Видео:Уравнения касательной и нормали к кривой, заданной в неявном видеСкачать
Как получить уравнение касательной и уравнение нормали
Касательная — это прямая, которая касается графика функции в одной точке и все точки которой находятся на наименьшем расстоянии от графика функции. Поэтому касательная проходит касательно графика функции под определённым углом и не могут проходить через точку касания несколько касательных под разными углами. Уравнения касательной и уравнения нормали к графику функции составляются с помощью производной.
Уравнение касательной выводится из уравнения прямой.
Выведем уравнение касательной, а затем — уравнение нормали к графику функции.
В нём k — угловой коэффициент.
Отсюда получаем следующую запись:
Значение производной f ‘(x 0 ) функции y = f(x) в точке x 0 равно угловому коэффициенту k = tgφ касательной к графику функции, проведённой через точку M 0 (x 0 , y 0 ) , где y 0 = f(x 0 ) . В этом состоит геометрический смысл производной.
Таким образом, можем заменить k на f ‘(x 0 ) и получить следующее уравнение касательной к графику функции:
В задачах на составление уравнения касательной к графику функции (а мы уже скоро к ним перейдём) требуется привести получившееся по вышеприведённой формуле уравнение к уравнению прямой в общем виде. Для этого нужно все буквы и числа перенести в левую часть уравнения, а в правой части оставить ноль.
Теперь об уравнении нормали. Нормаль — это прямая, проходящая через точку касания к графику функции перпендикулярно касательной. Уравнение нормали:
Переходим к примерам. Для решений потребуется таблица производных (откроется в новом окне).
Для разминки первый же пример прелагается решить самостоятельно, а затем посмотреть решение. Есть все основания надеяться, что для наших читателей эта задача не будет «холодным душем».
Пример 0. Составить уравнение касательной и уравнение нормали к графику функции в точке M (1, 1) .
Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать
Решаем задачи вместе
Пример 1. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
Найдём производную функции (функция представляет собой многочлен и её производную можно найти по формулам 1, 2 и 3 в таблице производных):
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Теперь у нас есть всё, что требуется подставить в приведённую в теоретической справке запись, чтобы получить уравнение касательной. Получаем
В этом примере нам повезло: угловой коэффициент оказался равным нулю, поэтому отдельно приводить уравнение к общему виду не понадобилось. Теперь можем составить и уравнение нормали:
На рисунке ниже: график функции бордового цвета, касательная зелёного цвета, нормаль оранжевого цвета.
Следующий пример — тоже не сложный: функция, как и в предыдущем, также представляет собой многочлен, но угловой коэффициен не будет равен нулю, поэтому добавится ещё один шаг — приведение уравнения к общему виду.
Пример 2. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
Найдём производную функции:
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Подставляем все полученные данные в «формулу-болванку» и получаем уравнение касательной:
Приводим уравнение к общему виду (все буквы и числа, отличные от нуля, собираем в левой части, а в правой оставляем ноль):
Составляем уравнение нормали:
Пример 3. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Находим уравнение касательной:
Перед тем, как привести уравнение к общему виду, нужно его немного «причесать»: умножить почленно на 4. Делаем это и приводим уравнение к общему виду:
Составляем уравнение нормали:
Видео:Как написать уравнения касательной и нормали | МатематикаСкачать
Решить задачи самостоятельно, а затем посмотреть решения
Пример 4. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Пример 5. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Видео:Решение, составить уравнение нормали к данной кривой y=(4x−x2)/4 в точке с абсциссой x0 = 2 пример 1Скачать
Снова решаем задачи вместе
Пример 6. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Получаем уравнение касательной:
Приводим уравнение к общему виду:
Составляем уравнение нормали:
Распространённая ошибка при составлении уравнений касательной и нормали — не заметить, что функция, данная в примере, — сложная и вычислять её производную как производную простой функции. Следующие примеры — уже со сложными функциями (соответствующий урок откроется в новом окне).
Пример 7. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
Внимание! Данная функция — сложная, так как аргумент тангенса ( 2x ) сам является функцией. Поэтому найдём производную функции как производную сложной функции (потребуется формула 9 в таблице производных сложной функции):
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Получаем уравнение касательной:
Приводим уравнение к общему виду:
Составляем уравнение нормали:
Пример 8. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
Как и в предыдущем примере, данная функция — сложная, так как степень () сама является функцией. Поэтому найдём производную функции как производную сложной функции (используя формулу 1 в таблице производных сложной функции):
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать
Геометрическое применение производной: уравнения касательной и нормали, угол между кривыми
Видео:3. Геометрический смысл производной. Уравнение касательной и нормали.Скачать
Касательная и нормаль к кривой
Касательная прямая — прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.
Прямая, проходящая через точку касания, перпендикулярно касательной, называется нормалью к кривой.
Если кривая определена уравнением $y=f(x)$, то уравнение касательной к ней в точке $M(x_0;y_0)$ имеет вид:
а уравнение нормали:
Задание. Написать уравнение касательной и нормали к кривой $y=x^2-3x+4$ в точке с абсциссой $x_0=0$.
Решение. Находим значение функции в заданной точке:
Далее вычислим значение производной функции в точке $x_0=0$:
а тогда уравнение касательной запишется в виде:
или после упрощения:
$$y-4=-frac(x-0) Rightarrow x-3 y+12=0$$
Ответ. Уравнение касательной: $3x+y-4=0$
Уравнение нормали: $x-3y+12=0$
Видео:Решение, составить уравнение нормали к кривой y=(x3+2)/(x3−2) в точке с абсциссой x0=2 пример 3Скачать
Угол между кривыми
Углом между кривыми на плоскости в их общей точке $M(x_0;y_0)$ называется наименьший из двух возможных углов между касательными к этим кривым в данной точке. Если уравнения касательных, проведенных к кривым $y=f_1(x)$ и $y=f_2(x)$, соответственно $y=k_x+b_$ и $y=k_x+b_2$, то тангенс угла между кривыми определяется соотношением:
Задание. Найти тангенс угла между кривыми $y=x^2-1$ и $y=x^3-1$ в точке их пересечения, которая имеет большую абсциссу.
Решение. Вначале найдем точки пересечения графиков заданных функций, для этого совместно разрешим уравнение заданных кривых:
Таким образом, искомая точка $x=1$.
Далее находим производные заданных функций в найденной точке:
Итак, искомый тангенс:
Ответ. $operatorname phi=frac$
Видео:Математика без Ху!ни. Уравнение касательной.Скачать
2 страница. Задача/. Составить уравнение касательной и/или нормали к кривой точке с абсциссой х0.
Задача/. Составить уравнение касательной и/или нормали к кривой точке с абсциссой х0.
Если функция f(x) в точке х0 имеет конечную производную, то уравнение касательной имеет вид
, то уравнение касательной имеет вид то уравнение нормали имеет вид
• Если
то уравнение нормали имеет вид
1. Находим значение
2. Находим производную
в точке M1 с абсциссой
Задача 3: Найти уравнение касательной к параболе
решение Будем искать уравнение касательной в виде уравнения прямой с угловым коэффициентом, т.е. у = kx + b. Известно, что к есть тангенс угла наклона прямой к положительному направлению оси ОХ, т.е. k = у'(М1). Так как М1 принадлежит и касательной и параболе, то ее координаты удовлетворяют их уравнениям.
Задача 2. Составить уравнение нормали к данной кривой в точке с абсциссой
Уравнение нормали:
Имеем:
• Получаем уравнение нормали:
• Составляем уравнение касательной к данной кривой в точке с абсциссой х0).
Уравнение касательной:
Имеем:
• Получаем уравнение касательной:
В точке М1
Подставив x1 = 2 в уравнение параболы, найдем ординату у1 точки М1:
Значит М(2,9).
Найдем
Значит k = 8. Подставив значение k = 8;
x1= 2; y1 = 9 в уравнение прямой, найдем b: 9 = 8 • 2 + b; b = — 7. Значит касательная к параболе у = Зх 2 — 4х + 5 в точке М1 (2,9) будет представлена уравнением у = 8х — 7.
может быть представлено в
то соответствующее приращению аргумента
виде
где A не зависит от
но
Определение 3. Если приращение функции
то функция
зависит от
называется дифференцируемой в точке х.
Здесь
бесконечно малая более высокого порядка малости, чем
т.е.
Можно доказать, что
Таким образом, существование
в точке х эквивалентно её
производной у функции
дифференцируемости в этой точке по определению 3.
Определение 4. Главная линейная часть приращения дифференцируемой
функции
называется ее дифференциалом.
ДИФФЕРЕНЦИАЛ ФУНКЦИИ И ДИФФЕРЕНЦИАЛ АРГУМЕНТА
ДИФФЕРЕНЦИАЛ
Рассмотрев функцию
, убедимся, что
является функцией двух аргументов —
(дифференциал
независимой переменной совпадает с ее приращением). Дифференциалы старших порядков определяются индуктивно.
и по определению предела
По определению производной получим:
или
где — бесконечно малая величина (БМВ) при х = 0. Умножая обе части (1) на Δх, получим:
где Δх при х = 0 тоже БМВ. Лейбниц предложил обозначить
и назвать это дифференциалом функции. Тогда, если у = х, то
Откуда дифференциал аргумента dx равен приращению аргумента — Δх. Можно (4) представить в виде:
• Пример. Найти дифференциал функции
Решение: По формуле (6) получим:
Отсюда формулами для нахождения дифференциала будут формулы для нахождения производной, где вместо знака производной перед функцией будет стоять символ d.
считается функцией только х (но не
), т.е.
этом Соотношение
выполняется, например, для n-1=1.
Методом индукции из этого следует справедливость аналогичного выражения для n-го дифференциала при любом n ≥ 2 .
Определение. Дифференциалом п-го порядка функции
называется дифференциал от (n-1)-го дифференциала этой функции. При
• Пример. Вычислить 1-й и 2-й дифференциалы функции
Решение:
ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ДИФФЕРЕНЦИАЛА ФУНКЦИИ
Подставляя (9) в (2), получим:
(бесконечно малая величина), предел которой
Так как
равен нулю при х = 0, то
На рис. рассмотрим геометрический смысл выражения (10).
С учетом (9) и (11) можно сказать, что дифференциал функции в конкретной точке отличается от приращения функции в этой точке на бесконечно малую величину, соответствующую отрезку между точками пересечения
Понимание геометрического смысла производной
вертикальной проекции приращенного аргумента с графиком функции и с продолжением касательной, проведенной к графику в рассматриваемой точке.
позволяет определять приближенное значение функции
• Пример 1. Определить приближенное значение
Решение: Рассмотрим функцию
Решение: По условию примера мы имеем:
Скорость
• Пример 2. Найти абсолютную погрешность средней скорости спринтера в створе двух фотолучевых установок (ФЛУ), отстоящих друг от друга на расстоянии 5 м, если спринтер пробегает это расстояние за 0,422 с и ошибка в расстоянии за счет вертикальных колебаний тела составляет 20 см, а время определено с ошибкой 0,002 с.
Дифференциал скорости согласно (41) будет:
скорость имеют значение
в случае, когда оно отличается от
полного приращения
на величину, бесконечно малую по сравнению с
или
-полный дифференциал функции
где
Полный дифференциал df, функции f(x, у, z. ) нескольких независимых переменных — выражение
— первые частные производные,
-частные дифференциалы.
Дифференциал функции двух переменных.
Пусть
в точке
Определение: Дифференциал df(x0 , y0) функции
называется следующее выражение:
где dx и dy — дифференциалы
или сокращённо: переменных x и y.
Пусть
Тогда по определению:
Следовательно, мы можем представить df в следующем виде:
Последнее равенство следует из формул замены переменных. Таким образом, df можно представить в виде:
Это равенство и выражает свойство инвариантности первого дифференциала.
Дифференцирование сложной функции.
Сложная функция h(x) = g(f(x)) (сложная функция с одной переменной)
Правило дифференцирования сложной функции (Цепное правило) позволяет вычислить производную композиции двух и более функций на основе индивидуальных производных. Если функция f имеет производную в точке х0, а функция g имеет производную в точке у0 = f(x0), то сложная функция h(x) = g(f(x)) также имеет производную в точке х0.
Производная
то учитывая иную запись
Если сложная функция
где
производной,
представлена в следующем виде:
производная сложной функции может быть
Теорема: Пусть
Пример (сложная функция с одной переменной)
Пусть
где
Дифференцируя эти функции отдельно:
и функции
Частные производные высших порядков
Первые частные производные
есть функции от переменных х и у.
Назовём по определению вторыми частными производными функции следующие выражения:
Пример: Найти дифференциал функции у = f (х) = 2 sin3x (сложная функция с одной переменной x)
Решение.
(сложная
Пример: Найти дифференциал функции функция с двумя переменными: x,z)
Решение.
Пример: Найти частные производные функции
(функция с двумя переменными: x,z)
Пример: Найти частные дифференциалы функции
Пример: Найти полный дифференциал функции
Решение.
Пример: Найти полный дифференциал функции
Решение
Найти частные производные первого и второго порядка и полный
дифференциал функции u. du -?
ПРИМЕНЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИИ
Заметим, что
Возрастание и убывание функции. Экстремум функции. Определение 1.
Функция f(x) называется возрастающей в интервале (а,b), если при возрастании аргумента х в этом интервале соответствующие значения функции f(x) также возрастают, т.е. если f(x2) >f(x1) при x2 > x1.
Из этого определения следует, что у возрастающей в интервале (а,b) функции f(x) в любой точке этого интервала приращения Δх и Δу имеют одинаковые знаки.
Дата добавления: 2016-06-24 ; просмотров: 3062 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
🎬 Видео
14.1. Касательная к параметрически заданной функцииСкачать
Решение, составить уравнения касательной и нормали y=(x^2−3x+3)/3 в точке с абсциссой x0=3 пример 11Скачать
Как записать уравнение нормали к кривой в точке экстремумаСкачать
Решение, составить уравнение касательной к данной кривой y=2x2+3 в точке с абсциссой x0=−1 пример 2Скачать
Тема 3 ( продолжение) Пример на составление уравнения касательной в точке пересечения с осью абсциссСкачать
Математический анализ, 33 урок, Касательная плоскость и нормаль к поверхностиСкачать
Как записать уравнение нормали к кривой в точке экстремумаСкачать
Касательная к графику функции в точке. 10 класс.Скачать
Математика Без Ху!ни. Касательная плоскость и нормаль к поверхности.Скачать
Решение, записать уравнения касательной и нормали к кривой y=(x^2−3x+6)/x^2 в точке x0=3 пример 9Скачать