Уравнение непрерывности физический смысл уравнения непрерывности

§ 26. УРАВНЕНИЕ НЕПРЕРЫВНОСТИ

Электрический ток является стационарным лишь при определенных условиях. Выясним эти условия.

Если ток нестационарный, т. е. I=f(t), то через замкнутую неподвижную поверхность, ограничивающую произвольный объем, может входить и выходить различное количество зарядов.

Тогда объемная плотность зарядов в этом объеме: Уравнение непрерывности физический смысл уравнения непрерывности

Сила тока, определяется зарядом, проходящим через поверхность в единицу времени : Уравнение непрерывности физический смысл уравнения непрерывности. По закону сохранения заряда, скорость изменения количества заряда внутри объема и заряд, вышедший через поверхность в единицу времени, в сумме должны равняться нулю: Уравнение непрерывности физический смысл уравнения непрерывностиили Уравнение непрерывности физический смысл уравнения непрерывности. Используем, что :

Уравнение непрерывности физический смысл уравнения непрерывностии Уравнение непрерывности физический смысл уравнения непрерывности. Тогда: Уравнение непрерывности физический смысл уравнения непрерывности— уравнение непрерывности в интегральной форме или закон сохранения заряда при наличии тока.

Физический смысл этого уравнения в том, что убыль заряда в единицу времени внутри замкнутой поверхности равна потоку вектора плотности тока через данную поверхность. Уравнение непрерывности физический смысл уравнения непрерывности— уравнение непрерывности в дифференциальной форме. Если ток стационарный, то распределение зарядов в пространстве неизменно, т. е. Уравнение непрерывности физический смысл уравнения непрерывности

Тогда: Уравнение непрерывности физический смысл уравнения непрерывностиили Уравнение непрерывности физический смысл уравнения непрерывности— условие стационарности тока в дифференциальном и интегральном виде.

САМОСТ. IX: показать, что

1) в однородной среде линии вектора плотности стационарного тока всегда замкнуты, либо идут в бесконечность;

2)на поверхности соприкосновения двух различных сред вектор плотности тока ….

3)если проводник с током граничит с непроводящей средой, то….

Видео:Урок 132. Основные понятия гидродинамики. Уравнение непрерывностиСкачать

Урок 132. Основные понятия гидродинамики. Уравнение непрерывности

Уравнение неразрывности и уравнение Бернулли.

Уравнение непрерывности физический смысл уравнения непрерывности

Уравнение неразрывности потока и уравнения Бернулли являются основными уравнениями гидродинамики. При изучении потоков жидкости вводится ряд понятий, характеризующий потоки с гидравлической и геометрической точек зрения.

Такими понятиями являются: площадь живого сечения потока(или живое сечение потока), расход и средняя скорость.

Площадью живого сечения потока, называют площадь сечения потока, приведенную нормально к направлению линии тока, т.е. перпендикулярно движению струйки жидкости. Живое сечение может быть ограничено твердыми стенками полностью или частично. Если стенки ограничивают поток полностью, то движение жидкости называют напорным; Если же ограничение частичное, то движение называется безнапорным.

Напорное движение характеризуется тем, что гидродинамическое давление в любой точке потока отлично от атмосферного и может быть как больше, так и меньше него. Безнапорное движение характеризуется постоянным давлением на свободной поверхности, обычно равным атмосферному.

Содержание статьи

Расходом потока называется количество жидкости, протекающей через поперечное сечение в единицу времени. Если рассматривать поток жидкости, представляющий собой совокупность большого числа элементарных струек, то очевидно, общий расход жидкости для всего потока в целом представляет собой сумму расходов всех отдельных струек.

Для нахождения этой суммы необходимо знать закон распределения скоростей в сечении потока. Так как во многих случаях движения такой закон неизвестен, в общем случае суммирование становится невозможным. Поэтому в гидродинамике вводится предположение, что все частицы жидкости по всему поперечному сечению потока движутся с одинаковой скоростью. Эту воображаемую фиктивную скорость называют средней скоростью потока υср .

Таким образом уравнение расхода для потока будет

υср – средняя скорость потока

F – площадь сечения потока.

Видео:Лекция 2. Уравнение неразрывностиСкачать

Лекция 2.  Уравнение неразрывности

Уравнение неразрывности потока жидкости

Теперь вооружившись основными понятиями перейдем к определению уравнения неразрывности потока.

Уравнение непрерывности физический смысл уравнения непрерывности

Отделим сечениями 1-1 и 2-2 некоторый отрезок элементарной струйки. В этот отрезок в единицу времени через сечение 1-1 втекает объем жидкости равный

а через сечение 2-2 из него же вытекает объем, равный

Примем, что жидкость несжимаема и что в ней невозможно образование незаполненных жидкостью пространств – т.е. будем считать, что соблюдается условие сплошности или неразрывности движения.

Учитывая, что форма элементарной струйки с течением времени не изменяется и поперечный приток в струйку или отток из ней отсутствуют, приходим к выводу, что элементарные расходы жидкости, проходящие через сечение 1-1 и 2-2, должны быть одинаковы.

Такие соотношения можно составить для любых двух сечений струйки. Поэтому в более общем виде получаем, что всюду вдоль струйки

Это уравнение называется уравнением неразрывности жидкости – оно является первым основным уравнением гидродинамики. Переходя далее к потоку жидкости в целом получаем, что

т.е. средние скорости в поперечных сечениях потока при неразрывности движения обратно пропорциональны площади этих сечений.

Уравнение неразрывности струи жидкости. Уравнение Бернулли.

Вторым основным уравнением гидродинамики является уравнение Бернулли, устанавливающее взаимосвязь между скоростью и давлением в различных сечениях одной и той же струйки.

Уравнение непрерывности физический смысл уравнения непрерывности

При рассмотрении уравнения Бернулли также как и в предыдущем случае ограничимся установившемся медленно изменяющимся движением. Выделим в объеме некоторой жидкости одну элементарную струйку и ограничим её в какой-то определенный момент времени Т сечениями 1-1 и 2-2.

Допустим, что через какой-то промежуток времени ΔТ указанный объем переместится в положение 1’ – 1’ и 2’ – 2’. Тогда применяя к движению этого сечению теорему кинетической энергии, определяем, что приращение кинетической энергии движущейся системы материальных частиц равняется сумме работ всех сил, действующих на систему.

Если всё это записать в виде формулы, то

где W – приращение кинетической энергии = m * υ 2 / 2

ΣA – сумма работ действующих сил = P *ΔS

В этих выражениях
m – масса
υ – скорость материальной точки
P – равнодействующая всех сил, приложенных к точке,
ΔS – проекция перемещения точки на направление силы.

Теперь рассмотрим обе части этого выражения по порядку.

Приращение кинетической энергии ΔW

В нашем случае приращение кинетической энергии определяется как разность значений кинетической энергии в двух положениях перемещающегося объема, т.е. как разность кинетической энергии объема образованного сечениями 1-1’ и объема, образованного сечениями 2 – 2’.

Эти объемы являются результатом перемещения за время ΔТ сечений выделенного участка элементарной струйки.

Вспоминая, что по условию неразрывности расход во всех сечениях элементарной струйки одинаков, а следовательно будет равен

масса в этом случае получается равной

Подставляя все это в выражение для кинетической энергии получаем цепочку

ΔW = m * υ 2 2 / 2 — m * υ 2 1 / 2 = ρ * q * ΔТ * υ 2 2 / 2 — ρ * q * ΔТ * υ 2 1 / 2

Работа сил действующих на систему ΣA

Теперь перейдем к рассмотрению работы сил, действующих на рассматриваемый объем жидкости. Работа сил тяжести AТ равна произведению этой силы на путь, пройденный центром массы движущегося объема жидкости по вертикали.

Для рассматриваемой в нашем примере струйки работа сил тяжести будет равна произведению сил тяжести объема занимаемого сечениями 1-1’ и 2 – 2’ на расстояние Z1 –Z2.

Где Z1 и Z2 – расстояния по вертикали от горизонтальной плоскости, называемой плоскостью сравнения до центров масс объемов 1-1’ и 2 – 2’.

Силы давления АД , действующие на объем жидкости складываются из сил давления на его боковую поверхность и на концевые поперечные сечения. Работа сил давления на боковую поверхность равна нулю, так как эти силы за все время движения нормальны к перемещению их точек приложения.

Суммарно работа сил давления будет

Подставляя в начальное уравнение

Полученные выражения для ΔW и ΣA получаем

Уравнение непрерывности физический смысл уравнения непрерывности

Разделим обе части этого уравнения на m = ρ*q*ΔТ и перегруппируем слагаемые

Уравнение непрерывности физический смысл уравнения непрерывности

Учитывая, что сечения 1-1 и 2-2 взяты нами совершенно произвольным образом, это уравнение возможно распространить на всю струйку. Применив его для любых поперечных сечений, взятых по её длине, и представить в общем виде:

Уравнение непрерывности физический смысл уравнения непрерывности

Записанные выше два уравнения представляют собой уравнение Бернулли для элементарной струйки жидкости. Сумма трех слагаемых, входящих в это уравнение, называется удельной энергией жидкости в данном сечении струйки. Различают такие энергии как:
Удельная энергия положения = qz
Удельная энергия давления = p/ ρ
Кинетическая удельная энергия = υ 2 / 2

В соответствии с этим уравнение Бернулли для струйки жидкости можно сформулировать следующим образом: для элементарной струйки идеальной жидкости полная удельная энергия, т.е. сумма удельной энергии положения, удельной энергии давления и кинетической удельной энергии – есть величина постоянная во всех сечениях струйки.

Видео по теме уравнение неразрывности

Полученные в результате многочисленных экспериментов данные из уравнения Бернулли и уравнения неразрывности потока жидкости нашли широкое применение в повседневной жизни.

Уравнение Бернулли широко используется для нахождения скорости истечения жидкости через отверстия.

Уравнение неразрывности обладает широкой универсальностью и справедливо для любой сплошной среды. Принцип уравнения неразрывности используется для формирования сильной и дальнобойной струи воды при тушении пожаров.

Видео:Вывод уравнения неразрывности - Лекция 1Скачать

Вывод уравнения неразрывности - Лекция 1

Уравнение непрерывности физический смысл уравнения непрерывности

1.7.2. Уравнение непрерывности

Если внутри проводника, по которому течет электрический ток, выделить какой-то объем, ограниченный замкнутой поверхностью S (рис 1.7.2), то, согласно закону сохранения электрического заряда, суммарный электрический заряд q, охватываемый поверхностью S, изменяется за время dt на dq = —Idt, тогда в интегральной форме можно записать:

Это соотношение называется уравнением непрерывности. Оно является, по существу, выражением закона сохранения электрического заряда.

Дифференциальная форма записи уравнения непрерывности записывается так:

В случае постоянного тока распределение зарядов в пространстве должно оставаться неизменным:

— это уравнение непрерывности для постоянного тока (в интегральной форме).

Линии j в этом случае нигде не начинаются и нигде не заканчиваются. Поле вектора j не имеет источника. В дифференциальной форме уравнение непрерывности для постоянного тока .

🎥 Видео

Уравнение непрерывности и телеграфное уравнение | Лекция 31 | МатанализСкачать

Уравнение непрерывности и телеграфное уравнение | Лекция 31 | Матанализ

Урок 133. Закон Бернулли. Уравнение БернуллиСкачать

Урок 133. Закон Бернулли. Уравнение Бернулли

Основы гидродинамики и аэродинамики | условие неразрывностиСкачать

Основы гидродинамики и аэродинамики | условие неразрывности

Закон БернуллиСкачать

Закон Бернулли

Закон БернуллиСкачать

Закон Бернулли

Математический анализ, 5 урок, Непрерывность функцииСкачать

Математический анализ, 5 урок, Непрерывность функции

Билеты №12-14 "Электрический ток"Скачать

Билеты №12-14 "Электрический ток"

Парадокс сужающейся трубыСкачать

Парадокс сужающейся трубы

Вязкость. Ламинарное и турбулентное течения жидкостей. 10 класс.Скачать

Вязкость. Ламинарное и турбулентное течения жидкостей. 10 класс.

Сверхсветовая скорость во ВселеннойСкачать

Сверхсветовая скорость во Вселенной

Дифференциальное уравнение Эйлера. Основное уравнение гидростатикиСкачать

Дифференциальное уравнение Эйлера. Основное уравнение гидростатики

ЧК_МИФ: 4.1.1.ДФ_1 Физический смысл уравнений МаксвеллаСкачать

ЧК_МИФ: 4.1.1.ДФ_1 Физический смысл уравнений  Максвелла

7.5 ЧАСОВ МАТАНА!!! ПОДАРОК ВСЕМ СТУДЕНТАМ ДЛЯ ПОДГОТОВКИ К ЗАЧЁТАМ И ЭКЗАМЕНАМ ОТ ЁЖИКА В МАТАНЕ!!!Скачать

7.5 ЧАСОВ МАТАНА!!! ПОДАРОК ВСЕМ СТУДЕНТАМ ДЛЯ ПОДГОТОВКИ К ЗАЧЁТАМ И ЭКЗАМЕНАМ ОТ ЁЖИКА В МАТАНЕ!!!

Галилео. Эксперимент. Закон БернуллиСкачать

Галилео. Эксперимент. Закон Бернулли

Математика это не ИсламСкачать

Математика это не Ислам

Билеты №32, 33 "Уравнения Максвелла"Скачать

Билеты №32, 33 "Уравнения Максвелла"

Физика. 10 класс. Уравнение неразрывности. Уравнение Бернулли. Подъёмная сила /29.10.2020/Скачать

Физика. 10 класс. Уравнение неразрывности. Уравнение Бернулли. Подъёмная сила /29.10.2020/
Поделиться или сохранить к себе: