Уравнение нормали к графику функции двух переменных

Касательная плоскость и нормаль к поверхности

Касательной плоскостью к поверхности σ в её точке М0 называется плоскость, в которой лежат касательные ко всем кривым, проведённым на поверхности σ через точку М0.
Уравнение касательной плоскости к поверхности, заданной уравнением z = f(x,y) , в точке M0(x0,y0,z0) имеет вид:

Уравнение нормали к графику функции двух переменных

Пример №1 . Поверхность задана уравнением x 3 +5y . Найти уравнение касательной плоскости к поверхности в точке M0(0;1).
Решение. Запишем уравнения касательной в общем виде: z — z0 = f’x(x0,y0,z0)(x — x0) + f’y(x0,y0,z0)(y — y0)
По условию задачи x0 = 0 , y0 = 1 , тогда z0 = 5
Найдем частные производные функции z = x^3+5*y :
f’x(x,y) = (x 3 +5•y)’x = 3•x 2
f’x(x,y) = (x 3 +5•y)’y = 5
В точке М0(0,1) значения частных производных:
f’x(0;1) = 0
f’y(0;1) = 5
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М0: z — 5 = 0(x — 0) + 5(y — 1) или -5•y+z = 0

Пример №2 . Поверхность задана неявным образом y 2 -1/2*x 3 -8z. Найти уравнение касательной плоскости к поверхности в точке M0(1;0;1).
Решение. Находим частные производные функции. Поскольку функция задана в неявном виде, то производные ищем по формуле:
Уравнение нормали к графику функции двух переменных
Для нашей функции:
Уравнение нормали к графику функции двух переменных
Тогда:
Уравнение нормали к графику функции двух переменных
В точке М0(1,0,1) значения частных производных:
f’x(1;0;1) = -3 /16
f’y(1;0;1) = 0
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М0: z — 1 = -3 /16(x — 1) + 0(y — 0) или 3 /16•x+z- 19 /16 = 0

Пример . Поверхность σ задана уравнением z= y/x + xy – 5x 3 . Найти уравнение касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.
Найдем частные производные функции z= f(x, y) = y/x + xy – 5x 3 :
fx’(x, y) = (y/x + xy – 5x 3 )’x = – y/x 2 + y – 15x 2 ;
fy’ (x, y) = (y/x + xy – 5x 3 )’y = 1/x + x.
Точка М0(x0, y0, z0) принадлежит поверхности σ, поэтому можно вычислить z0, подставив заданные x0 = –1 и y0 = 2 в уравнение поверхности:

Пример №1 . Дана функция z=f(x,y) и две точки А(х0, y0) и В(х1,y1). Требуется: 1) вычислить значение z1 функции в точке В; 2) вычислить приближенное значение z1 функции в точке В исходя из значения z0 функции в точке А, заменив приращение функции при переходе от точки А к точке В дифференциалом; 3) составить уравнение касательной плоскости к поверхности z = f(x,y) в точке C(x0,y0,z0).
Решение.
Запишем уравнения касательной в общем виде:
z — z0 = f’x(x0,y0,z0)(x — x0) + f’y(x0,y0,z0)(y — y0)
По условию задачи x0 = 1, y0 = 2, тогда z0 = 25
Найдем частные производные функции z = f(x,y)x^2+3*x*y*+y^2:
f’x(x,y) = (x 2 +3•x•y•+y 2 )’x = 2•x+3•y 3
f’x(x,y) = (x 2 +3•x•y•+y 2 )’y = 9•x•y 2
В точке М0(1,2) значения частных производных:
f’x(1;2) = 26
f’y(1;2) = 36
Пользуясь формулой, получаем уравнение касательной плоскости к поверхности в точке М0:
z — 25 = 26(x — 1) + 36(y — 2)
или
-26•x-36•y+z+73 = 0

Пример №2 . Написать уравнения касательной плоскости и нормали к эллиптическому параболоиду z = 2x 2 + y 2 в точке (1;-1;3).
Скачать решение

Видео:УРАВНЕНИЕ КАСАТЕЛЬНОЙ И НОРМАЛИ ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХСкачать

УРАВНЕНИЕ КАСАТЕЛЬНОЙ И НОРМАЛИ ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ

Экстремум функции двух переменных. Касательная плоскость и нормаль к поверхности

Касательная плоскость и нормаль к поверхности. Экстремум функции двух переменных

ПЛАН

Касательная плоскость и нормаль к поверхности.

Экстремум функции двух переменных.

Необходимые и достаточные условия существования

экстремума функции z = f(х, у).

Касательная плоскость и нормаль к поверхности

Касательной плоскостью к поверхности S в её точке М0 называется плоскость, в которой лежат касательные ко всем кривым, проведённым на поверхности S через точку М0.

Уравнение касательной плоскости к поверхности, заданной равнением z = f(x,y) , в точке M0(x0,y0,z0) имеет вид:


Вектор Уравнение нормали к графику функции двух переменныхназывается вектором нормали к поверхности S в точке М0. Вектор нормали перпендикулярен касательной плоскости.

Нормалью к поверхности S в точке М0 называется прямая, проходящая через эту точку и имеющая направление вектора N. Канонические уравнения нормали к поверхности, заданной уравнением z = f(x,y) , в точке M0(x0,y0,z0), где z0 = f(x0,y0), имеют вид:

Уравнение нормали к графику функции двух переменных(2)

Пусть поверхность Уравнение нормали к графику функции двух переменныхзадана уравнением

Уравнение нормали к графику функции двух переменных(3)

в неявном виде. Будем считать, что Уравнение нормали к графику функции двух переменныхи в некоторой окрестности точки Уравнение нормали к графику функции двух переменныхфункция Уравнение нормали к графику функции двух переменныхимеет непрерывные частные производные, одновременно не равные нулю. Тогда

Уравнение нормали к графику функции двух переменных(4)

Условимся писать Уравнение нормали к графику функции двух переменныхвместо Уравнение нормали к графику функции двух переменных.

Уравнение касательной плоскости к Уравнение нормали к графику функции двух переменныхв точке Уравнение нормали к графику функции двух переменныхзапишется так:

Уравнение нормали к графику функции двух переменных, (5)

а уравнение нормали к Уравнение нормали к графику функции двух переменныхв точке Уравнение нормали к графику функции двух переменных— так:

Уравнение нормали к графику функции двух переменных. (6)

Пример 1. Уравнение

Уравнение нормали к графику функции двух переменных(7)

определяет круговой конус с вершиной в начале координат и осью, совпадающей с осью Уравнение нормали к графику функции двух переменных(рис. 1).

Уравнение нормали к графику функции двух переменных

Левая часть уравнения (7) имеет частные производные

Уравнение нормали к графику функции двух переменных,

одновременно не равные нулю, если точка Уравнение нормали к графику функции двух переменных. В любой такой точке, которую обозначим через Уравнение нормали к графику функции двух переменных, касательная плоскость определяется уравнением

Уравнение нормали к графику функции двух переменных.

Нормаль к Уравнение нормали к графику функции двух переменныхв точке Уравнение нормали к графику функции двух переменных, т. е. прямая, проходящая через эту точку, перепендикулярно к касательной плоскости, очевидно, имеет уравнение

Уравнение нормали к графику функции двух переменных.

Пример 2. Найти уравнение касательной плоскости и уравнение нормали к поверхности

Уравнение нормали к графику функции двух переменныхв точке Уравнение нормали к графику функции двух переменных

Решение: Имеем

Уравнение нормали к графику функции двух переменных

Тогда, согласно (1), уравнение касательной плоскости к данной поверхности в указанной точке будет иметь вид: z — 6 = — 4(x + 1) + 2(y — 2), то есть

4x — 2y + z + 2 = 0, а уравнение нормали, согласно (2):

Уравнение нормали к графику функции двух переменных

Пример 3. Найти уравнение касательной плоскости и нормали к конусу

Уравнение нормали к графику функции двух переменных

Решение. Имеем

Уравнение нормали к графику функции двух переменных

Уравнение нормали к графику функции двух переменных

Уравнение касательной плоскости запишем в виде

Уравнение нормали к графику функции двух переменныхили Уравнение нормали к графику функции двух переменных.

Уравнение нормали имеет вид Уравнение нормали к графику функции двух переменных

Экстремум функции двух переменных

Пусть функция z = f(х, у) определена в некоторой области D и точка М0(х0, у0) ÎD (внутренняя точка области).

Определение. Точка М0(х0, у0) называется точкой максимума(минимума) функции z = f(х, у), если в достаточно малой d-окрестности точки М0 для каждой точки М(х, у) отличной от точки М0(х0, у0), выполняется неравенство:

Уравнение нормали к графику функции двух переменныхНа рис.1 М0 – точка максимума, а

точка М1 – точка минимума функ-

ции z = f(х, у).

Значение функции в точке макси-

мума (минимума) называется максимумом (минимумом) функции. Максимум и минимум функции

называется её экстремумом.

Замечание. Согласно определению, точка экстремума функции является внутренней точкой области определения функции. Максимум и минимум имеют локальный (местный) характер: значения функции в точке М0(х0, у0) сравниваются с её значениями в точках достаточно близких к М0(х0, у0). В области D функция может иметь несколько экстремумов или не иметь ни одного.

Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать

10 класс, 43 урок, Уравнение касательной к графику функции

Касательная и нормаль к графику функции

Уравнение нормали к графику функции двух переменных

Видео:Как написать уравнения касательной и нормали | МатематикаСкачать

Как написать уравнения касательной и нормали | Математика

Основные формулы

Пусть на некотором интервале X задана функция . Нас интересуют геометрические характеристики графика этой функции в некоторой заданной точке при значении аргумента , где . Пусть функция имеет в производную, которую будем обозначать как . Тогда через точку мы можем провести касательную к графику. Тангенс угла α между осью абсцисс x и касательной равен производной функции в точке :
(1) .
А само уравнение касательной имеет вид:
(2) .
В аналитической геометрии тангенс угла между прямой и осью абсцисс называют угловым коэффициентом прямой. Таким образом производная равна угловому коэффициенту касательной в .
См. Геометрический смысл производной

Прямая, перпендикулярная касательной, проведенной через точку , называется нормалью к графику функции в этой точке. Уравнение нормали имеет вид:
(3) .
См. Уравнение прямой с угловым коэффициентом ⇓

Пусть две кривые и пересекаются в точке . Тогда угол φ между касательными к этим кривым в точке называется углом между кривыми. Он определяется по формуле:
(4) , где .
Отсюда .
при .
Вывод формулы ⇓

Видео:Как составить уравнение касательной и нормали к графику функцииСкачать

Как составить уравнение касательной и нормали к графику функции

Определения

Здесь мы приводим определения, которые встречаются в литературе, и имеют отношение к касательной и нормали. Вывод формул приводится в примере 1 ⇓.

Определение касательной приводится здесь. Уравнение касательной:
.

Уравнение нормали к графику функции двух переменныхКасательная TM0, нормаль M0N, подкасательная TP, поднормаль PN. Нормалью к графику функции в точке называется прямая, перпендикулярная касательной, проведенной через эту точку. Уравнение нормали:
.
Отрезком касательной называют отрезок между точкой пересечения касательной с осью абсцисс и точкой .
.
Отрезком нормали называют отрезок между точкой пересечения нормали с осью абсцисс и точкой .
.
Подкасательной называют отрезок между точкой пересечения касательной с осью абсцисс и проекции точки на эту ось.
.
Поднормалью называют отрезок между точкой пересечения нормали с осью абсцисс и проекции точки на эту ось.
.
Углом между кривыми в точке их пересечения называют угол между касательными к кривым, проведенных через точку .

Видео:Математический анализ, 33 урок, Касательная плоскость и нормаль к поверхностиСкачать

Математический анализ, 33 урок, Касательная плоскость и нормаль к поверхности

Полезные формулы из аналитической геометрии

Далее приводятся некоторые сведения из аналитической геометрии, которые могут оказаться полезными при решении задач.

Уравнение прямой, проходящей через две заданные точки и :
.
Здесь – направляющий вектор прямой.

Умножив это уравнение на , получим уравнение прямой в другом виде:
.
Здесь – вектор нормали прямой. Тогда само уравнение означает равенство нулю скалярного произведения векторов и .

Уравнение прямой, проходящей через точку параллельно вектору имеет вид:
.
Вектор называется направляющим вектором данной прямой. Это уравнение можно написать в параметрическом виде, введя параметр t :

Уравнение прямой, проходящей через точку перпендикулярно вектору имеет вид:
.
Вектор называется вектором нормали данной прямой.

Уравнение прямой с угловым коэффициентом k , проходящей через точку :
.
Угол α между прямой и осью x определяется по формуле:
.
Если две прямые взаимно перпендикулярны, то их угловые коэффициенты и связаны соотношением:
.

Уравнение прямой в отрезках, пересекающей оси координат в точках :
.

Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

Примеры решения задач

Все примеры Ниже рассмотрены примеры решений следующих задач.
1. Найти уравнения касательной и нормали к кривой в точке . Найти длины отрезков касательной, нормали, подкасательной и поднормали. Решение ⇓
2. Составить уравнения касательной и нормали к циссоиде, заданной в параметрическом виде
, проведенных в точке . Решение ⇓
3. Заданной в неявном виде . Решение ⇓
4. Найти угол между кривыми и Решение ⇓

Пример 1

Составить уравнения касательной и нормали к кривой в точке . Найти длины отрезков касательной, нормали, подкасательной и поднормали.

Находим значение функции при :
.

Находим производную:
.
Находим производную в точке :
;
.

Находим уравнение касательной по формуле (2):
;
;
;
– уравнение касательной.
Строим касательную на графике. Поскольку касательная – это прямая, то нам нужно знать положения двух ее точек, и провести через них прямую.
При ;
при .
Проводим касательную через точки и .

Уравнение нормали к графику функции двух переменныхКасательная и нормаль к графику функции y=x 2 в точке M0(1;1).

Найдем угол α между касательной и осью абсцисс по формуле (1):
.
Подставляем :
;
.

Находим уравнение нормали по формуле (3):
;
;
;
;
;
– уравнение нормали.
Строим нормаль по двум точкам.
При ;
при .
Проводим нормаль через точки и .

Находим длину отрезка касательной . Из прямоугольника имеем:
.
Поясним использованную формулу. Поскольку , то . Тогда
.
Подставляем :
.

Находим длину отрезка подкасательной . Из прямоугольника имеем:
.
Подставляем :
.

Находим длину отрезка нормали . Поскольку и , то треугольники и подобны. Тогда . Из прямоугольника имеем:
.
Подставляем :
.

Находим длину отрезка поднормали . Из прямоугольника имеем:
.

Примечание.
При выводе формул, можно сначала определить длины отрезков подкасательной и поднормали, а затем из прямоугольников, по теореме Пифагора, найти длины отрезков касательной и нормали:
;
.

Уравнение касательной: ; уравнение нормали: ;
длина отрезка касательной: ; длина отрезка нормали: ; длина подкасательной: ; длина поднормали: .

Пример 2

Составить уравнения касательной и нормали к циссоиде, заданной в параметрическом виде , проведенных в точке .

Находим значения переменных при .
;
.
Обозначим эту точку как .

Находим производные переменных x и y по параметру t .
;
;
;
;
.

Подставляя , находим производную y по x в точке .
.

Уравнение нормали к графику функции двух переменныхКасательная и нормаль к циссоиде в точке (2;2).

Применяя формулу (2), находим уравнение касательной к циссоиде, проходящей через точку .
;
;
;
.

Применяя формулу (3), находим уравнение нормали к циссоиде в точке .
;
;
;
.

Уравнение касательной: .
Уравнение нормали: .

Пример 3

Составить уравнения касательной и нормали к циссоиде, заданной в неявном виде:
(П3) ,
проведенных в точке .

Для получения уравнение касательной и нормали, нам нужно знать значение производной функции в заданной точке. Функция (П3) задана неявно. Поэтому применяем правило дифференцирования неявной функции. Для этого дифференцируем (П3) по x , считая, что y является функцией от x .
;
;
;
.
Отсюда
.

Находим производную в заданной точке, подставляя .
;
.

Находим уравнение касательной по формуле (2).
;
;
;
.

Находим уравнение нормали по формуле (3).
;
;
;
.

Касательная и нормаль к циссоиде изображены на рисунке ⇑.

Уравнение касательной: .
Уравнение нормали: .

Пример 4

Найти угол между кривыми и .

Найдем множество точек пересечения кривых, решая систему уравнений.

Левые части равны. Приравниваем правые части и выполняем преобразования.
;
(П4) .
Поскольку функция строго монотонна, то уравнение (П4) имеет один корень:
.
При . Кривые пересекаются в единственной точке . Обозначим ее как , где .

Введем обозначения для функций, с помощью которых заданы кривые:
.
Найдем их производные.
;
.
Найдем значения производных в точке , подставляя .
;
.

Ниже приводятся графики функций ⇓ и вывод формулы угла между кривыми.

Видео:Математика без Ху!ни. Уравнение касательной.Скачать

Математика без Ху!ни. Уравнение касательной.

Вывод формулы для угла между кривыми

Изложим вывод формулы (4). Для иллюстрации используем только что рассмотренный пример ⇑, в котором .

Рассмотрим две кривые, заданные уравнениями и , и пересекающиеся в некоторой точке . Докажем, что угол между кривыми определяется по формуле (4):
, где .
Или ;
при .

Проведем касательные к графикам функций в точке . Углы, которые образуют касательные с осью x обозначим как и . За положительное направление выберем направление против часовой стрелки. На рисунке . Считаем, что значения углов принадлежат интервалам . Согласно геометрическому смыслу производной,
.

В аналитической геометрии принято, что угол φ между прямыми равен наименьшему значению угла между ними.
Если , то ;
если , то .
Таким образом величина угла φ между касательными может находиться только в пределах
(Ф2) .

На рисунке угол между лучами и больше 90°, а между лучами и – меньше. Поэтому .

При доказательстве мы будем использовать соотношение:
, которое выполняется при .
Тогда в силу (Ф2),
.
Случай мы рассмотрим отдельно.

1) Пусть .
Тогда угол между прямыми . И мы имеем:
.
В конце мы подставили (Ф1).

2) Пусть .
Тогда ; . Поэтому . Это можно записать так: . Также применим формулу: . В результате получаем:

.

Этот случай изображен на рисунке ⇑.

3) Пусть .
При этом касательные взаимно перпендикулярны, . В этом случае , что указано в (4).

Использованная литература:
П.Е. Данько, А.Г. Попов, Т.Я.Кожевникова. Высшая математика в упражнениях и задачах. Часть 1. Москва, Высшая школа, 1980.
Л.Д. Кудрявцев, А.Д. Кутасов, В.И. Чехлов, М.И. Шабунин. Сборник задач по математическому анализу. Том 1. Москва, Физматлит, 2003.

Автор: Олег Одинцов . Опубликовано: 30-06-2021

💥 Видео

Математика Без Ху!ни. Касательная плоскость и нормаль к поверхности.Скачать

Математика Без Ху!ни. Касательная плоскость и нормаль к поверхности.

Касательная к графику функции в точке. 10 класс.Скачать

Касательная к графику функции в точке. 10 класс.

Уравнение касательной и нормали к графику функцииСкачать

Уравнение касательной и нормали к графику функции

Уравнения касательной и нормали к графику функции (часть 1). Высшая математика.Скачать

Уравнения касательной и нормали к графику функции (часть 1). Высшая математика.

3. Геометрический смысл производной. Уравнение касательной и нормали.Скачать

3. Геометрический смысл производной. Уравнение касательной и нормали.

Уравнения касательной и нормали к кривой, заданной в неявном видеСкачать

Уравнения касательной и нормали к кривой, заданной в неявном виде

Уравнения касательной и нормали к кривойСкачать

Уравнения касательной и нормали к кривой

Уравнение касательнойСкачать

Уравнение касательной

Уравнение касательной в точке. Практическая часть. 2ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 2ч. 10 класс.

14.1. Касательная к параметрически заданной функцииСкачать

14.1. Касательная к параметрически заданной функции

Уравнение нормали к кривой.Скачать

Уравнение нормали к кривой.

Геометрический смысл производной. Уравнение касательнойСкачать

Геометрический смысл производной. Уравнение касательной

Уравнения касательной плоскости и нормали к поверхностиСкачать

Уравнения касательной плоскости и нормали к поверхности
Поделиться или сохранить к себе: