Видео:Как написать уравнения касательной и нормали | МатематикаСкачать
Как получить уравнение касательной и уравнение нормали
Касательная — это прямая, которая касается графика функции в одной точке и все точки которой находятся на наименьшем расстоянии от графика функции. Поэтому касательная проходит касательно графика функции под определённым углом и не могут проходить через точку касания несколько касательных под разными углами. Уравнения касательной и уравнения нормали к графику функции составляются с помощью производной.
Уравнение касательной выводится из уравнения прямой.
Выведем уравнение касательной, а затем — уравнение нормали к графику функции.
В нём k — угловой коэффициент.
Отсюда получаем следующую запись:
Значение производной f ‘(x 0 ) функции y = f(x) в точке x 0 равно угловому коэффициенту k = tgφ касательной к графику функции, проведённой через точку M 0 (x 0 , y 0 ) , где y 0 = f(x 0 ) . В этом состоит геометрический смысл производной.
Таким образом, можем заменить k на f ‘(x 0 ) и получить следующее уравнение касательной к графику функции:
В задачах на составление уравнения касательной к графику функции (а мы уже скоро к ним перейдём) требуется привести получившееся по вышеприведённой формуле уравнение к уравнению прямой в общем виде. Для этого нужно все буквы и числа перенести в левую часть уравнения, а в правой части оставить ноль.
Теперь об уравнении нормали. Нормаль — это прямая, проходящая через точку касания к графику функции перпендикулярно касательной. Уравнение нормали:
Переходим к примерам. Для решений потребуется таблица производных (откроется в новом окне).
Для разминки первый же пример прелагается решить самостоятельно, а затем посмотреть решение. Есть все основания надеяться, что для наших читателей эта задача не будет «холодным душем».
Пример 0. Составить уравнение касательной и уравнение нормали к графику функции в точке M (1, 1) .
Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать
Решаем задачи вместе
Пример 1. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
Найдём производную функции (функция представляет собой многочлен и её производную можно найти по формулам 1, 2 и 3 в таблице производных):
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Теперь у нас есть всё, что требуется подставить в приведённую в теоретической справке запись, чтобы получить уравнение касательной. Получаем
В этом примере нам повезло: угловой коэффициент оказался равным нулю, поэтому отдельно приводить уравнение к общему виду не понадобилось. Теперь можем составить и уравнение нормали:
На рисунке ниже: график функции бордового цвета, касательная зелёного цвета, нормаль оранжевого цвета.
Следующий пример — тоже не сложный: функция, как и в предыдущем, также представляет собой многочлен, но угловой коэффициен не будет равен нулю, поэтому добавится ещё один шаг — приведение уравнения к общему виду.
Пример 2. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
Найдём производную функции:
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Подставляем все полученные данные в «формулу-болванку» и получаем уравнение касательной:
Приводим уравнение к общему виду (все буквы и числа, отличные от нуля, собираем в левой части, а в правой оставляем ноль):
Составляем уравнение нормали:
Пример 3. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Находим уравнение касательной:
Перед тем, как привести уравнение к общему виду, нужно его немного «причесать»: умножить почленно на 4. Делаем это и приводим уравнение к общему виду:
Составляем уравнение нормали:
Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать
Решить задачи самостоятельно, а затем посмотреть решения
Пример 4. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Пример 5. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Видео:Уравнения касательной и нормали к графику функции (часть 1). Высшая математика.Скачать
Снова решаем задачи вместе
Пример 6. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Получаем уравнение касательной:
Приводим уравнение к общему виду:
Составляем уравнение нормали:
Распространённая ошибка при составлении уравнений касательной и нормали — не заметить, что функция, данная в примере, — сложная и вычислять её производную как производную простой функции. Следующие примеры — уже со сложными функциями (соответствующий урок откроется в новом окне).
Пример 7. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
Внимание! Данная функция — сложная, так как аргумент тангенса ( 2x ) сам является функцией. Поэтому найдём производную функции как производную сложной функции (потребуется формула 9 в таблице производных сложной функции):
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Получаем уравнение касательной:
Приводим уравнение к общему виду:
Составляем уравнение нормали:
Пример 8. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
Как и в предыдущем примере, данная функция — сложная, так как степень () сама является функцией. Поэтому найдём производную функции как производную сложной функции (используя формулу 1 в таблице производных сложной функции):
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Видео:Математика без Ху!ни. Уравнение касательной.Скачать
Вывод уравнения нормали к графику функции
Вы будете перенаправлены на Автор24
Нормаль — это прямая, которая образует с касательной к графику функции угол в $90°$.
Рисунок 1. Нормальный перпендикуляр к графику касательной. Автор24 — интернет-биржа студенческих работ
В связи с тем, что нормаль перпендикулярна к касательной, её угловой коэффициент будет величиной, обратной к угловому коэффициенту касательной:
Пользуясь полученным выводом, запишем уравнение нормали к графику функции:
$y – y_0 = — frac cdot (x – x_0) left(1right) $, здесь $x_0$ и $y_0$ — координаты точки для которой строится искомая линия, при этом производная в этой точке $f’(x_0) ≠ 0$.
Порядок действий при поиске уравнения нормальной прямой если задана координата $x_0$:
- Вычисляется, чему равен нулевой игрек $y(x_0)$ для функции.
- Затем нужно определить производную.
- Нужно высчитать затем, чему равен $f’(x)$ в точке $x_0$, найденное значение — коэффициент касательной.
- Все найденные значения подставляются в формулу $(1)$.
Напомним также как выглядит само уравнение касательной:
$y – y_0 = f’(x_0) cdot (x – x_0)$.
Найдите уравнение нормали для функции $y=x^2$ в точке $x_0=2$.
Решение:
Производная данной функции составит $y’(x) = 2x$, затем найдём, чему равен наш подопытный кролик-функция в заданной точке $y_0= x^2 = 2^2 = 4$.
Теперь нужно высчитать производную функции в точке $x_0$: $y’(2) = 2 x = 2 cdot 2= 4$.
Все полученные значения расставляем по своим местам в формулу $(1)$:
Уравнение нормали найдено.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 07.05.2021
Видео:Уравнения касательной и нормали к кривой, заданной в неявном видеСкачать
Уравнение нормали
Онлайн калькулятор для решения уравнение нормали к кривой заданной функцией. Касательная прямая к графику – прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка. Прямая, проходящая через точку касания, перпендикулярно касательной, называется нормалью к кривой.
Данный онлайн калькулятор позволяет построить график функции и нормали в системе координат.
Основные функции |
- : x^a
- : Sqrt[x]
- : x^(1/n)
- : a^x
- : Log[a, x]
- : Log[x]
- : cos[x] или Cos[x]
- : sin[x] или Sin[x]
- : tan[x] или Tan[x]
- : cot[x] или Cot[x]
- : sec[x] или Sec[x]
- : csc[x] или Csc[x]
- : ArcCos[x]
- : ArcSin[x]
- : ArcTan[x]
- : ArcCot[x]
- : ArcSec[x]
- : ArcCsc[x]
- : cosh[x] или Cosh[x]
- : sinh[x] или Sinh[x]
- : tanh[x] или Tanh[x]
- : coth[x] или Coth[x]
- : sech[x] или Sech[x]
- : csch[x] или Csch[е]
- : ArcCosh[x]
- : ArcSinh[x]
- : ArcTanh[x]
- : ArcCoth[x]
- : ArcSech[x]
- : ArcCsch[x]
- [19.67] =19: integral part of (19.67) — выделяет целую часть числа (integerPart)
Предложения и пожелания пишите на [email protected]
Поделитесь этим калькулятором на форуме или в сети!
📽️ Видео
Касательная к графику функции в точке. 10 класс.Скачать
3. Геометрический смысл производной. Уравнение касательной и нормали.Скачать
Уравнение касательнойСкачать
Задача: Касательная и нормаль к графику функцииСкачать
Геометрический смысл производной. Уравнение касательнойСкачать
Уравнение касательной в точке. Практическая часть. 2ч. 10 класс.Скачать
УРАВНЕНИЕ КАСАТЕЛЬНОЙ И НОРМАЛИСкачать
14.1. Касательная к параметрически заданной функцииСкачать
Нахождение уравнения касательной к графику функции в точке X0Скачать
Математика Без Ху!ни. Касательная плоскость и нормаль к поверхности.Скачать
Решение, составить уравнение нормали к кривой y=(x3+2)/(x3−2) в точке с абсциссой x0=2 пример 3Скачать
Как записать уравнение нормали к кривой в точке экстремумаСкачать
Математический анализ, 33 урок, Касательная плоскость и нормаль к поверхностиСкачать
Написать уравнение нормали. СтудентамСкачать