Уравнение окружности в декартовых координатах имеет вид x a 2 y b 2 r2

Уравнение окружности

Окружностью называется множество точек плоскости, равноудаленных от данной точки, называемой центром.

Если точка С — центр окружности, R — ее радиус, а М — произвольная точка окружности, то по определению окружности

Равенство (1) есть уравнение окружности радиуса R с центром в точке С.

Пусть на плоскости задана прямоугольная декартова система координат (рис. 104) и точка С(а; b) — центр окружности радиуса R. Пусть М(х; у) — произвольная точка этой окружности.

Уравнение окружности в декартовых координатах имеет вид x a 2 y b 2 r2

Так как |СМ| = ( sqrt ), то уравнение (1) можно записать так:

(x — a) 2 + (у — b) 2 = R 2 (2)

Уравнение (2) называют общим уравнением окружности или уравнением окружности радиуса R с центром в точке (а; b). Например, уравнение

есть уравнение окружности радиуса R = 5 с центром в точке (1; —3).

Если центр окружности совпадает с началом координат, то уравнение (2) принимает вид

Уравнение (3) называют каноническим уравнением окружности.

Задача 1. Написать уравнение окружности радиуса R = 7 с центром в начале координат.

Непосредственной подстановкой значения радиуса в уравнение (3) получим

Задача 2. Написать уравнение окружности радиуса R = 9 с центром в точке С(3; —6).

Подставив значение координат точки С и значение радиуса в формулу (2), получим

(х — 3) 2 + (у — (—6)) 2 = 81 или (х — 3) 2 + (у + 6) 2 = 81.

Задача 3. Найти центр и радиус окружности

Сравнивая данное уравнение с общим уравнением окружности (2), видим, что а = —3, b = 5, R = 10. Следовательно, С(—3; 5), R = 10.

Задача 4. Доказать, что уравнение

является уравнением окружности. Найти ее центр и радиус.

Преобразуем левую часть данного уравнения:

Это уравнение представляет собой уравнение окружности с центром в точке (—2; 1); радиус окружности равен 3.

Задача 5. Написать уравнение окружности с центром в точке С(—1; —1), касающейся прямой АВ, если A (2; —1), B(— 1; 3).

Напишем уравнение прямой АВ:

Уравнение окружности в декартовых координатах имеет вид x a 2 y b 2 r2или 4х + 3y —5 = 0.

Так как окружность касается данной прямой, то радиус, проведенный в точку касания, перпендикулярен этой прямой. Для отыскания радиуса необходимо найти расстояние от точки С(—1; —1) — центра окружности до прямой 4х + 3y —5 = 0:

Уравнение окружности в декартовых координатах имеет вид x a 2 y b 2 r2

Напишем уравнение искомой окружности

Пусть в прямоугольной системе координат дана окружность x 2 + у 2 = R 2 . Рассмотрим ее произвольную точку М(х; у) (рис. 105).

Уравнение окружности в декартовых координатах имеет вид x a 2 y b 2 r2

Пусть радиус-вектор OM > точки М образует угол величины t с положительным направлением оси Ох, тогда абсцисса и ордината точки М изменяются в зависимости от t

(0 2 = 3 cos 2 t, у 2 = 3 sin 2 t. Складывая эти равенства почленно, получаем

Видео:9 класс. Геометрия. Декартовы координаты. Уравнение окружности. Уравнение прямой. Урок #6Скачать

9 класс. Геометрия. Декартовы координаты. Уравнение окружности. Уравнение прямой. Урок #6

Уравнение окружности в декартовых координатах имеет вид x a 2 y b 2 r2

Уравнение окружности в декартовых координатах имеет вид x a 2 y b 2 r2

Уравнение окружности имеет вид , где и – координаты центра окружности .

Пусть задана окружность на плоскости , где точка , центр окружности – имеет координаты и . По определению окружности для любой точки , лежащей на окружности , верно . Но в соответствии с теоремой 10.2 . Таким образом, координаты и любой точки окружности удовлетворяют уравнению = .

Обратно: любая точка , координаты которой удовлетворяют уравнению, принадлежит окружности, так как расстояние от нее до точки равно . Отсюда по определению данное уравнение – уравнение окружности .

Видео:9 класс, 6 урок, Уравнение окружностиСкачать

9 класс, 6 урок, Уравнение окружности

Докажите, что окружность радиуса R с центром в точке A(a;b) имеет уравнение вида

Пусть точка M(x;y) принадлежит окружности радиуса R с центром A(a;b). Тогда точка M удалена от точки A на расстояние, равное R, т.е. MA = R. По формуле для расстояния между двумя точками на плоскости

Обратно, пусть точка M(x;y) такова, что (xa) 2 + (yb) 2 = R 2 . Тогда её расстояние от точки A(a;b) равно R. Значит, точка M лежит на окружности радиуса R с центром в точке A.

💥 Видео

Уравнение окружности (1)Скачать

Уравнение окружности (1)

Уравнение окружностиСкачать

Уравнение окружности

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямой

№972. Напишите уравнение прямой, проходящей через две данные точки: а) А (1; -1) и В (-3; 2)Скачать

№972. Напишите уравнение прямой, проходящей через две данные точки: а) А (1; -1) и В (-3; 2)

9-класс | Геометрия| Уравнение окружности и прямойСкачать

9-класс | Геометрия| Уравнение окружности и прямой

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

УРАВНЕНИЕ ОКРУЖНОСТИ 8 и 9 класс геометрияСкачать

УРАВНЕНИЕ ОКРУЖНОСТИ 8 и 9 класс геометрия

начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать

начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.

УРАВНЕНИЕ ОКРУЖНОСТИСкачать

УРАВНЕНИЕ ОКРУЖНОСТИ

Уравнение окружности | Геометрия 7-9 класс #90| ИнфоурокСкачать

Уравнение окружности | Геометрия 7-9 класс #90| Инфоурок

Геометрия 9 класс 7-8 неделя Уравнение прямой. Уравнение окружностиСкачать

Геометрия 9 класс 7-8 неделя Уравнение прямой. Уравнение окружности

Геометрия 9 класс (Урок№9 - Уравнение линии на плоскости. Уравнение окружности. Уравнение прямой.)Скачать

Геометрия 9 класс (Урок№9 - Уравнение линии на плоскости. Уравнение окружности. Уравнение прямой.)

Составляем уравнение окружностиСкачать

Составляем уравнение окружности

Составить уравнение окружности. Геометрия. Задачи по рисункам.Скачать

Составить уравнение окружности. Геометрия. Задачи по рисункам.

ПРОСТОЙ СЕКРЕТ ДЛЯ НАЧИНАЮЩИХ! Реши алгебру за 12 минут — Уравнение ОкружностиСкачать

ПРОСТОЙ СЕКРЕТ ДЛЯ НАЧИНАЮЩИХ! Реши алгебру за 12 минут — Уравнение Окружности

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Уравнение окружности и прямойСкачать

Уравнение окружности и прямой
Поделиться или сохранить к себе: