Уравнение отрезка в задачах с параметром

«Базовые элементы» для решения задач с параметрами

В задачах с параметрами Профильного ЕГЭ по математике вам встретятся не только графики функций (в школьном смысле этого слова), но и множества точек на плоскости.

Вот несколько уравнений и неравенств, задающих окружность, круг, ромбик, отрезок. Заметим, что окружность или ромбик, хотя и задаются уравнениями, не являются графиками функций в школьном смысле этого слова. Чтобы лучше почувствовать эту разницу, повторите тему «Что такое функция».

Задачи с параметрами на ЕГЭ по математике считаются одними из самых сложных. Однако на самом деле они похожи на конструктор, где вы собираете решение из готовых элементов. Чтобы уверенно решать задачи с параметрами, необходимо отлично знать 5 типов элементарных функций и их графики. Преобразования графиков функций. И вот эти базовые элементы:

1. Уравнение задает окружность с центром в начале координат и радиусом

Уравнение отрезка в задачах с параметром

2. Уравнение задает окружность с центром в точке (a;b) и радиусом

Уравнение отрезка в задачах с параметром

3. Неравенство задает круг вместе с границей.

Уравнение отрезка в задачах с параметром

4. Уравнение задает верхнюю полуокружность с центром в начале координат и радиусом

Уравнение отрезка в задачах с параметром

5. Уравнение задает нижнюю полуокружность с центром в начале координат и радиусом

Уравнение отрезка в задачах с параметром

6. Уравнение задает верхнюю полуокружность центром в точке и радиусом

Уравнение отрезка в задачах с параметром

7. Уравнение при положительных и задает ромбик, симметричный относительно начала координат.

Уравнение отрезка в задачах с параметром

8. Уравнение (сумма модулей) задает график следующего вида:

Уравнение отрезка в задачах с параметром

9. Расстояние между точками и находится по формуле:

Координаты середины М отрезка АВ находятся по формуле:

Уравнение отрезка концы отрезка и

В левой части уравнения сумма расстояний от точки P с координатами до точек и В правой расстояние между точками и

Пара чисел соответствует координатам любой точки этого отрезка.

Кратко это можно записать так: Это значит, что точка P лежит на отрезке

Видео:Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnlineСкачать

Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnline

Урок по теме «Методы решения задач с параметрами»

Разделы: Математика

Цель данной работы – изучение различных способов решения задач с параметрами. Возможность и умение решать задачи с параметрами демонстрируют владение методами решения уравнений и неравенств, осмысленное понимание теоретических сведений, уровень логического мышления, стимулируют познавательную деятельность. Для развития этих навыков необходимы длительнее усилия, именно поэтому в профильных 10-11 классах с углубленным изучением точных наук введен курс: “Математический практикум”, частью которого является решение уравнений и неравенств с параметрами. Курс входит в число дисциплин, включенных в компонент учебного плана школы.

Успешному изучению методов решения задач с параметрами могут помочь элективный или факультативный курсы, или компонент за сеткой по теме: “Задачи с параметрами”.

Рассмотрим четыре больших класса задач с параметрами:

  1. Уравнения, неравенства и их системы, которые необходимо решить для любого значения параметра, либо для значений параметра, принадлежащих определенному множеству.
  2. Уравнения, неравенства и их системы, для которых требуется определить количество решений в зависимости от значения параметра.
  3. Уравнения, неравенства и их системы, для которых требуется найти все те значения параметра, при которых указанные уравнения (системы, неравенства) имеют заданное число решений.
  4. Уравнения, неравенства и их системы, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Методы решений задач с параметрами.

1. Аналитический метод.

Это способ прямого решения, повторяющий стандартные процедуры нахождения ответа в задачах без параметра.

Пример 1. Найдите все значения параметра a, при которых уравнение:

(2a – 1)x 2 + ax + (2a – 3) =0 имеет не более одного корня.

При 2a – 1 = 0 данное уравнение квадратным не является, поэтому случай a =1/2 разбираем отдельно.

Если a = 1/2, то уравнение принимает вид 1/2x – 2 = 0, оно имеет один корень.

Если a ≠ 1/2 , то уравнение является квадратным; чтобы оно имело не более одного корня необходимо и достаточно, чтобы дискриминант был неположителен:

Уравнение отрезка в задачах с параметром

Чтобы записать окончательный ответ, необходимо понять,

Уравнение отрезка в задачах с параметром

2. Графический метод.

В зависимости от задачи (с переменной x и параметром a) рассматриваются графики в координатной плоскости (x;y) или в плоскости (x;a).

Пример 2. Для каждого значения параметра a определите количество решений уравнения Уравнение отрезка в задачах с параметром.

Заметим, что количество решений уравнения Уравнение отрезка в задачах с параметромравно количеству точек пересечения графиков функций Уравнение отрезка в задачах с параметроми y = a.

График функции Уравнение отрезка в задачах с параметромпоказан на рис.1.

Уравнение отрезка в задачах с параметром

Уравнение отрезка в задачах с параметром

Уравнение отрезка в задачах с параметром

y = a – это горизонтальная прямая. По графику несложно установить количество точек пересечения в зависимости от a (например, при a = 11 – две точки пересечения; при a = 2 – восемь точек пересечения).

Ответ: при a 25/4 – два решения.

3. Метод решения относительно параметра.

При решении этим способом переменные х и а принимаются равноправными, и выбирается та переменная, относительно которой аналитическое решение становится более простым. После упрощений нужно вернуться к исходному смыслу переменных х и а и закончить решение.

Пример 3. Найти все значения параметра а , при каждом из которых уравнение Уравнение отрезка в задачах с параметром= —ax +3a +2 имеет единственное решение.

Будем решать это уравнение заменой переменных. Пусть Уравнение отрезка в задачах с параметром= t , t ≥ 0 , тогда x = t 2 + 8 и уравнение примет вид at 2 + t + 5a – 2 = 0 . Теперь задача состоит в том, чтобы найти все а, при которых уравнение at 2 + t + 5a – 2 = 0 имеет единственное неотрицательное решение. Это имеет место в следующих случаях.

1) Если а = 0, то уравнение имеет единственное решение t = 2.

Уравнение отрезка в задачах с параметром

Решение некоторых типов уравнений и неравенств с параметрами.

Задачи с параметрами помогают в формировании логического мышления, в приобретении навыков исследовательской деятельности.

Решение каждой задачи своеобразно и требует к себе индивидуального, нестандартного подхода, поскольку не существует единого способа решения таких задач.

Задача № 1. При каких значениях параметра b уравнение Уравнение отрезка в задачах с параметромне имеет корней?

Уравнение отрезка в задачах с параметром

Ⅱ . Степенные уравнения, неравенства и их системы.

Задача №2. Найти все значения параметра a, при которых множество решений неравенства:

Уравнение отрезка в задачах с параметромсодержит число 6, а также содержит два отрезка длиной 6, не имеющие общих точек.

Уравнение отрезка в задачах с параметром.

Преобразуем обе части неравенства.

Уравнение отрезка в задачах с параметром

Для того, чтобы множество решений неравенства содержало число 6, необходимо и достаточно выполнение условия: Уравнение отрезка в задачах с параметром

Уравнение отрезка в задачах с параметромРис.4

При a > 6 множество решений неравенства: Уравнение отрезка в задачах с параметром.

Интервал (0;5) не может содержать ни одного отрезка длины 6. Значит, два непересекающихся отрезка длины 6 должны содержаться в интервале (5; a).

Это Уравнение отрезка в задачах с параметром

Ⅲ . Показательные уравнения, неравенства и системы.

Задача № 3. В области определения функции Уравнение отрезка в задачах с параметромвзяли все целые положительные числа и сложили их. Найти все значения, при которых такая сумма будет больше 5, но меньше 10.

1) Графиком дробно-линейной функции Уравнение отрезка в задачах с параметромявляется гипербола. По условию x > 0. При неограниченном возрастании х дробь Уравнение отрезка в задачах с параметроммонотонно убывает и приближается к нулю, а значения функции z возрастают и приближаются к 5. Кроме того, z(0) = 1.

Уравнение отрезка в задачах с параметром

2) По определению степени область определения D(y) состоит из решений неравенства Уравнение отрезка в задачах с параметром. При a = 1 получаем неравенство, у которого решений нет. Поэтому функция у нигде не определена.

3) При 0 0 , то z(x) > z(0) = 1 . Значит, каждое положительное значение х является решением неравенства Уравнение отрезка в задачах с параметром. Поэтому для таких а указанную в условии сумму нельзя найти.

4) При a > 1 показательная функция с основанием а возрастает и неравенство Уравнение отрезка в задачах с параметромравносильно неравенству Уравнение отрезка в задачах с параметром. Если a ≥ 5 , то любое положительное число является его решением, и указанную в условии сумму нельзя найти. Если 1 . Так как Уравнение отрезка в задачах с параметромвозрастает на Уравнение отрезка в задачах с параметром, то z(3) .

Уравнение отрезка в задачах с параметром

Решение иррациональных уравнений и неравенств, а также уравнений, неравенств и систем, содержащих модули рассмотрены в Приложении 1.

Задачи с параметрами являются сложными потому, что не существует единого алгоритма их решения. Спецификой подобных задач является то, что наряду с неизвестными величинами в них фигурируют параметры, численные значения которых не указаны конкретно, но считаются известными и заданными на некотором числовом множестве. При этом значения параметров существенно влияют на логический и технический ход решения задачи и форму ответа.

По статистике многие из выпускников не приступают к решению задач с параметрами на ЕГЭ. По данным ФИПИ всего 10% выпускников приступают к решению таких задач, и процент их верного решения невысок: 2–3%, поэтому приобретение навыков решения трудных, нестандартных заданий, в том числе задач с параметрами, учащимися школ по-прежнему остается актуальным.

Видео:✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис ТрушинСкачать

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис Трушин

Графический метод в задачах с параметром

Данный метод используется не только в задачах с параметром, но и для решения обыкновенных уравнений, систем уравнений или неравенств. Он входит в стандартный курс школьной программы и наверняка вы с ним сталкивались, но в несколько упрощенном варианте. Сначала я кратко напомню, в чем заключается этот метод. Затем разберем, как его применять для решения задач с параметром, и рассмотрим несколько типовых примеров.

Для начала рассмотрим уравнение с одной переменной (f(x)=0). Для того, чтобы решить его графическим методом, нужно построить график функции (y=f(x)). Точки пересечения графика с осью абсцисс (ось (х)) и будут решениями нашего уравнения.

Или рассмотрим уравнение (f(x)=g(x)). Точно так же строим на одной координатной плоскости графики функций (y=f(x)) и (y=g(x)), абсциссы точек их пересечения будут решениями уравнения.

Стоит отдельно отметить, что для решения графическим методом необходимо выполнять очень качественный и точный рисунок.

Решить графическим методом уравнение (x^2+3x=5x+3).

Решение: Построим на одной координатной плоскости графики функций (y=x^2+3x) и (y=5x+3). См. рис.1.

Уравнение отрезка в задачах с параметром

(y=5x+3) – красный график; (y=x^2+3x) – синий график.

Из Рис.1 видно, что графики пересекаются в точках ((-1;2)) и ((3;18)). Таким образом, решением нашего уравнения будут: (_=-1; _=3).

Теперь рассмотрим уравнение с двумя переменными (f(x,y)=0). Решением этого уравнения будет множество пар точек ((x,y)), которые можно изобразить в виде графика на координатной плоскости ((xOy)). Если решать это уравнение аналитически, то, как правило, мы выражаем одну переменную через другую ((x,y=f(x))) или ((x=f(y),y)).

В качестве примера рассмотрим обыкновенное линейное уравнение (2x-5y=10). (1) Выражаем (x=frac) – это называется общим решением уравнения. Изобразим его на координатной плоскости, построив график (Рис. 2):

🎥 Видео

Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Аналитический методСкачать

Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Аналитический метод

✓ Пять способов решить задачу с параметром | ЕГЭ-2018. Задание 17. Математика | Борис ТрушинСкачать

✓ Пять способов решить задачу с параметром | ЕГЭ-2018. Задание 17. Математика | Борис Трушин

2022/23. Лекция 7. Решение задач с параметрамиСкачать

2022/23. Лекция 7. Решение задач с параметрами

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

№18. Логарифмическое уравнение с ПАРАМЕТРОМ (профильный ЕГЭ)Скачать

№18. Логарифмическое уравнение с ПАРАМЕТРОМ (профильный ЕГЭ)

9 класс, 7 урок, Задачи с параметрамиСкачать

9 класс, 7 урок, Задачи с параметрами

Тригонометрия в задаче с параметром. Задача 18 профильный ЕГЭСкачать

Тригонометрия в задаче с параметром. Задача 18 профильный ЕГЭ

8 класс, 39 урок, Задачи с параметрамиСкачать

8 класс, 39 урок, Задачи с параметрами

Я разобрал 100 (!) задач с параметром уровня ЕГЭ | Параметр 129 | mathus.ru #егэ2024Скачать

Я разобрал 100 (!) задач с параметром уровня ЕГЭ | Параметр 129 | mathus.ru #егэ2024

Уравнения с параметром. Алгебра, 8 классСкачать

Уравнения с параметром. Алгебра, 8 класс

Реши любой параметр. Задача 18 Профильный ЕГЭСкачать

Реши любой параметр. Задача 18 Профильный ЕГЭ

Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Графический методСкачать

Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Графический метод

11 класс, 34 урок, Задачи с параметрамиСкачать

11 класс, 34 урок, Задачи с параметрами

Задача 17 ЕГЭ профильный. Параметры с нуляСкачать

Задача 17 ЕГЭ профильный. Параметры с нуля

Параметры, Легко Решаемые Графически | ЕГЭ 2024 по математикеСкачать

Параметры, Легко Решаемые Графически | ЕГЭ 2024 по математике

#13. Задача с параметром: уравнение окружности!Скачать

#13. Задача с параметром: уравнение окружности!

Простое уравнение с параметром с корнями | Параметр 98 | mathus.ru #егэ2024Скачать

Простое уравнение с параметром с корнями | Параметр 98 | mathus.ru #егэ2024

Уравнения с параметром. Алгебра 7 класс.Скачать

Уравнения с параметром. Алгебра 7 класс.
Поделиться или сохранить к себе: