Уравнение пересечения прямой и плоскости онлайн калькулятор

Видео:Найти точку пересечения прямой и плоскостиСкачать

Найти точку пересечения прямой и плоскости

Точка пересечения прямой и плоскости онлайн

С помощю этого онлайн калькулятора можно найти точку пересечения прямой и плоскости. Дается подробное решение с пояснениями. Для нахождения координат точки пересечения прямой и плоскости задайте вид уравнения прямой («канонический» или «параметрический» ), введите данные в уравнения прямой и плоскости и нажимайте на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Построение точки пересечения прямой и плоскости | Стереометрия #29 | ИнфоурокСкачать

Построение точки пересечения прямой и плоскости | Стереометрия #29 | Инфоурок

Точка пересечения прямой и плоскости − теория, примеры и решения

  • Содержание
  • 1. Точка пересечения плоскости и прямой, заданной в каноническом виде.
  • 2. Точка пересечения плоскости и прямой, заданной в параметрическом виде.
  • 3. Примеры нахождения точки пересечения прямой и плоскости.

1. Точка пересечения плоскости и прямой, заданной в каноническом виде

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямая L1:

Уравнение пересечения прямой и плоскости онлайн калькулятор,(1)
α: Ax+By+Cz+D=0.(2)

Найти точку пересечения прямой L1 и плоскости α (Рис.1).

Уравнение пересечения прямой и плоскости онлайн калькулятор

Запишем уравнение (1) в виде системы двух линейных уравнений:

Уравнение пересечения прямой и плоскости онлайн калькулятор,(3)
Уравнение пересечения прямой и плоскости онлайн калькулятор(4)

Сделаем перекрестное умножение в уравнениях (3) и (4):

p1(xx1)=m1(yy1)
l1(yy1)=p1(zz1)

Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:

p1xm1y=p1x1m1y1,(5)
l1yp1z=l1y1p1z1.(6)

Решим систему линейных уравнений (2), (5), (6) с тремя неизвестными x, y, z. Для этого в уравнении (2) переведем свободный член в правую часть уравнения и запишем эту систему в матричном виде:

Уравнение пересечения прямой и плоскости онлайн калькулятор(7)

Как решить систему линейных уравнений (11)(или (2), (5), (6)) посмотрите на странице Метод Гаусса онлайн или на примерах ниже. Если система линейных уравнениий (7) несовместна, то прямая L1 и плоскость α не пересекаются. Если система (7) имеет множество решений, то прямая L1 лежит на плоскости α. Единственное решение системы линейных уравнений (7) указывает на то, что это решение определяет координаты точки пересечения прямой L1 и плоскости α.

Замечание. Если прямая задана параметрическим уравнением, то уранение прямой нужно приводить к каноническому виду и применить метод, описанный выше, или же

2. Точка пересечения плоскости и прямой, заданной в параметрическом виде.

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат задана прямая L1 в параметрическом виде:

Уравнение пересечения прямой и плоскости онлайн калькулятор(8)
α: Ax+By+Cz+D=0.(9)

Задачу нахождения нахождения точки пересечения прямых L1 и плоскости α можно решить разными методами.

Метод 1. Приведем уравнения прямой L1 к каноническому виду.

Для приведения уравнения (8) к каноническому виду, выразим параметр t через остальные переменные:

Уравнение пересечения прямой и плоскости онлайн калькулятор(10)

Так как левые части уравнений (10) равны, то можем записать:

Уравнение пересечения прямой и плоскости онлайн калькулятор(11)

Далее, для нахождения точки пересечения прямой и плоскости нужно воспользоваться параграфом 1.

Метод 2. Для нахождения точки пересечения прямой L1 и плоскости α решим совместно уравнения (8) и (9). Из уравнений (8) подставим x, y, z в (9):

Уравнение пересечения прямой и плоскости онлайн калькуляторУравнение пересечения прямой и плоскости онлайн калькулятор(13)

Откроем скобки и найдем t:

Уравнение пересечения прямой и плоскости онлайн калькулятор(14)

Если числитель и знаменатель в уравнении (14) одновременно равны нулю, то это значит, что прямая L1 лежит на полскости α. Если в уравнении (14) числитель отличен от нуля, а знаменатель равен нулю, то прямая и плоскость параллельны.

Если же числитель и знаменатель в уравнении (14) отличны от нуля, то прямая и плоскость пересекаются в одной точке. Для нахождения координат точки пересечения прямой L1 и плоскости α подставим полученное значение t из (14) в (8).

3. Примеры нахождения точки пересечения прямой и плоскости.

Пример 1. Найти точку пересечения прямой L1:

Уравнение пересечения прямой и плоскости онлайн калькулятор(15)
α: 7x−5y+2z+19=0.(16)

Представим уравнение (15) в виде двух уравнений:

Уравнение пересечения прямой и плоскости онлайн калькулятор(17)
Уравнение пересечения прямой и плоскости онлайн калькулятор(18)

Сделаем перекрестное умножение в уравнениях (17) и (18):

Уравнение пересечения прямой и плоскости онлайн калькулятор
Уравнение пересечения прямой и плоскости онлайн калькулятор

Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:

Уравнение пересечения прямой и плоскости онлайн калькулятор
Уравнение пересечения прямой и плоскости онлайн калькулятор

Для нахождения точки пересечения прямой L1 и плосклсти α нужно решить совместно уравнения (2), (19) и (20). Для этого переведем в уравнении (2) свободный член на правую сторону уравнения и построим матричное уравнение для системы линейных уравнений (2), (19) и (20):

Уравнение пересечения прямой и плоскости онлайн калькулятор(21)

Решим систему линейных уравнений (21) отностительно x, y, z. Для решения системы, построим расширенную матрицу:

Уравнение пересечения прямой и плоскости онлайн калькулятор

Обозначим через aij элементы i-ой строки и j-ого столбца.

Первый этап. Прямой ход Гаусса.

Исключим элементы 1-го столбца матрицы ниже элемента a1 1. Для этого сложим строку 3 со строкой 1, умноженной на −7/3:

Уравнение пересечения прямой и плоскости онлайн калькулятор

Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строку 3 со строкой 2, умноженной на 4/3:

Уравнение пересечения прямой и плоскости онлайн калькулятор

Второй этап. Обратный ход Гаусса.

Исключим элементы 3-го столбца матрицы выше элемента a33. Для этого сложим строку 2 со строкой 3, умноженной на −3/2:

Уравнение пересечения прямой и плоскости онлайн калькулятор

Исключим элементы 2-го столбца матрицы выше элемента a22. Для этого сложим строку 1 со строкой 2, умноженной на 1/2:

Уравнение пересечения прямой и плоскости онлайн калькулятор

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

Уравнение пересечения прямой и плоскости онлайн калькулятор
Уравнение пересечения прямой и плоскости онлайн калькулятор

Ответ. Точка пересечения прямой L1 и плоскости α имеет следующие координаты:

M (37/2, 89/2, 37).

Пример 2. Найти точку пересечения прямой L1:

Уравнение пересечения прямой и плоскости онлайн калькулятор(22)
α: 6x+2y+z+7=0.(23)

Представим уравнение (22) в виде двух уравнений:

Уравнение пересечения прямой и плоскости онлайн калькулятор(24)
Уравнение пересечения прямой и плоскости онлайн калькулятор(25)

Сделаем перекрестное умножение в уравнениях (24) и (25):

Уравнение пересечения прямой и плоскости онлайн калькулятор
Уравнение пересечения прямой и плоскости онлайн калькулятор

Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:

Уравнение пересечения прямой и плоскости онлайн калькулятор
Уравнение пересечения прямой и плоскости онлайн калькулятор

Для нахождения точки пересечения прямой L1 и плосклсти α нужно решить совместно уравнения (2), (26) и (27). Переведем в уравнении (2) свободный член на правую сторону уравнения и построим матричное уравнение для системы линейных уравнений (2), (26) и (27):

Уравнение пересечения прямой и плоскости онлайн калькулятор(28)

Решим систему линейных уравнений (21) отностительно x, y, z. Для этого построим расширенную матрицу:

Уравнение пересечения прямой и плоскости онлайн калькулятор

Обозначим через aij элементы i-ой строки и j-ого столбца.

Исключим элементы 1-го столбца матрицы ниже элемента a11. Для этого сложим строку 3 со строкой 1, умноженной на 6/5:

Уравнение пересечения прямой и плоскости онлайн калькулятор

Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строку 3 со строкой 2, умноженной на −1/5:

Уравнение пересечения прямой и плоскости онлайн калькулятор

Из расширенной матрицы восстановим систему линейных уравнений:

Уравнение пересечения прямой и плоскости онлайн калькулятор(29)

Легко можно заметить, что последнее уравнение в (29) несовместна, так как несуществуют такие x, y, z чтобы выполнялось это равенство. Следовательно система линейных уравнений (2), (26) и (27) несовместна. Тогда прямая L1 и плоскость α не пересекаются, т.е. они параллельны.

Ответ. Прямая L1 и плоскость α параллельны, т.е. не имеют общую точку.

Пример 3. Найти точку пересечения прямой в параметрическом виде L1:

Уравнение пересечения прямой и плоскости онлайн калькулятор(30)
α: 2x+yz+11=0.(31)

Решение. Для нахождения точки пересечения прямой L1 и плоскости α нужно найти такое значение t, при котором точка M(x, y, z) удовлетворяет уравнению (31). Поэтому подставим значения x, y, z из (30) в (31):

2(1+2t)+(−5−5t)−(8−t)+11=0.
2+4t−5−5t−8+t+11=0.(32)

Упростив уравнение, получим:

Как видим, любое значение t удовлетворяет уравнению (33), т.е. любая точка на прямой L1 удовлетворяет уравнению плоскости α. Следовательно прямая L1 лежит на плоскости α.

Ответ. Прямая L1 лежит на плоскости α.

Видео:Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать

Математика без Ху!ни.  Взаимное расположение прямой и плоскости.

Нахождение уравнений прямой, заданной пересечением двух плоскостей

Этот онлайн калькулятор находит уравнения прямой, заданной пересечением двух плоскостей в пространстве.

Этот онлайн калькулятор предназначен для проверки решений задач, которые можно сформулировать следующим образом:

Записать канонические уравнения прямой, заданной уравнениями двух плоскостей

Вы задаете коэффициенты уравнений плоскостей, калькулятор выдает уравнения прямой в канонической форме. Немного теории, как обычно, можно почерпнуть под калькулятором

Уравнение пересечения прямой и плоскости онлайн калькулятор

Нахождение уравнений прямой, заданной пересечением двух плоскостей

Канонические уравнения прямой, заданной пересечением двух плоскостей

Если плоскости пересекаются, то система уравнений, приведенная в начале статьи, задает прямую в пространстве. Для записи уравнений этой прямой в каноническом виде, надо найти какую либо точку, принадлежащую этой прямой, и направляющий вектор.

Точка, принадлежащая прямой, также принадлежит и каждой из плоскостей, то есть является одним из решений системы уравнений выше. Для нахождения точки, принадлежащей прямой, переходят от системы из двух уравнений с тремя неизвестными к системе из двух уравнений с двумя неизвестными, произвольно принимая какую-либо координату точки за ноль. Как правило, при решении задач, выбирают ту координату, при занулении которой решение системы из двух уравнений с двумя неизвестными дает в ответе целые числа. Калькулятор учитывает этот факт и также пытается найти целочисленное решение, зануляя все координаты по очереди.

Направляющий вектор прямой ортогонален нормальным векторам плоскостей, которые задаются коэффициентами A, B и С в общем уравнении плоскости . Таким образом его можно найти как результат векторного произведения нормальных векторов плоскостей .

Точка и вектор дают нам канонические уравнения прямой:

Существуют частные случаи, когда одна или две координаты направляющего вектора равны нулю.

В случае, если нулю равны две координаты, направляющий вектор коллинеарен одной из координатных осей. Соответственно, точки прямой могут принимать любое значение по этой оси, при этом значения по двум другим осям будут постоянны. Например, если двумя нулевыми координатами будут y и z, канонические уравнения прямой будут выглядеть так:

В случае. если нулю равна одна координата, направляющий вектор лежит в одной из координатных плоскостей (плоскостей, образованных парами координатных осей), значение координаты по третьей оси, ортогональной этой плоскости (как раз той, для которой координата направляющего вектора равна нулю), опять будет постоянным. Например, если нулевой координатой будет x, то канонические уравнения прямой будут выглядеть так:

Эти случаи также учитываются калькулятором.

Видео:23. Точка пересечения прямой и плоскости / Проекция точки на плоскость / Проекция точки на прямуюСкачать

23. Точка пересечения прямой и плоскости / Проекция точки на плоскость / Проекция точки на прямую

Онлайн калькулятор. Уравнение плоскости

Предлагаю вам воспользоваться онлайн калькулятором чтобы найти уравнение плоскости.

Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения плоскости и закрепить пройденный материал.

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Найти уравнение плоскости

Уравнение пересечения прямой и плоскости онлайн калькулятор

Выберите метод решения исходя из имеющихся в задаче данных:

В задаче известны:

Ввод данных в калькулятор для составления уравнения плоскости

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для вычисления уравнения плоскости

  • Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.

Теория. Уравнение плоскости.

Плоскость — поверхность, содержащая полностью каждую прямую, соединяющую любые её точки

В зависимости от условий задачи уравнение плоскости можно составить следующими способами:

    Если заданы координаты трех точек A( x 1, y 1, z 1), B( x 2, y 2, z 2) и C( x 3, y 3, z 3), лежащих на плоскости, то уравнение плоскости можно составить по следующей формуле

x — x 1y — y 1z — z 1= 0
x 2 — x 1y 2 — y 1z 2 — z 1
x 3 — x 1y 3 — y 1z 3 — z 1


Если заданы координаты точки A( x 1, y 1, z 1) лежащей на плоскости и вектор нормали n = , то уравнение плоскости можно составить по следующей формуле:

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

💡 Видео

Пересечение прямой и плоскостиСкачать

Пересечение прямой и плоскости

Построение точки пересечения прямой и плоскостиСкачать

Построение точки пересечения прямой и плоскости

Задача 13. Найти точку пересечения прямой и плоскости.Скачать

Задача 13. Найти точку пересечения прямой и плоскости.

17. Показать что прямые пересекаются и составить уравнение плоскости в которой они расположеныСкачать

17. Показать что прямые пересекаются и составить уравнение плоскости в которой они расположены

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Лекция 2. Основная задача начертательной геометрии. Точка пересечения прямой с плоскостью.Скачать

Лекция 2. Основная задача начертательной геометрии. Точка пересечения прямой с плоскостью.

УРАВНЕНИЕ ПРЯМОЙ на плоскости 8 и 9 классСкачать

УРАВНЕНИЕ ПРЯМОЙ на плоскости 8 и 9 класс

Видеоурок "Общие уравнения прямой"Скачать

Видеоурок "Общие уравнения прямой"

Написать канонические и параметрические уравнения прямой в пространствеСкачать

Написать канонические и параметрические уравнения прямой в пространстве

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика
Поделиться или сохранить к себе: