Уравнение перпендикуляра к плоскости по трем точкам

Видео:Видеоурок "Уравнение плоскости по трем точкам"Скачать

Видеоурок "Уравнение плоскости по трем точкам"

Задача 22245 5. Найти уравнения перпендикуляра к.

Условие

Уравнение перпендикуляра к плоскости по трем точкам

5. Найти уравнения перпендикуляра к плоскости x-2y+z-9 = 0, проходящего через точку А(-2;0; -1), и определить координаты основания этого перпендикуляра.

Решение

Уравнение перпендикуляра к плоскости по трем точкам

Нормальный вектор плоскости, является направляющим вектором этого перпендикуляра.
vector=(A;B;C)=(1;-2;1)

Уравнение прямой, проходящей через точку с заданным направляющим вектором (p;q;r):

Находим координаты точки Р — основания перпендикуляра или точки пересечения прямой и плоскjсти
<x-2y+z-9=0
<(x+2)/1=(y-0)/(-2)=(z+1)/1

и подставляем в первое
х-2*(-2х-4)+(х+1)-9=0
6х=0
х=0
y=-2*0 — 4 = — 4
z=0 + 2= 2

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Уравнение плоскости, которая проходит через три заданные точки, не лежащие на одной прямой

В рамках этого материала мы разберем, как найти уравнение плоскости, если мы знаем координаты трех различных ее точек, которые не лежат на одной прямой. Для этого нам понадобится вспомнить, что такое прямоугольная система координат в трехмерном пространстве. Для начала мы введем основной принцип данного уравнения и покажем, как именно использовать его при решении конкретных задач.

Видео:Уравнение плоскости через 3 точкиСкачать

Уравнение плоскости через 3 точки

Как найти уравнение плоскости, которая проходит через 3 заданные точки

Для начала нам необходимо вспомнить одну аксиому, которая звучит следующим образом:

Если три точки не совпадают друг с другом и не лежат на одной прямой, то в трехмерном пространстве через них проходит только одна плоскость.

Иными словами, если у нас есть три разных точки, координаты которых не совпадают и которые нельзя соединить прямой, то мы можем определить плоскость, проходящую через нее.

Допустим, у нас имеется прямоугольная система координат. Обозначим ее O x y z . В ней лежат три точки M с координатами M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) , которые нельзя соединить прямой линией. Исходя из этих условий, мы можем записать уравнение необходимой нам плоскости. Есть два подхода к решению этой задачи.

1. Первый подход использует общее уравнение плоскости. В буквенном виде оно записывается как A ( x — x 1 ) + B ( y — y 1 ) + C ( z — z 1 ) = 0 . С его помощью можно задать в прямоугольной системе координат некую плоскость альфа, которая проходит через первую заданную точку M 1 ( x 1 , y 1 , z 1 ) . У нас получается, что нормальный вектор плоскости α будет иметь координаты A , B , C .

Зная координаты нормального вектора и координаты точки, через которую проходит плоскость, мы можем записать общее уравнение этой плоскости.

Из этого мы и будем исходить в дальнейшем.

Таким образом, согласно условиям задачи, мы имеем координаты искомой точки (даже трех), через которую проходит плоскость. Чтобы найти уравнение, нужно вычислить координаты ее нормального вектора. Обозначим его n → .

Вспомним правило: любой не равный нулю вектор данной плоскости является перпендикулярным нормальному вектору этой же плоскости. Тогда мы имеем, что n → будет перпендикулярным по отношению к векторам, составленным из исходных точек M 1 M 2 → и M 1 M 3 → . Тогда мы можем обозначить n → как векторное произведение вида M 1 M 2 → · M 1 M 3 → .

Поскольку M 1 M 2 → = ( x 2 — x 1 , y 2 — y 1 , z 2 — z 1 ) а M 1 M 3 → = x 3 — x 1 , y 3 — y 1 , z 3 — z 1 (доказательства этих равенств приведены в статье, посвященной вычислению координат вектора по координатам точек), тогда получается, что:

n → = M 1 M 2 → × M 1 M 3 → = i → j → k → x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1

Если мы вычислим определитель, то получим необходимые нам координаты нормального вектора n → . Теперь мы можем записать нужное нам уравнение плоскости, проходящей через три заданные точки.

2. Второй подход нахождения уравнения, проходящей через M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) , основан на таком понятии, как компланарность векторов.

Если у нас есть множество точек M ( x , y , z ) , то в прямоугольной системе координат они определяют плоскость для заданных точек M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) только в том случае, когда векторы M 1 M → = ( x — x 1 , y — y 1 , z — z 1 ) , M 1 M 2 → = ( x 2 — x 1 , y 2 — y 1 , z 2 — z 1 ) и M 1 M 3 → = ( x 3 — x 1 , y 3 — y 1 , z 3 — z 1 ) будут компланарными.

На схеме это будет выглядеть так:

Уравнение перпендикуляра к плоскости по трем точкам

Это будет означать, что смешанное произведение векторов M 1 M → , M 1 M 2 → , M 1 M 3 → будет равно нулю: M 1 M → · M 1 M 2 → · M 1 M 3 → = 0 , поскольку это является основным условием компланарности: M 1 M → = ( x — x 1 , y — y 1 , z — z 1 ) , M 1 M 2 → = ( x 2 — x 1 , y 2 — y 1 , z 2 — z 1 ) и M 1 M 3 → = ( x 3 — x 1 , y 3 — y 1 , z 3 — z 1 ) .

Запишем полученное уравнение в координатной форме:

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = 0

После того, как мы вычислим определитель, мы сможем получить нужное нам уравнение плоскости для трех не лежащих на одной прямой точек M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) .

От полученного в результате уравнения можно перейти к уравнению плоскости в отрезках или к нормальному уравнению плоскости, если этого требуют условия задачи.

В следующем пункте мы приведем примеры того, как указанные нами подходы реализуются на практике.

Видео:Репетитор по математике пишет уравнение плоскости по трем точкамСкачать

Репетитор по математике пишет уравнение плоскости по трем точкам

Примеры задач на составление уравнения плоскости, проходящих через 3 точки

Ранее мы выделили два подхода, с помощью которых можно найти искомое уравнение. Давайте посмотрим, как они применяются в решениях задач и когда следует выбирать каждый из них.

Есть три точки, не лежащие на одной прямой, с координатами M 1 ( — 3 , 2 , — 1 ) , M 2 ( — 1 , 2 , 4 ) , M 3 ( 3 , 3 , — 1 ) . Составьте уравнение плоскости, проходящей через них.

Решение

Используем поочередно оба способа.

1. Найдем координаты двух нужных нам векторов M 1 M 2 → , M 1 M 3 → :

M 1 M 2 → = — 1 — — 3 , 2 — 2 , 4 — — 1 ⇔ M 1 M 2 → = ( 2 , 0 , 5 ) M 1 M 3 → = 3 — — 3 , 3 — 2 , — 1 — — 1 ⇔ M 1 M 3 → = 6 , 1 , 0

Теперь вычислим их векторное произведение. Вычисления определителя расписывать при этом не будем:

n → = M 1 M 2 → × M 1 M 3 → = i → j → k → 2 0 5 6 1 0 = — 5 · i → + 30 · j → + 2 · k →

У нас получился нормальный вектор плоскости, которая проходит через три искомые точки: n → = ( — 5 , 30 , 2 ) . Далее нам нужно взять одну из точек, например, M 1 ( — 3 , 2 , — 1 ) , и записать уравнение для плоскости с вектором n → = ( — 5 , 30 , 2 ) . Мы получим, что: — 5 · ( x — ( — 3 ) ) + 30 · ( y — 2 ) + 2 · ( z — ( — 1 ) ) = 0 ⇔ — 5 x + 30 y + 2 z — 73 = 0

Это и есть нужное нам уравнение плоскости, которая проходит через три точки.

2. Используем другой подход. Запишем уравнение для плоскости с тремя точками M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) в следующем виде:

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = 0

Сюда можно подставить данные из условия задачи. Поскольку x 1 = — 3 , y 1 = 2 , z 1 = — 1 , x 2 = — 1 , y 2 = 2 , z 2 = 4 , x 3 = 3 , y 3 = 3 , z 3 = — 1 , в итоге мы получим:

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = x — ( — 3 ) y — 2 z — ( — 1 ) — 1 — ( — 3 ) 2 — 2 4 — ( — 1 ) 3 — ( — 3 ) 3 — 2 — 1 — ( — 1 ) = = x + 3 y — 2 z + 1 2 0 5 6 1 0 = — 5 x + 30 y + 2 z — 73

Мы получили нужное нам уравнение.

Ответ: — 5 x + 30 y + 2 z — 73 .

А как быть, если заданные точки все же лежат на одной прямой и нам нужно составить уравнение плоскости для них? Здесь сразу надо сказать, что это условие будет не совсем корректным. Через такие точки может проходить бесконечно много плоскостей, поэтому вычислить один-единственный ответ невозможно. Рассмотрим такую задачу, чтобы доказать некорректность подобной постановки вопроса.

У нас есть прямоугольная система координат в трехмерном пространстве, в которой размещены три точки с координатами M 1 ( 5 , — 8 , — 2 ) , M 2 ( 1 , — 2 , 0 ) , M 3 ( — 1 , 1 , 1 ) . Необходимо составить уравнение плоскости, проходящей через нее.

Решение

Используем первый способ и начнем с вычисления координат двух векторов M 1 M 2 → и M 1 M 3 → . Подсчитаем их координаты: M 1 M 2 → = ( — 4 , 6 , 2 ) , M 1 M 3 → = — 6 , 9 , 3 .

Векторное произведение будет равно:

M 1 M 2 → × M 1 M 3 → = i → j → k → — 4 6 2 — 6 9 3 = 0 · i ⇀ + 0 · j → + 0 · k → = 0 →

Поскольку M 1 M 2 → × M 1 M 3 → = 0 → , то наши векторы будут коллинеарными (перечитайте статью о них, если забыли определение этого понятия). Таким образом, исходные точки M 1 ( 5 , — 8 , — 2 ) , M 2 ( 1 , — 2 , 0 ) , M 3 ( — 1 , 1 , 1 ) находятся на одной прямой, и наша задача имеет бесконечно много вариантов ответа.

Если мы используем второй способ, у нас получится:

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = 0 ⇔ x — 5 y — ( — 8 ) z — ( — 2 ) 1 — 5 — 2 — ( — 8 ) 0 — ( — 2 ) — 1 — 5 1 — ( — 8 ) 1 — ( — 2 ) = 0 ⇔ ⇔ x — 5 y + 8 z + 2 — 4 6 2 — 6 9 3 = 0 ⇔ 0 ≡ 0

Из получившегося равенства также следует, что заданные точки M 1 ( 5 , — 8 , — 2 ) , M 2 ( 1 , — 2 , 0 ) , M 3 ( — 1 , 1 , 1 ) находятся на одной прямой.

Если вы хотите найти хоть один ответ этой задачи из бесконечного множества ее вариантов, то нужно выполнить следующие шаги:

1. Записать уравнение прямой М 1 М 2 , М 1 М 3 или М 2 М 3 (при необходимости посмотрите материал об этом действии).

2. Взять точку M 4 ( x 4 , y 4 , z 4 ) , которая не лежит на прямой М 1 М 2 .

3. Записать уравнение плоскости, которая проходит через три различных точки М 1 , М 2 и M 4 , не лежащих на одной прямой.

Видео:10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

Онлайн калькулятор. Уравнение плоскости

Предлагаю вам воспользоваться онлайн калькулятором чтобы найти уравнение плоскости.

Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения плоскости и закрепить пройденный материал.

Видео:4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать

4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примеры

Найти уравнение плоскости

Уравнение перпендикуляра к плоскости по трем точкам

Выберите метод решения исходя из имеющихся в задаче данных:

В задаче известны:

Ввод данных в калькулятор для составления уравнения плоскости

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для вычисления уравнения плоскости

  • Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.

Теория. Уравнение плоскости.

Плоскость — поверхность, содержащая полностью каждую прямую, соединяющую любые её точки

В зависимости от условий задачи уравнение плоскости можно составить следующими способами:

    Если заданы координаты трех точек A( x 1, y 1, z 1), B( x 2, y 2, z 2) и C( x 3, y 3, z 3), лежащих на плоскости, то уравнение плоскости можно составить по следующей формуле

x — x 1y — y 1z — z 1= 0
x 2 — x 1y 2 — y 1z 2 — z 1
x 3 — x 1y 3 — y 1z 3 — z 1


Если заданы координаты точки A( x 1, y 1, z 1) лежащей на плоскости и вектор нормали n = , то уравнение плоскости можно составить по следующей формуле:

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

🎥 Видео

Метод координат Урок №2 2 Нахождение уравнения плоскости по трем точкамСкачать

Метод координат  Урок №2 2  Нахождение уравнения плоскости по трем точкам

Уравнение плоскости по трем точкамСкачать

Уравнение плоскости по трем точкам

Как найти угол между плоскостямиСкачать

Как найти угол между плоскостями

Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать

Аналитическая геометрия, 5 урок, Уравнение плоскости

Уравнение плоскости. 11 класс.Скачать

Уравнение плоскости. 11 класс.

Координатный метод. Уравнение плоскостиСкачать

Координатный метод. Уравнение плоскости

Уравнение плоскости через 2 точки параллельно векторуСкачать

Уравнение плоскости через 2 точки параллельно вектору

10 класс, 19 урок, Расстояние от точки до плоскостиСкачать

10 класс, 19 урок, Расстояние от точки до плоскости

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Задача 7. Найти расстояние от точки M0 до плоскости, проходящей через три точки M1, M2, M3.Скачать

Задача 7. Найти расстояние от точки M0 до плоскости, проходящей через три точки M1, M2, M3.

11. Прямая в пространстве и ее уравненияСкачать

11. Прямая в пространстве и ее уравнения
Поделиться или сохранить к себе: