | Химия ЕГЭ, ЦТ

Свойства комплексных соединений. 11 класс.Скачать

Свойства комплексных соединений. 11 класс.

Основные положения теории электролитической диссоциации | Химия 8 класс #41 | ИнфоурокСкачать

Основные положения теории электролитической диссоциации  | Химия 8 класс #41 | Инфоурок

Теории кислот, оснований и растворов. Теория Аррениуса-Оствальда. 11 класс.Скачать

Теории кислот, оснований и растворов. Теория Аррениуса-Оствальда. 11 класс.

Электролитическая диссоциация | Химия 8 класс #40 | ИнфоурокСкачать

Электролитическая диссоциация | Химия 8 класс #40 | Инфоурок

Лекция 8 (вторая часть)Скачать

Лекция 8 (вторая часть)

Диссоциация. Сильные и слабые электролиты. Проводник второго рода. Химия – ПростоСкачать

Диссоциация. Сильные и слабые электролиты. Проводник второго рода. Химия – Просто

Теория электролитической диссоциацииСкачать

Теория электролитической диссоциации
Поделиться или сохранить к себе: