Уравнение окружности по координатам диаметра

Написать уравнение окружности

Рассмотрим некоторые примеры, в которых требуется написать уравнение окружности по заданным условиям.

1) Написать уравнение окружности с центром в точке K(5;-1) и радиусом 7.

Уравнение окружности с центром в точке (a;b) и радиусом R имеет вид:

Уравнение окружности по координатам диаметра

Так как центр окружности — точка K(5; -1), то a=5, b=-1.Подставляем эти данные в уравнение окружности:

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

2) Напишите уравнение окружности с центром в точке A (8;-3) проходящей через точку C(3;-6).

Так как центр окружности — точка A(8; -3), то a=8, b=-3.

Остаётся найти радиус. Он равен расстоянию от центра окружности до точки, лежащей на окружности, то есть в данном случае радиус окружности равен расстоянию между точками A и C.

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Следовательно, уравнение данной окружности

Уравнение окружности по координатам диаметра

3) Составить уравнение окружности, диаметром которой является отрезок AB, если A (-4; -9), B(6;5).

Центром окружности является середина диаметра, в нашем случае — середина отрезка AB. По формулам координат середины отрезка

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Центр окружности — точка O(1;-2). Значит, a=1, b=-2.

Радиус можно найти как расстояние от центра окружности до любой из точек A или B окружности. Например,

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Таким образом, уравнение окружности с диаметром AB —

Уравнение окружности по координатам диаметра

4) Написать уравнение окружности, проходящей через три точки: A(4; -5), B(8; 3) C(-8; 11).

Так как точки A, B C принадлежат окружности, то их координаты удовлетворяют уравнению окружности. Подставив координаты точек в уравнение

Уравнение окружности по координатам диаметра

получаем систему уравнений:

Уравнение окружности по координатам диаметра

Поскольку правые части уравнений равны, левые также равны. Приравняв правые части 1-го и 2-го уравнений получим

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Приравняем правые части 2-го и 3-го уравнений:

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

на -1 и сложив результат почленно с уравнением

Уравнение окружности по координатам диаметра

получаем a=-2, b=3. Подставив этот результат в первое уравнение системы:

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Следовательно, уравнение окружности, проходящей через три данные точки —

Уравнение окружности по координатам диаметра

5) Написать уравнение окружности, описанной около треугольника ABC с вершинами в точках A(2; 6), B(1; 5) C(8; -2).

Решение аналогично решению задания 4. В результате получим уравнение

Видео:Уравнение окружности (1)Скачать

Уравнение окружности (1)

Уравнение окружности.

Аналитическая геометрия дает единообразные приемы решения геометрических задач. Для этого все заданные и искомые точки и линии относят к одной системе координат.

В системе координат можно каждую точку охарактеризовать ее координатами, а каждую линию – уравнением с двумя неизвестными, графиком которого эта линия является. Таким образом геометрическая задача сводится к алгебраической, где хорошо отработаны все приемы вычислений.

Окружность есть геометрическое место точек с одним определенным свойством (каждая точка окружности равноудалена от одной точки, называется центром). Уравнение окружности должно отражать это свойство, удовлетворять этому условию.

Геометрическая интерпретация уравнения окружности – это линия окружности.

Если поместить окружность в систему координат, то все точки окружности удовлетворяют одному условию – расстояние от них до центра окружности должно быть одинаковым и равным окружности.

Окружность с центром в точке А и радиусом R поместим в координатную плоскость.

Если координаты центра (а;b), а координаты любой точки окружности (х; у), то уравнение окружности имеет вид:

Уравнение окружности по координатам диаметра

Если квадрат радиуса окружности равен сумме квадратов разностей соответствующих координат любой точки окружности и ее центра, то это уравнение является уравнением окружности в плоской системе координат.

Если центр окружности совпадает с точкой начала координат, то квадрат радиуса окружности равен сумме квадратов координат любой точки окружности. В этом случае уравнение окружности принимает вид:

Уравнение окружности по координатам диаметра
Следовательно, любая геометрическая фигура как геометрическое место точек определяется уравнением, связывающим координаты ее точек. И наоборот, уравнение, связывающее координаты х и у, определяют линию как геометрическое место точек плоскости, координаты которых удовлетворяют данному уравнению.

Видео:начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать

начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.

Примеры решения задач про уравнение окружности

Задача. Составить уравнение заданной окружности

Составьте уравнение окружности с центром в точке O (2;-3) и радиусом 4.

Решение.
Обратимся к формуле уравнения окружности:
R 2 = (x- a ) 2 + (y- b ) 2

Подставим значения в формулу.
Радиус окружности R = 4
Координаты центра окружности (в соответствии с условием)
a = 2
b = -3

Получаем:
(x — 2 ) 2 + (y — ( -3 )) 2 = 4 2
или
(x — 2 ) 2 + (y + 3 ) 2 = 16 .

Задача. Принадлежит ли точка уравнению окружности

Проверить, принадлежит ли точка A(2;3) уравнению окружности (x — 2) 2 + (y + 3) 2 = 16.

Решение.
Если точка принадлежит окружности, то ее координаты удовлетворяют уравнению окружности.
Чтобы проверить, принадлежит ли окружности точка с заданными координатами, подставим координаты точки в уравнение заданной окружности.

В уравнение ( x — 2) 2 + ( y + 3) 2 = 16
подставим, согласно условию, координаты точки А(2;3), то есть
x = 2
y = 3

Проверим истинность полученного равенства
( x — 2) 2 + ( y + 3) 2 = 16
( 2 — 2) 2 + ( 3 + 3) 2 = 16
0 + 36 = 16 равенство неверно

Таким образом, заданная точка не принадлежит заданному уравнению окружности.

Видео:9 класс, 6 урок, Уравнение окружностиСкачать

9 класс, 6 урок, Уравнение окружности

Как записать уравнение окружности по координатам

Видео:Составить уравнение окружности. Геометрия. Задачи по рисункам.Скачать

Составить уравнение окружности. Геометрия. Задачи по рисункам.

Декартовы координаты точек плоскости. Уравнение окружности

Уравнение окружности по координатам диаметраЧисловая ось
Уравнение окружности по координатам диаметраПрямоугольная декартова система координат на плоскости
Уравнение окружности по координатам диаметраФормула для расстояния между двумя точками координатной плоскости
Уравнение окружности по координатам диаметраУравнение окружности на координатной плоскости

Уравнение окружности по координатам диаметра

Видео:9 класс. Геометрия. Декартовы координаты. Уравнение окружности. Уравнение прямой. Урок #6Скачать

9 класс. Геометрия. Декартовы координаты. Уравнение окружности. Уравнение прямой. Урок #6

Числовая ось

Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .

Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .

Видео:№967. Напишите уравнение окружности с центром в начале координат, проходящей через точку В (-1; 3).Скачать

№967. Напишите уравнение окружности с центром в начале координат, проходящей через точку В (-1; 3).

Прямоугольная декартова система координат на плоскости

Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.

Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координатыабсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .

Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .

Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).

Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .

Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.

Видео:№969. Напишите уравнение окружности с диаметром MN, если: а) М (-3; 5),Скачать

№969. Напишите уравнение окружности с диаметром MN, если: а) М (-3; 5),

Формула для расстояния между двумя точками координатной плоскости

Утверждение 1 . Расстояние между двумя точками координатной плоскости

вычисляется по формуле

Уравнение окружности по координатам диаметра

Доказательство . Рассмотрим рисунок 6.

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

| A1A2| 2 =
= ( x2x1) 2 + ( y2y1) 2 .
(1)

Уравнение окружности по координатам диаметра

что и требовалось доказать.

Видео:Составляем уравнение окружностиСкачать

Составляем уравнение окружности

Уравнение окружности на координатной плоскости

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:

Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A0 (x0 ; y0) .

Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид

Видео:УРАВНЕНИЕ ОКРУЖНОСТИСкачать

УРАВНЕНИЕ ОКРУЖНОСТИ

Написать уравнение окружности

Рассмотрим некоторые примеры, в которых требуется написать уравнение окружности по заданным условиям.

1) Написать уравнение окружности с центром в точке K(5;-1) и радиусом 7.

Уравнение окружности с центром в точке (a;b) и радиусом R имеет вид:

Уравнение окружности по координатам диаметра

Так как центр окружности — точка K(5; -1), то a=5, b=-1.Подставляем эти данные в уравнение окружности:

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

2) Напишите уравнение окружности с центром в точке A (8;-3) проходящей через точку C(3;-6).

Так как центр окружности — точка A(8; -3), то a=8, b=-3.

Остаётся найти радиус. Он равен расстоянию от центра окружности до точки, лежащей на окружности, то есть в данном случае радиус окружности равен расстоянию между точками A и C.

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Следовательно, уравнение данной окружности

Уравнение окружности по координатам диаметра

3) Составить уравнение окружности, диаметром которой является отрезок AB, если A (-4; -9), B(6;5).

Центром окружности является середина диаметра, в нашем случае — середина отрезка AB. По формулам координат середины отрезка

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Центр окружности — точка O(1;-2). Значит, a=1, b=-2.

Радиус можно найти как расстояние от центра окружности до любой из точек A или B окружности. Например,

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Таким образом, уравнение окружности с диаметром AB —

Уравнение окружности по координатам диаметра

4) Написать уравнение окружности, проходящей через три точки: A(4; -5), B(8; 3) C(-8; 11).

Так как точки A, B C принадлежат окружности, то их координаты удовлетворяют уравнению окружности. Подставив координаты точек в уравнение

Уравнение окружности по координатам диаметра

получаем систему уравнений:

Уравнение окружности по координатам диаметра

Поскольку правые части уравнений равны, левые также равны. Приравняв правые части 1-го и 2-го уравнений получим

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Приравняем правые части 2-го и 3-го уравнений:

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

на -1 и сложив результат почленно с уравнением

Уравнение окружности по координатам диаметра

получаем a=-2, b=3. Подставив этот результат в первое уравнение системы:

Уравнение окружности по координатам диаметра

Уравнение окружности по координатам диаметра

Следовательно, уравнение окружности, проходящей через три данные точки —

Уравнение окружности по координатам диаметра

5) Написать уравнение окружности, описанной около треугольника ABC с вершинами в точках A(2; 6), B(1; 5) C(8; -2).

Решение аналогично решению задания 4. В результате получим уравнение

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Уравнение окружности.

Окружностью принято обозначать множество всех точек плоскости, равноудаленных от одной точки – от центра.

В формулировке окружности упоминается расстояние между точкой окружности и центром.

Формула расстояния между двумя точками М11; у1) и М22; у2) имеет вид:

Уравнение окружности по координатам диаметра,

Уравнение окружности по координатам диаметра

Применив формулу и формулировку окружности, получаем уравнение окружности с центром в точке С (х0; у0) и радиусом r.

Уравнение окружности по координатам диаметра

Отметим произвольную точку М(х; у) на этой окружности.

Уравнение окружности по координатам диаметра.

Предположим, что М принадлежит окружности с центром С и радиусом r, то МС = r.

Следовательно, МС 2 = r 2 и координаты точки М удовлетворяют уравнению окружности (х – х0 ) 2 +(у – у0 ) 2 = r 2 .

Из выше изложенного делаем вывод, что уравнение окружности с центром в точке С (х0; у0) и радиусом r имеет вид:

В случае когда центр окружности совпадает с началом координат, то получаем частный случай уравнения окружности с центром в точке О (0;0):

🎬 Видео

Уравнение окружностиСкачать

Уравнение окружности

Уравнение окружности ? Окружность в системе координат / Функция окружностиСкачать

Уравнение окружности ? Окружность в системе координат / Функция окружности

Уравнение окружности. Практика. Урок 7. Геометрия 9 классСкачать

Уравнение окружности. Практика. Урок 7. Геометрия 9 класс

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Математика Без Ху!ни. Полярные координаты. Построение графика функции.Скачать

Математика Без Ху!ни. Полярные координаты. Построение графика функции.

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямой

8 класс. ОГЭ. Найти диаметр окружностиСкачать

8 класс. ОГЭ. Найти диаметр окружности

№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).Скачать

№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).

ПРОСТОЙ СЕКРЕТ ДЛЯ НАЧИНАЮЩИХ! Реши алгебру за 12 минут — Уравнение ОкружностиСкачать

ПРОСТОЙ СЕКРЕТ ДЛЯ НАЧИНАЮЩИХ! Реши алгебру за 12 минут — Уравнение Окружности

КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 класс
Поделиться или сохранить к себе: