Уравнение отрезка в задачах с параметром

«Базовые элементы» для решения задач с параметрами

В задачах с параметрами Профильного ЕГЭ по математике вам встретятся не только графики функций (в школьном смысле этого слова), но и множества точек на плоскости.

Вот несколько уравнений и неравенств, задающих окружность, круг, ромбик, отрезок. Заметим, что окружность или ромбик, хотя и задаются уравнениями, не являются графиками функций в школьном смысле этого слова. Чтобы лучше почувствовать эту разницу, повторите тему «Что такое функция».

Задачи с параметрами на ЕГЭ по математике считаются одними из самых сложных. Однако на самом деле они похожи на конструктор, где вы собираете решение из готовых элементов. Чтобы уверенно решать задачи с параметрами, необходимо отлично знать 5 типов элементарных функций и их графики. Преобразования графиков функций. И вот эти базовые элементы:

1. Уравнение задает окружность с центром в начале координат и радиусом

Уравнение отрезка в задачах с параметром

2. Уравнение задает окружность с центром в точке (a;b) и радиусом

Уравнение отрезка в задачах с параметром

3. Неравенство задает круг вместе с границей.

Уравнение отрезка в задачах с параметром

4. Уравнение задает верхнюю полуокружность с центром в начале координат и радиусом

Уравнение отрезка в задачах с параметром

5. Уравнение задает нижнюю полуокружность с центром в начале координат и радиусом

Уравнение отрезка в задачах с параметром

6. Уравнение задает верхнюю полуокружность центром в точке и радиусом

Уравнение отрезка в задачах с параметром

7. Уравнение при положительных и задает ромбик, симметричный относительно начала координат.

Уравнение отрезка в задачах с параметром

8. Уравнение (сумма модулей) задает график следующего вида:

Уравнение отрезка в задачах с параметром

9. Расстояние между точками и находится по формуле:

Координаты середины М отрезка АВ находятся по формуле:

Уравнение отрезка концы отрезка и

В левой части уравнения сумма расстояний от точки P с координатами до точек и В правой расстояние между точками и

Пара чисел соответствует координатам любой точки этого отрезка.

Кратко это можно записать так: Это значит, что точка P лежит на отрезке

Видео:Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnlineСкачать

Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnline

Урок по теме «Методы решения задач с параметрами»

Разделы: Математика

Цель данной работы – изучение различных способов решения задач с параметрами. Возможность и умение решать задачи с параметрами демонстрируют владение методами решения уравнений и неравенств, осмысленное понимание теоретических сведений, уровень логического мышления, стимулируют познавательную деятельность. Для развития этих навыков необходимы длительнее усилия, именно поэтому в профильных 10-11 классах с углубленным изучением точных наук введен курс: “Математический практикум”, частью которого является решение уравнений и неравенств с параметрами. Курс входит в число дисциплин, включенных в компонент учебного плана школы.

Успешному изучению методов решения задач с параметрами могут помочь элективный или факультативный курсы, или компонент за сеткой по теме: “Задачи с параметрами”.

Рассмотрим четыре больших класса задач с параметрами:

  1. Уравнения, неравенства и их системы, которые необходимо решить для любого значения параметра, либо для значений параметра, принадлежащих определенному множеству.
  2. Уравнения, неравенства и их системы, для которых требуется определить количество решений в зависимости от значения параметра.
  3. Уравнения, неравенства и их системы, для которых требуется найти все те значения параметра, при которых указанные уравнения (системы, неравенства) имеют заданное число решений.
  4. Уравнения, неравенства и их системы, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Методы решений задач с параметрами.

1. Аналитический метод.

Это способ прямого решения, повторяющий стандартные процедуры нахождения ответа в задачах без параметра.

Пример 1. Найдите все значения параметра a, при которых уравнение:

(2a – 1)x 2 + ax + (2a – 3) =0 имеет не более одного корня.

При 2a – 1 = 0 данное уравнение квадратным не является, поэтому случай a =1/2 разбираем отдельно.

Если a = 1/2, то уравнение принимает вид 1/2x – 2 = 0, оно имеет один корень.

Если a ≠ 1/2 , то уравнение является квадратным; чтобы оно имело не более одного корня необходимо и достаточно, чтобы дискриминант был неположителен:

Уравнение отрезка в задачах с параметром

Чтобы записать окончательный ответ, необходимо понять,

Уравнение отрезка в задачах с параметром

2. Графический метод.

В зависимости от задачи (с переменной x и параметром a) рассматриваются графики в координатной плоскости (x;y) или в плоскости (x;a).

Пример 2. Для каждого значения параметра a определите количество решений уравнения Уравнение отрезка в задачах с параметром.

Заметим, что количество решений уравнения Уравнение отрезка в задачах с параметромравно количеству точек пересечения графиков функций Уравнение отрезка в задачах с параметроми y = a.

График функции Уравнение отрезка в задачах с параметромпоказан на рис.1.

Уравнение отрезка в задачах с параметром

Уравнение отрезка в задачах с параметром

Уравнение отрезка в задачах с параметром

y = a – это горизонтальная прямая. По графику несложно установить количество точек пересечения в зависимости от a (например, при a = 11 – две точки пересечения; при a = 2 – восемь точек пересечения).

Ответ: при a 25/4 – два решения.

3. Метод решения относительно параметра.

При решении этим способом переменные х и а принимаются равноправными, и выбирается та переменная, относительно которой аналитическое решение становится более простым. После упрощений нужно вернуться к исходному смыслу переменных х и а и закончить решение.

Пример 3. Найти все значения параметра а , при каждом из которых уравнение Уравнение отрезка в задачах с параметром= —ax +3a +2 имеет единственное решение.

Будем решать это уравнение заменой переменных. Пусть Уравнение отрезка в задачах с параметром= t , t ≥ 0 , тогда x = t 2 + 8 и уравнение примет вид at 2 + t + 5a – 2 = 0 . Теперь задача состоит в том, чтобы найти все а, при которых уравнение at 2 + t + 5a – 2 = 0 имеет единственное неотрицательное решение. Это имеет место в следующих случаях.

1) Если а = 0, то уравнение имеет единственное решение t = 2.

Уравнение отрезка в задачах с параметром

Решение некоторых типов уравнений и неравенств с параметрами.

Задачи с параметрами помогают в формировании логического мышления, в приобретении навыков исследовательской деятельности.

Решение каждой задачи своеобразно и требует к себе индивидуального, нестандартного подхода, поскольку не существует единого способа решения таких задач.

Задача № 1. При каких значениях параметра b уравнение Уравнение отрезка в задачах с параметромне имеет корней?

Уравнение отрезка в задачах с параметром

Ⅱ . Степенные уравнения, неравенства и их системы.

Задача №2. Найти все значения параметра a, при которых множество решений неравенства:

Уравнение отрезка в задачах с параметромсодержит число 6, а также содержит два отрезка длиной 6, не имеющие общих точек.

Уравнение отрезка в задачах с параметром.

Преобразуем обе части неравенства.

Уравнение отрезка в задачах с параметром

Для того, чтобы множество решений неравенства содержало число 6, необходимо и достаточно выполнение условия: Уравнение отрезка в задачах с параметром

Уравнение отрезка в задачах с параметромРис.4

При a > 6 множество решений неравенства: Уравнение отрезка в задачах с параметром.

Интервал (0;5) не может содержать ни одного отрезка длины 6. Значит, два непересекающихся отрезка длины 6 должны содержаться в интервале (5; a).

Это Уравнение отрезка в задачах с параметром

Ⅲ . Показательные уравнения, неравенства и системы.

Задача № 3. В области определения функции Уравнение отрезка в задачах с параметромвзяли все целые положительные числа и сложили их. Найти все значения, при которых такая сумма будет больше 5, но меньше 10.

1) Графиком дробно-линейной функции Уравнение отрезка в задачах с параметромявляется гипербола. По условию x > 0. При неограниченном возрастании х дробь Уравнение отрезка в задачах с параметроммонотонно убывает и приближается к нулю, а значения функции z возрастают и приближаются к 5. Кроме того, z(0) = 1.

Уравнение отрезка в задачах с параметром

2) По определению степени область определения D(y) состоит из решений неравенства Уравнение отрезка в задачах с параметром. При a = 1 получаем неравенство, у которого решений нет. Поэтому функция у нигде не определена.

3) При 0 0 , то z(x) > z(0) = 1 . Значит, каждое положительное значение х является решением неравенства Уравнение отрезка в задачах с параметром. Поэтому для таких а указанную в условии сумму нельзя найти.

4) При a > 1 показательная функция с основанием а возрастает и неравенство Уравнение отрезка в задачах с параметромравносильно неравенству Уравнение отрезка в задачах с параметром. Если a ≥ 5 , то любое положительное число является его решением, и указанную в условии сумму нельзя найти. Если 1 . Так как Уравнение отрезка в задачах с параметромвозрастает на Уравнение отрезка в задачах с параметром, то z(3) .

Уравнение отрезка в задачах с параметром

Решение иррациональных уравнений и неравенств, а также уравнений, неравенств и систем, содержащих модули рассмотрены в Приложении 1.

Задачи с параметрами являются сложными потому, что не существует единого алгоритма их решения. Спецификой подобных задач является то, что наряду с неизвестными величинами в них фигурируют параметры, численные значения которых не указаны конкретно, но считаются известными и заданными на некотором числовом множестве. При этом значения параметров существенно влияют на логический и технический ход решения задачи и форму ответа.

По статистике многие из выпускников не приступают к решению задач с параметрами на ЕГЭ. По данным ФИПИ всего 10% выпускников приступают к решению таких задач, и процент их верного решения невысок: 2–3%, поэтому приобретение навыков решения трудных, нестандартных заданий, в том числе задач с параметрами, учащимися школ по-прежнему остается актуальным.

Видео:✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис ТрушинСкачать

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис Трушин

Графический метод в задачах с параметром

Данный метод используется не только в задачах с параметром, но и для решения обыкновенных уравнений, систем уравнений или неравенств. Он входит в стандартный курс школьной программы и наверняка вы с ним сталкивались, но в несколько упрощенном варианте. Сначала я кратко напомню, в чем заключается этот метод. Затем разберем, как его применять для решения задач с параметром, и рассмотрим несколько типовых примеров.

Для начала рассмотрим уравнение с одной переменной (f(x)=0). Для того, чтобы решить его графическим методом, нужно построить график функции (y=f(x)). Точки пересечения графика с осью абсцисс (ось (х)) и будут решениями нашего уравнения.

Или рассмотрим уравнение (f(x)=g(x)). Точно так же строим на одной координатной плоскости графики функций (y=f(x)) и (y=g(x)), абсциссы точек их пересечения будут решениями уравнения.

Стоит отдельно отметить, что для решения графическим методом необходимо выполнять очень качественный и точный рисунок.

Решить графическим методом уравнение (x^2+3x=5x+3).

Решение: Построим на одной координатной плоскости графики функций (y=x^2+3x) и (y=5x+3). См. рис.1.

Уравнение отрезка в задачах с параметром

(y=5x+3) – красный график; (y=x^2+3x) – синий график.

Из Рис.1 видно, что графики пересекаются в точках ((-1;2)) и ((3;18)). Таким образом, решением нашего уравнения будут: (_=-1; _=3).

Теперь рассмотрим уравнение с двумя переменными (f(x,y)=0). Решением этого уравнения будет множество пар точек ((x,y)), которые можно изобразить в виде графика на координатной плоскости ((xOy)). Если решать это уравнение аналитически, то, как правило, мы выражаем одну переменную через другую ((x,y=f(x))) или ((x=f(y),y)).

В качестве примера рассмотрим обыкновенное линейное уравнение (2x-5y=10). (1) Выражаем (x=frac) – это называется общим решением уравнения. Изобразим его на координатной плоскости, построив график (Рис. 2):

🌟 Видео

Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Аналитический методСкачать

Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Аналитический метод

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

9 класс, 7 урок, Задачи с параметрамиСкачать

9 класс, 7 урок, Задачи с параметрами

✓ Пять способов решить задачу с параметром | ЕГЭ-2018. Задание 17. Математика | Борис ТрушинСкачать

✓ Пять способов решить задачу с параметром | ЕГЭ-2018. Задание 17. Математика | Борис Трушин

№18. Логарифмическое уравнение с ПАРАМЕТРОМ (профильный ЕГЭ)Скачать

№18. Логарифмическое уравнение с ПАРАМЕТРОМ (профильный ЕГЭ)

2022/23. Лекция 7. Решение задач с параметрамиСкачать

2022/23. Лекция 7. Решение задач с параметрами

Уравнения с параметром. Алгебра, 8 классСкачать

Уравнения с параметром. Алгебра, 8 класс

8 класс, 39 урок, Задачи с параметрамиСкачать

8 класс, 39 урок, Задачи с параметрами

Реши любой параметр. Задача 18 Профильный ЕГЭСкачать

Реши любой параметр. Задача 18 Профильный ЕГЭ

Я разобрал 100 (!) задач с параметром уровня ЕГЭ | Параметр 129 | mathus.ru #егэ2024Скачать

Я разобрал 100 (!) задач с параметром уровня ЕГЭ | Параметр 129 | mathus.ru #егэ2024

Тригонометрия в задаче с параметром. Задача 18 профильный ЕГЭСкачать

Тригонометрия в задаче с параметром. Задача 18 профильный ЕГЭ

Задача 17 ЕГЭ профильный. Параметры с нуляСкачать

Задача 17 ЕГЭ профильный. Параметры с нуля

#13. Задача с параметром: уравнение окружности!Скачать

#13. Задача с параметром: уравнение окружности!

Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Графический методСкачать

Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Графический метод

Параметры, Легко Решаемые Графически | ЕГЭ 2024 по математикеСкачать

Параметры, Легко Решаемые Графически | ЕГЭ 2024 по математике

11 класс, 34 урок, Задачи с параметрамиСкачать

11 класс, 34 урок, Задачи с параметрами

Простое уравнение с параметром с корнями | Параметр 98 | mathus.ru #егэ2024Скачать

Простое уравнение с параметром с корнями | Параметр 98 | mathus.ru #егэ2024

Уравнения с параметром. Алгебра 7 класс.Скачать

Уравнения с параметром. Алгебра 7 класс.
Поделиться или сохранить к себе: