В данной статье научимся составлять уравнения прямой, проходящей через заданную точку на плоскости перпендикулярно заданной прямой. Изучим теоретические сведения, приведем наглядные примеры, где необходимо записать такое уравнение.
Видео:Записать уравнение прямой параллельной или перпендикулярной данной.Скачать
Принцип составления уравнения прямой, проходящей через заданную точку плоскости перпендикулярно заданной прямой
Перед нахождением уравнения прямой, проходящей через заданную точку перпендикулярно заданной прямой. Теорема рассматривается в средней школе. Через заданную точку, лежащую на плоскости, можно провести единственную прямую, перпендикулярную данной. Если имеется трехмерное пространство, то количество таких прямых увеличится до бесконечности.
Если плоскость α проходит через заданную точку М 1 перпендикулярно к заданной прямой b , то прямые, лежащие в этой плоскости, в том числе и проходящая через М 1 являются перпендикулярными заданной прямой b .
Отсюда можно прийти к выводу, что составление уравнения прямой, проходящей через заданную точку перпендикулярно заданной прямой применимо только для случая на плоскости.
Задачи с трехмерным пространством подразумевают поиск уравнения плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.
Если на плоскости с системой координат О х у z имеем прямую b , то ей соответствует уравнение прямой на плоскости, задается точка с координатами M 1 ( x 1 , y 1 ) , а необходимо составить уравнение прямой a , которая проходит через точку М 1 , причем перпендикулярно прямой b .
По условию имеем координаты точки М 1 . Для написания уравнения прямой необходимо иметь координаты направляющего вектора прямой a , или координаты нормального вектора прямой a , или угловой коэффициент прямой a .
Необходимо получить данные из заданного уравнения прямой b . По условию прямые a и b перпендикулярные, значит, направляющий вектор прямой b считается нормальным вектором прямой a . Отсюда получим, что угловые коэффициенты обозначаются как k b и k a . Они связаны при помощи соотношения k b · k a = — 1 .
Получили, что направляющий вектор прямой b имеет вид b → = ( b x , b y ) , отсюда нормальный вектор — n a → = ( A 2 , B 2 ) , где значения A 2 = b x , B 2 = b y . Тогда запишем общее уравнение прямой, проходящее через точку с координатами M 1 ( x 1 , y 1 ) , имеющее нормальный вектор n a → = ( A 2 , B 2 ) , имеющее вид A 2 · ( x — x 1 ) + B 2 · ( y — y 1 ) = 0 .
Нормальный вектор прямой b определен и имеет вид n b → = ( A 1 , B 1 ) , тогда направляющий вектор прямой a является вектором a → = ( a x , a y ) , где значения a x = A 1 , a y = B 1 . Значит осталось составить каноническое или параметрическое уравнение прямой a , проходящее через точку с координатами M 1 ( x 1 , y 1 ) с направляющим вектором a → = ( a x , a y ) , имеющее вид x — x 1 a x = y — y 1 a y или x = x 1 + a x · λ y = y 1 + a y · λ соответственно.
После нахождения углового коэффициента k b прямой b можно высчитать угловой коэффициент прямой a . Он будет равен — 1 k b . Отсюда следует, что можно записать уравнение прямой a , проходящей через M 1 ( x 1 , y 1 ) с угловым коэффициентом — 1 k b в виде y — y 1 = — 1 k b · ( x — x 1 ) .
Полученное уравнение прямой, проходящее через заданную точку плоскости перпендикулярно заданной. Если того требуют обстоятельства, можно переходить к другому виду данного уравнения.
Видео:Прямая на плоскости. Проекция точки на прямуюСкачать
Решение примеров
Рассмотрим составление уравнения прямой, проходящей через заданную точку плоскости и перпендикулярно заданной прямой.
Записать уравнение прямой а, которая проходит через точку с координатами M 1 ( 7 , — 9 ) и перпендикулярна прямой b , которое задано каноническим уравнением прямой x — 2 3 = y + 4 1 .
Из условия имеем, что b → = ( 3 , 1 ) является направляющим вектором прямой x — 2 3 = y + 4 1 . Координаты вектора b → = 3 , 1 являются координатами нормального вектора прямой a , так как прямые a и b взаимно перпендикулярны. Значит, получаем n a → = ( 3 , 1 ) . Теперь необходимо записать уравнение прямой, проходящее через точку M 1 ( 7 , — 9 ) , имеющее нормальный вектор с координатами n a → = ( 3 , 1 ) .
Получим уравнение вида: 3 · ( x — 7 ) + 1 · ( y — ( — 9 ) ) = 0 ⇔ 3 x + y — 12 = 0
Полученное уравнение является искомым.
Ответ: 3 x + y — 12 = 0 .
Составить уравнение прямой, которая проходит через начало координат системы координат О х у z , перпендикулярно прямой 2 x — y + 1 = 0 .
Имеем, что n b → = ( 2 , — 1 ) является нормальным вектором заданной прямой. Отсюда a → = ( 2 , — 1 ) — координаты искомого направляющего вектора прямой.
Зафиксируем уравнение прямой, проходящую через начало координат с направляющим вектором a → = ( 2 , — 1 ) . Получим, что x — 0 2 = y + 0 — 1 ⇔ x 2 = y — 1 . Полученное выражение является уравнение прямой, проходящей через начало координат перпендикулярно прямой 2 x — y + 1 = 0 .
Ответ: x 2 = y — 1 .
Записать уравнение прямой, проходящей через точку с координатами M 1 ( 5 , — 3 ) перпендикулярно прямой y = — 5 2 x + 6 .
Из уравнения y = — 5 2 x + 6 угловой коэффициент имеет значение — 5 2 . Угловой коэффициент прямой, которая перпендикулярна ей имеет значение — 1 — 5 2 = 2 5 . Отсюда делаем вывод, что прямая, проходящая через точку с координатами M 1 ( 5 , — 3 ) перпендикулярно прямой y = — 5 2 x + 6 , равна y — ( — 3 ) = 2 5 · x — 5 ⇔ y = 2 5 x — 5 .
Видео:10. Параллельность и перпендикулярность плоскостей Решение задачСкачать
Задача 42076 Написать уравнение перпендикуляра.
Условие
Написать уравнение перпендикуляра, опущенного из точки M(1; 1; 6) на прямую
Решение
Дано параметрическое уравнение прямой.
Выразим t
<t=(x+1)/3
<t=y/2
<t=z
Приравниваем правые части
(x+1)/3=y/2=z
Получили каноническое уравнение прямой в пространстве
Прямая имеет направляющий вектор
vector=(3;2;1)
Составляем уравнение плоскости, проходящей через точку M, перпендикулярно данной прямой.
При этом направляющий вектор прямой — нормальный вектор плоскости
Найдем координаты точки N- точки пересечения плоскости и прямой:
3*(-1+3t-1)+2*(2t-1)+1*(t-6)=0
t=1
x_(N)=-1+3=2
y_(N)=2*1=2
z_(N)=1
Составляем уравнение прямой проходящей через две точки М и N:
Уравнение МN, как уравнение прямой проходящей через две точки:
[m]frac<x−x_><x_−x_>=frac<y−y_><y_−y_>=frac<z−z_><z_−z_>[/m]
Видео:23. Точка пересечения прямой и плоскости / Проекция точки на плоскость / Проекция точки на прямуюСкачать
Перпендикуляр к прямой
Что такое перпендикуляр к прямой? Как построить перпендикуляр к прямой? Сколько перпендикуляров можно провести из точки к прямой? Что такое наклонная? Что называется проекцией наклонной? Об этом — ниже.
Перпендикуляр, опущенный из точки A на прямую a — это отрезок, лежащий на прямой, перпендикулярной прямой a, один конец которого — точка A, второй — точка пересечения этих двух прямых.
Как построить перпендикуляр к прямой?
На рисунке 1 изображены прямая a и точка A, не лежащая на прямой a.
Чтобы построить перпендикуляр, воспользуемся угольником.
Угольник располагаем так,
чтобы одна сторона прямого угла проходила вдоль прямой a,
а вторая — через точку A.
Если провести через точку A вдоль стороны угольника прямую,
то получим прямую b, перпендикулярную данной прямой a.
Нам нужно построить перпендикуляр, то есть отрезок — часть этой прямой.
Соединим точку A с точкой на пересечении прямых a и b
(назовем вторую точку B).
Отрезок AB — перпендикуляр, проведенный из точки A к прямой a.
Точка B называется основанием перпендикуляра.
Расстояние от точки до прямой измеряется длиной перпендикуляра.
Расстояние от точки A до прямой a (рисунок 4) равно длине отрезка AB.
Из данной точки к данной прямой можно провести только один перпендикуляр.
Любой другой отрезок, который соединяет точку A с точкой на прямой a, называется наклонной.
Наклонной, проведенной из точки A к прямой a, называется отличный от перпендикуляра отрезок, соединяющий точку A с некоторой точкой на прямой a.
На рисунке 5 AC — наклонная, проведенная из точки A к прямой a.
Точка C называется основанием наклонной AC.
Отрезок, который соединяет основание перпендикуляра с основанием данной наклонной, называется проекцией этой наклонной на прямую.
На рисунке 6 BC — проекция наклонной AC на прямую a.
Перпендикуляр часто встречается при решении задач, связанных с треугольниками. В частности, определение высоты треугольника опирается на перпендикуляр.
В следующий раз рассмотрим свойства перпендикуляра и наклонной.
🎥 Видео
Как найти проекцию точки на прямую. Линейная алгебраСкачать
1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать
Составляем уравнение прямой по точкамСкачать
Математика без Ху!ни. Уравнение плоскости.Скачать
Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.Скачать
Видеоурок "Нормальное уравнение прямой"Скачать
11. Прямая в пространстве и ее уравненияСкачать
Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать
Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать
Уравнения прямой на плоскости | Векторная алгебраСкачать
7 класс, 16 урок, Перпендикуляр к прямойСкачать
Расстояние от точки до плоскости / Вывод формулыСкачать
9 класс, 7 урок, Уравнение прямойСкачать
Уравнения стороны треугольника и медианыСкачать