Уравнение неразрывности в дифференциальной форме

Видео:Лекция 2. Уравнение неразрывностиСкачать

Лекция 2.  Уравнение неразрывности

Уравнение неразрывности в дифференциальной форме

В потоках несжимаемой жидкости, в которых нет ни оттока, ни присоединения расхода, объемный расход в любом сечении постоянный. Можно поэтому предположить, что в каждой точке внутри потока должно выполняться соотношение, гарантирующее, что в ней не происходит ни исчезновения, ни возникновения жидкости. Таким уравнением является уравнение неразрывности в дифференциальной форме. Если поток в каждой точке задан вектором скорости Уравнение неразрывности в дифференциальной форме(x,y,z) (в проекциях Уравнение неразрывности в дифференциальной форме, Уравнение неразрывности в дифференциальной формеи Уравнение неразрывности в дифференциальной форме), то уравнение неразрывности имеет вид

Уравнение неразрывности в дифференциальной форме+ Уравнение неразрывности в дифференциальной форме+ Уравнение неразрывности в дифференциальной форме= 0.

Уравнение неразрывности должно выполняться в каждой точке потока жидкости.

Задача 6.3.Скорость потока задана так

Ux = a (3x – 2y — z), Uy = a (3x – 2y – 2z), Uz = a (2x – 3y – z).

Проверить, возможно ли существование такого потока. В выражениях для Ux,Uy и Uz постоянный коэффициент a служит для сохранения размерности скорости в правой части.

Решение.Подсчитаем частные производные:

Уравнение неразрывности в дифференциальной форме= 3a; Уравнение неразрывности в дифференциальной форме= — 2a; Уравнение неразрывности в дифференциальной форме= — a.

Складывая их, получаем ноль, поэтому уравнение неразрывности выполняется и такой поток может существовать.

Дата добавления: 2015-08-01 ; просмотров: 1348 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Видео:Вывод уравнения неразрывности - Лекция 1Скачать

Вывод уравнения неразрывности - Лекция 1

Для круглого трубопровода и несжимаемой жидкости объемный расход

рассчитывается по уравнению:

Уравнение неразрывности в дифференциальной форме

Сплошной (неразрывный) поток жидкости – поток, в котором отсутствуют пустоты, движение происходит с непрерывным распространением массы; масса жидкости, проходящая через любое сечение, согласно закону сохранения массы, есть величина постоянная.

Уравнение неразрывности (сплошности) потока в дифференциальной форме:

Уравнение неразрывности в дифференциальной форме

– дифференциальное уравнение неразрывности потока для неустановившегося движения сжимаемой жидкости;

Уравнение неразрывности в дифференциальной форме

– дифференциальное уравнение неразрывности потока для установившегося движения сжимаемой жидкости;

Уравнение неразрывности в дифференциальной форме=

– дифференциальное уравнение неразрывности потока для установившегося движения несжимаемой жидкости,

Уравнение неразрывности в дифференциальной форме

– изменение скоростей вдоль осей координат x,y,z.

Уравнение неразрывности потока в интегральной форме – уравнение постоянства расхода:

Скорости капельной жидкости в различных поперечных сечениях трубопровода обратно пропорциональны площадям этих сечений:

Уравнение неразрывности в дифференциальной форме.

Гидравлический радиус– отношение площади S сечения потока к смоченному периметру П, характеризует каналы некруглого сечения:

Уравнение неразрывности в дифференциальной форме

Эквивалентный диаметр – геометрическая характеристика канала некруглого сечения, равен отношению учетверенной площади живого сечения, через которое протекает жидкость, к смоченному периметру:

Уравнение неразрывности в дифференциальной форме

Движение жидкости – перемещение жидкости по трубопроводам, аппаратам, каналам и т.д. Различают установившееся и неустановившееся, свободное и вынужденное, напорное и безнапорное движения. При установившемся движении поля давлений и скоростей не изменяются во времени, а при неустановившемся – изменяются. Свободное движение возникает за счет разности плотностей в различных точках объема жидкости. Вынужденное движение создается внешними силами, создаваемыми насосами, мешалками, центрифугами и др. При напорном течении жидкость заполняет все сечение трубопровода, при безнапорном – только часть сечения заполнена жидкостью, имеется свободная поверхность. Различают ламинарный и турбулентный режимы движения жидкостей.

Критерий Рейнольдса — единый безразмерный комплекс, по численному значению которого можно судить о режимах течения жидкости, является мерой соотношения между силами инерции и силами вязкости. Переход от ламинарного режима к турбулентному осуществляется тем легче, чем больше массовая скорость жидкости ρw, чем больше диаметр трубы и чем меньше вязкость жидкости:

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Ламинарный режим движения– все частицы жидкости перемещаются равномерно по параллельным траекториям. Наблюдается при значениях критерия Рейнольдса меньше критического Reкр (Re Reкр =2320) в прямых и гладких трубах постоянного сечения. В интервале значений 2320 2 /g2 напоров (высот) есть величина постоянная, равная суммарному (полному) гидродинамическому напору; данное уравнение выражает закон сохранения энергии – для движущейся среды любого сечения потока при установившемся движении идеальной жидкости сумма удельной (отнесенной к 1Н жидкости) потенциальной

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

энергий есть величина постоянная:

Уравнение неразрывности в дифференциальной форме

или для двух поперечных сечений потока

Уравнение неразрывности в дифференциальной форме

Дифференциальные уравнения движения реальной жидкости Навье – Стокса – выражают связь между массовыми, поверхностными, инерционными и вязкостными силами в потоке, характеризуют закон сохранения энергии при движении вязкой жидкости:

Уравнение неразрывности в дифференциальной форме

где ∇ 2 wx, ∇ 2 wy ∇ 2 wz – операторы Лапласа, представляют собой суммы вторых производных по осям координат. Согласно второй теореме подобия решение уравнений Навье – Стокса можно представить в виде обобщенного критериального уравнения гидродинамики:

Уравнение неразрывности в дифференциальной форме

для установившегося движения реальной жидкости

Уравнение неразрывности в дифференциальной форме

где Eu – критерий Эйлера, определяемый критерий; Re, Fr, Ho — критерии Рейнольдса, Фруда, гомохронности, являются определяющими критериями; Г – симплекс геометрического подобия.

В виде степенной зависимости критериальное уравнение принимает вид:

Уравнение неразрывности в дифференциальной форме

где A, m, n, p, q – постоянные, определяемые опытным путем для группы подобных явлений.

Основные критерии гидродинамического подобия представлены в табл. 2.

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности в дифференциальной форме

1. Какие процессы называются тепловыми?

2. Дайте определение движущей силы тепловых процессов.

3. Сформулируйте определения температурного поля, изотермической поверхности и температурного градиента.

4. Какими способами осуществляется перенос тепла в теплообменных процессах?

5. Запишите закон теплопроводности Фурье. Сформулируйте физический смысл и укажите размерность коэффициента теплопроводности.

6. В каких единицах измеряется коэффициент температуропроводности?

7. Запишите уравнения теплопроводности плоской и цилиндрической стенок.

8. Сформулируйте законы теплового излучения.

9. Что называется процессом теплоотдачи? От каких факторов зависит коэффициент теплоотдачи, в каких единицах измеряется?

10. Назовите основные критерии теплового подобия и сформулируйте их физический смысл.

11. Каким образом определяется коэффициент теплоотдачи в случае пленочной конденсации?

12. Что такое теплопередача? Укажите физический смысл, размерность коэффициента теплопередачи.

13. Каким образом определяется средняя движущая сила процесса теплопередачи при различных взаимных направлениях теплоносителей?

14. Что является целью расчета теплообменного аппарата?

15. Дайте классификацию теплообменных аппаратов.

16. Назовите основные греющие агенты в зависимости от температуры нагреваемой среды.

17. Каким образом осуществляется умеренное и глубокое охлаждение?

18. Какие типы конденсаторов различают по способу охлаждения?

19. Что такое выпаривание?

20. Дайте классификацию выпарных установок.

21. Перечислите основные типы выпарных аппаратов.

22. Запишите тепловой и материальный балансы однокорпусного выпаривания.

23. Сформулируйте понятия первичного и вторичного паров.

24. Что такое температурные потери и полезная разность температур?

25. Каким образом рассчитывается температура кипения раствора?

Видео:Урок 132. Основные понятия гидродинамики. Уравнение непрерывностиСкачать

Урок 132. Основные понятия гидродинамики. Уравнение непрерывности

Уравнение неразрывности и уравнение Бернулли.

Уравнение неразрывности в дифференциальной форме

Уравнение неразрывности потока и уравнения Бернулли являются основными уравнениями гидродинамики. При изучении потоков жидкости вводится ряд понятий, характеризующий потоки с гидравлической и геометрической точек зрения.

Такими понятиями являются: площадь живого сечения потока(или живое сечение потока), расход и средняя скорость.

Площадью живого сечения потока, называют площадь сечения потока, приведенную нормально к направлению линии тока, т.е. перпендикулярно движению струйки жидкости. Живое сечение может быть ограничено твердыми стенками полностью или частично. Если стенки ограничивают поток полностью, то движение жидкости называют напорным; Если же ограничение частичное, то движение называется безнапорным.

Напорное движение характеризуется тем, что гидродинамическое давление в любой точке потока отлично от атмосферного и может быть как больше, так и меньше него. Безнапорное движение характеризуется постоянным давлением на свободной поверхности, обычно равным атмосферному.

Содержание статьи

Расходом потока называется количество жидкости, протекающей через поперечное сечение в единицу времени. Если рассматривать поток жидкости, представляющий собой совокупность большого числа элементарных струек, то очевидно, общий расход жидкости для всего потока в целом представляет собой сумму расходов всех отдельных струек.

Для нахождения этой суммы необходимо знать закон распределения скоростей в сечении потока. Так как во многих случаях движения такой закон неизвестен, в общем случае суммирование становится невозможным. Поэтому в гидродинамике вводится предположение, что все частицы жидкости по всему поперечному сечению потока движутся с одинаковой скоростью. Эту воображаемую фиктивную скорость называют средней скоростью потока υср .

Таким образом уравнение расхода для потока будет

υср – средняя скорость потока

F – площадь сечения потока.

Видео:Закон БернуллиСкачать

Закон Бернулли

Уравнение неразрывности потока жидкости

Теперь вооружившись основными понятиями перейдем к определению уравнения неразрывности потока.

Уравнение неразрывности в дифференциальной форме

Отделим сечениями 1-1 и 2-2 некоторый отрезок элементарной струйки. В этот отрезок в единицу времени через сечение 1-1 втекает объем жидкости равный

а через сечение 2-2 из него же вытекает объем, равный

Примем, что жидкость несжимаема и что в ней невозможно образование незаполненных жидкостью пространств – т.е. будем считать, что соблюдается условие сплошности или неразрывности движения.

Учитывая, что форма элементарной струйки с течением времени не изменяется и поперечный приток в струйку или отток из ней отсутствуют, приходим к выводу, что элементарные расходы жидкости, проходящие через сечение 1-1 и 2-2, должны быть одинаковы.

Такие соотношения можно составить для любых двух сечений струйки. Поэтому в более общем виде получаем, что всюду вдоль струйки

Это уравнение называется уравнением неразрывности жидкости – оно является первым основным уравнением гидродинамики. Переходя далее к потоку жидкости в целом получаем, что

т.е. средние скорости в поперечных сечениях потока при неразрывности движения обратно пропорциональны площади этих сечений.

Уравнение неразрывности струи жидкости. Уравнение Бернулли.

Вторым основным уравнением гидродинамики является уравнение Бернулли, устанавливающее взаимосвязь между скоростью и давлением в различных сечениях одной и той же струйки.

Уравнение неразрывности в дифференциальной форме

При рассмотрении уравнения Бернулли также как и в предыдущем случае ограничимся установившемся медленно изменяющимся движением. Выделим в объеме некоторой жидкости одну элементарную струйку и ограничим её в какой-то определенный момент времени Т сечениями 1-1 и 2-2.

Допустим, что через какой-то промежуток времени ΔТ указанный объем переместится в положение 1’ – 1’ и 2’ – 2’. Тогда применяя к движению этого сечению теорему кинетической энергии, определяем, что приращение кинетической энергии движущейся системы материальных частиц равняется сумме работ всех сил, действующих на систему.

Если всё это записать в виде формулы, то

где W – приращение кинетической энергии = m * υ 2 / 2

ΣA – сумма работ действующих сил = P *ΔS

В этих выражениях
m – масса
υ – скорость материальной точки
P – равнодействующая всех сил, приложенных к точке,
ΔS – проекция перемещения точки на направление силы.

Теперь рассмотрим обе части этого выражения по порядку.

Приращение кинетической энергии ΔW

В нашем случае приращение кинетической энергии определяется как разность значений кинетической энергии в двух положениях перемещающегося объема, т.е. как разность кинетической энергии объема образованного сечениями 1-1’ и объема, образованного сечениями 2 – 2’.

Эти объемы являются результатом перемещения за время ΔТ сечений выделенного участка элементарной струйки.

Вспоминая, что по условию неразрывности расход во всех сечениях элементарной струйки одинаков, а следовательно будет равен

масса в этом случае получается равной

Подставляя все это в выражение для кинетической энергии получаем цепочку

ΔW = m * υ 2 2 / 2 — m * υ 2 1 / 2 = ρ * q * ΔТ * υ 2 2 / 2 — ρ * q * ΔТ * υ 2 1 / 2

Работа сил действующих на систему ΣA

Теперь перейдем к рассмотрению работы сил, действующих на рассматриваемый объем жидкости. Работа сил тяжести AТ равна произведению этой силы на путь, пройденный центром массы движущегося объема жидкости по вертикали.

Для рассматриваемой в нашем примере струйки работа сил тяжести будет равна произведению сил тяжести объема занимаемого сечениями 1-1’ и 2 – 2’ на расстояние Z1 –Z2.

Где Z1 и Z2 – расстояния по вертикали от горизонтальной плоскости, называемой плоскостью сравнения до центров масс объемов 1-1’ и 2 – 2’.

Силы давления АД , действующие на объем жидкости складываются из сил давления на его боковую поверхность и на концевые поперечные сечения. Работа сил давления на боковую поверхность равна нулю, так как эти силы за все время движения нормальны к перемещению их точек приложения.

Суммарно работа сил давления будет

Подставляя в начальное уравнение

Полученные выражения для ΔW и ΣA получаем

Уравнение неразрывности в дифференциальной форме

Разделим обе части этого уравнения на m = ρ*q*ΔТ и перегруппируем слагаемые

Уравнение неразрывности в дифференциальной форме

Учитывая, что сечения 1-1 и 2-2 взяты нами совершенно произвольным образом, это уравнение возможно распространить на всю струйку. Применив его для любых поперечных сечений, взятых по её длине, и представить в общем виде:

Уравнение неразрывности в дифференциальной форме

Записанные выше два уравнения представляют собой уравнение Бернулли для элементарной струйки жидкости. Сумма трех слагаемых, входящих в это уравнение, называется удельной энергией жидкости в данном сечении струйки. Различают такие энергии как:
Удельная энергия положения = qz
Удельная энергия давления = p/ ρ
Кинетическая удельная энергия = υ 2 / 2

В соответствии с этим уравнение Бернулли для струйки жидкости можно сформулировать следующим образом: для элементарной струйки идеальной жидкости полная удельная энергия, т.е. сумма удельной энергии положения, удельной энергии давления и кинетической удельной энергии – есть величина постоянная во всех сечениях струйки.

Видео по теме уравнение неразрывности

Полученные в результате многочисленных экспериментов данные из уравнения Бернулли и уравнения неразрывности потока жидкости нашли широкое применение в повседневной жизни.

Уравнение Бернулли широко используется для нахождения скорости истечения жидкости через отверстия.

Уравнение неразрывности обладает широкой универсальностью и справедливо для любой сплошной среды. Принцип уравнения неразрывности используется для формирования сильной и дальнобойной струи воды при тушении пожаров.

🎦 Видео

Основы гидродинамики и аэродинамики | условие неразрывностиСкачать

Основы гидродинамики и аэродинамики | условие неразрывности

Основы гидродинамики Уравнение неразрывностиСкачать

Основы гидродинамики Уравнение неразрывности

Закон БернуллиСкачать

Закон Бернулли

Урок 133. Закон Бернулли. Уравнение БернуллиСкачать

Урок 133. Закон Бернулли. Уравнение Бернулли

Уравнение непрерывности и телеграфное уравнение | Лекция 31 | МатанализСкачать

Уравнение непрерывности и телеграфное уравнение | Лекция 31 | Матанализ

Теорема Эйлера о движении жидкостиСкачать

Теорема Эйлера о  движении жидкости

Демидович №4451: вывод уравнения неразрывностиСкачать

Демидович №4451: вывод уравнения неразрывности

Дифференциальное уравнение Эйлера. Основное уравнение гидростатикиСкачать

Дифференциальное уравнение Эйлера. Основное уравнение гидростатики

Билеты №12-14 "Электрический ток"Скачать

Билеты №12-14 "Электрический ток"

1. Что такое дифференциальное уравнение?Скачать

1. Что такое дифференциальное уравнение?

Галилео. Эксперимент. Закон БернуллиСкачать

Галилео. Эксперимент. Закон Бернулли

Откуда появляются дифференциальные уравнения и как их решатьСкачать

Откуда появляются дифференциальные уравнения и как их решать

Билеты №32, 33 "Уравнения Максвелла"Скачать

Билеты №32, 33 "Уравнения Максвелла"

Физика. 10 класс. Уравнение неразрывности. Уравнение Бернулли. Подъёмная сила /29.10.2020/Скачать

Физика. 10 класс. Уравнение неразрывности. Уравнение Бернулли. Подъёмная сила /29.10.2020/

3 Уравнения Максвелла в дифференциальной формеСкачать

3 Уравнения Максвелла в дифференциальной форме
Поделиться или сохранить к себе: