Уравнение напряжений для первичной цепи

Содержание
  1. Уравнения напряжений трансформатора
  2. Уравнения напряжений трансформатора
  3. Уравнения напряжения в дифференциальной форме
  4. Уравнения напряжения для синусоидально изменяющихся токов и напряжений в комплексной форме
  5. Соображения о точности результатов вычислений на основе представленных уравнений напряжения
  6. Уравнение напряжений для первичной цепи
  7. 4.1.ОСНОВНЫЕ ПОНЯТИЯ
  8. 4.2. ПРИНЦИП ДЕЙСТВИЯ И КОНСТРУКЦИИ ТРАНСФОРМАТОРОВ
  9. 4.3. ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ТРАНСФОРМАТОРЕ. УРАВНЕНИЕ ЭДС
  10. 4.5.ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР
  11. 4.6.ЭКВИВАЛЕНТНАЯ СХЕМА ТРАНСФОРМАТОРА
  12. 4.7. ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРОВ
  13. 4.8.ПОТЕРИ И КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ
  14. 4.9.ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ
  15. 4.9.1. Общие положения
  16. 4.10.ГРУППЫ СОЕДИНЕНИЯ ОБМОТОК
  17. 4.11. ПАРАЛЛЕЛЬНАЯ РАБОТА ТРАНСФОРМАТОРОВ
  18. 4.12. ТРАНСФОРМАТОРЫ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ
  19. 4.12.1. ТРЕХОБМОТОЧНЫЙ ТРАНСФОРМАТОР
  20. 4.12.2. АВТОТРАНСФОРМАТОР
  21. 4.12.4. ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ ТОКА И НАПРЯЖЕНИЯ
  22. 4.12.5. ТРАНСФОРМАТОР ДЛЯ ПРЕОБРАЗОВАНИЯ ЧИСЛА ФАЗ
  23. 4.12.6. СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
  24. 4.12.7. МАГНИТНЫЙ УСИЛИТЕЛЬ
  25. 4.12.8. ТРАНСФОРМАТОР ДЛЯ ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ
  26. 🎬 Видео

Видео:Урок 4. Расчет цепей постоянного тока. Законы КирхгофаСкачать

Урок 4. Расчет цепей постоянного тока. Законы Кирхгофа

Уравнения напряжений трансформатора

Согласно закону Кирхгофа, для первичной обмотки трансформатора можно записать уравнение:

Уравнение напряжений для первичной цепи(2.32)

где ЭДС первичной обмотки и ЭДС рассеяния:

Уравнение напряжений для первичной цепи; Уравнение напряжений для первичной цепи(2.33)

При переходе к комплексной форме получаем:

Уравнение напряжений для первичной цепи, (2.34)

где ЭДС рассеяния:

Уравнение напряжений для первичной цепи. (2.35)

Тогда получаем уравнение напряжений:

Уравнение напряжений для первичной цепи Уравнение напряжений для первичной цепи, (2.36)

где z1 – полное сопротивление первичной обмотки.

Уравнение напряжений для первичной цепи, (2.37)

где ЭДС вторичной обмотки и ЭДС рассеяния вторичной обмотки:

Уравнение напряжений для первичной цепи, (2.38)

При переходе к комплексной форме получаем:

Уравнение напряжений для первичной цепи Уравнение напряжений для первичной цепи, (2.39)

где ЭДС рассеяния:

Уравнение напряжений для первичной цепи, (2.40)

Тогда получаем уравнение напряжений:

Уравнение напряжений для первичной цепи, (2.41)

где z2 – полное сопротивление вторичной обмотки.

В дифференциальной форме уравнения напряжений (считаем, что магнитная проницаемость стали постоянна):

Уравнение напряжений для первичной цепи. (2.42)

Здесь L1 и L2 – полные индуктивности первичной и вторичной обмоток, соответствующие всему сцепленному с данной обмоткой потоку.

М12 = М21 = М – взаимоиндуктивность первичной и вторичной обмоток.

При переходе к комплексной форме получаем:

Уравнение напряжений для первичной цепи Уравнение напряжений для первичной цепи(2.43)

Дата добавления: 2014-12-09 ; просмотров: 1643 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Видео:Резонанс напряжений в электрической цепиСкачать

Резонанс напряжений в электрической цепи

Уравнения напряжений трансформатора

Автор: Евгений Живоглядов.
Дата публикации: 11 августа 2013 .
Категория: Статьи.

Рабочий процесс трансформатора можно исследовать на основе уравнений напряжений его обмоток.

Видео:Резонанс напряжений в электрической цепи. 11 класс.Скачать

Резонанс напряжений в электрической цепи. 11 класс.

Уравнения напряжения в дифференциальной форме

Емкостные токи между элементами обмоток (витки и катушки) и между обмотками и магнитопроводом трансформатора в обычных условиях работы трансформаторов (f 0 и положительные токи i1 и i2 создают в магнитопроводе потоки одинакового направления.

Отметим, что в правой части второго уравнения (1) можно было бы изменить знаки на обратные. Тогда u2 следовало бы трактовать как напряжение, приложенное к вторичной обмотке со стороны вторичной сети. Некоторые, в особенности иностранные, авторы применяют также и эту последнюю форму записи.

Видео:Пример 7 | Классический метод расчета цепи 1-го порядка с конденсаторомСкачать

Пример 7 | Классический метод расчета цепи 1-го порядка с конденсатором

Уравнения напряжения для синусоидально изменяющихся токов и напряжений в комплексной форме

Обычно силовые трансформаторы, а также ряд видов специальных трансформаторов работают с синусоидально изменяющимися токами и напряжениями. В этом случае вместо дифференциальных уравнений (1) удобнее пользоваться комплексными уравнениями для действующих значений токов и напряжений. Для получения этих уравнений в уравнения (1) следует подставить

и после дифференцирования сократить уравнения на множитель √2 × e jωt . Тогда будем иметь

U1 = r1 × I1 + jx11 × I1 + jx12 × I2 ;
U2 = r2 × I2 + jx22 × I2 + jx12 × I1 ,
(2)
x11 = ω × L11; x22 = ω × L22; x12 = ω × M(3)

представляют собой полные собственные и взаимные индуктивные сопротивления обмоток.

При симметричной нагрузке трехфазных трансформаторов электромагнитные процессы протекают во всех фазах одинаково и соответствующие электромагнитные величины в каждой фазе также одинаковы и лишь сдвинуты по фазе на 120°. Некоторая несимметрия магнитной цепи трехстержневого трансформатора, а также появление в ряде случаев третьих гармоник потока (смотрите статью «Явления, возникающие при намагничивании магнитопроводов трансформаторов») обычно не оказывают заметного влияния на работу трансформатора под нагрузкой. К тому же эти явления при необходимости можно учесть отдельно. По этим причинам уравнения (2) с большой точностью применимы также для фазных величин трехфазного трансформатора при симметричной его нагрузке. Система уравнений (2) не учитывает лишь потерь в стали магнитопровода трансформатора. Учет этих потерь рассмотрен в отдельных статьях.

Для трехфазного трансформатора в соответствии со сказанным выше U1, U2, I1 и I2 представляют собой фазные значения напряжений и токов.

Уравнения (1) и (2) полностью определяют процессы, происходящие в трансформаторе при указанных выше допущениях, и позволяют решать задачи, связанные с работой трансформатора. Например, если определить из первого уравнения (2) I1 и подставить его значение во второе уравнение (2), то получим зависимость вторичного напряжения U2 от тока нагрузки I2:

Уравнение напряжений для первичной цепи(4)

Первый член правой части выражения (4) определяет величину U2 = U20 при холостом ходе, то есть при I2 = 0:

Уравнение напряжений для первичной цепи(5)

а второй член – падение напряжения на вторичных зажимах при нагрузке.

Из уравнения (4) можно найти также значение вторичного тока короткого замыкания I2 = I, когда вторичная обмотка замкнута накоротко и U2 = 0:

Уравнение напряжений для первичной цепи(6)

Видео:Резонансы токов и напряженийСкачать

Резонансы токов и напряжений

Соображения о точности результатов вычислений на основе представленных уравнений напряжения

Однако на практике расчеты по формулам, получаемым непосредственно из уравнений (1) и (2), и в частности по формулам (4) и (6), не могут быть выполнены с необходимой точностью. Причина этого заключается в том, что входящий в (4) и (6) множитель

Уравнение напряжений для первичной цепи

представляет собой разность двух весьма близких величин. В этом можно убедиться, если пренебречь весьма малыми по сравнению с x11 и x22 величинами r1 и r2. Тогда вместо приведенной выше формы этого множителя получим

Уравнение напряжений для первичной цепи(7)

то есть значение коэффициента рассеяния согласно равенству (12), в статье «Индуктивности обмоток трансформатора и электромагнитное рассеяние». Но как уже указывалось выше, определение σ по расчетным или опытным значениям M, L11 и L22 связано с большой погрешностью.

Таким образом, если положить r1 = r2 = 0, то вместо (4) и (6) получим соответственно

Уравнение напряжений для первичной цепи

Уравнение напряжений для первичной цепи

Из этих соотношений видно, что такие важные с эксплуатационной точки зрения величины, как падение напряжения и ток короткого замыкания, определяются небольшой долей σ полного индуктивного сопротивления x22, обусловленной электромагнитным рассеянием. Это же можно сказать и о ряде других величин, характеризующих эксплуатационные свойства трансформаторов и вращающихся электрических машин. Поэтому определение величин, характеризующих электромагнитное рассеяние, составляет важную задачу теории электрических машин.

В связи с изложенным теорию электрических машин в отношении рассматриваемых вопросов целесообразно развивать в следующих тесно связанных друг с другом направлениях:
1. Индуктивно связанные обмотки приводятся путем соответствующих пересчетов к одинаковому числу витков, в результате чего порядки напряжений, токов и параметров этих обмоток становятся соответственно одинаковыми.
2. Из полных собственных индуктивностей L11, L22 и индуктивных сопротивлений самоиндукции x11 и x22 выделяются составляющие – индуктивности рассеяния S1, S2 и индуктивные сопротивления рассеяния x1 и x2, обусловленные явлением электромагнитного рассеяния, причем это выделение производится с таким расчетом, что остающиеся части полных индуктивностей (L11S1, L22S2) и индуктивных сопротивлений (x11x1, x22x2) соответствуют индуктивно связанным цепям с полной связью (c = 1).
3. Разрабатываются непосредственные методы расчета малых параметров – индуктивностей и индуктивных сопротивлений рассеяния – независимо от расчета полных индуктивностей и индуктивных сопротивлений, чем достигается необходимая точность в определении этих малых параметров.
4. От электрических цепей с индуктивной связью делается переход к схемам замещения с электрической связью цепей, что приводит к упрощению расчетов и большей наглядности теории.
5. Индуктивности и индуктивные сопротивления рассеяния вводятся в явном виде в расчетные соотношения и схемы замещения, что позволяет с необходимой точностью рассчитывать величины, зависящие от электромагнитного рассеяния.

Эти вопросы применительно к трансформаторам рассматриваются в следующих статьях.

Источник: Вольдек А. И., «Электрические машины. Учебник для технических учебных заведений» – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.

Видео:Метод узловых напряжений.Этапы 1—4 (видео 17) | Анализ цепей | ЭлетротехникаСкачать

Метод узловых напряжений.Этапы 1—4 (видео 17) | Анализ цепей  | Элетротехника

Уравнение напряжений для первичной цепи

Воропаев Е.Г.
Электротехника

Уравнение напряжений для первичной цепигл.4 Трансформаторы
Уравнение напряжений для первичной цепи Уравнение напряжений для первичной цепи Уравнение напряжений для первичной цепи
глава 1| глава 2| глава 3| глава 5| глава 6| глава 7| глава 8| глава 9| глава 10| глава 11|

Видео:Переходные процессы | Классический метод расчета переходных процессов. Теория и задачаСкачать

Переходные процессы | Классический метод расчета переходных процессов. Теория и задача

4.1.ОСНОВНЫЕ ПОНЯТИЯ

Уравнение напряжений для первичной цепи

Oпределение: Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования системы переменного тока одних параметров в систему переменного тока с другими параметрами.

Уравнение напряжений для первичной цепи

Уравнение напряжений для первичной цепи

Известно, что передача электроэнергии на дальние расстояния осуществляется на высоком напряжении (220, 400, 500 кВ и более), благодаря чему значительно уменьшаются потери энергии в линии (рис. 4.1.1).
Получить такое высокое напряжение непосредственно в генераторе невозможно, поэтому в начале линии электропередачи устанавливают повышающие трансформаторы, а в конце линии устанавливают понижающие трансформаторы.
Таким образом, переменный ток по пути от электростанции до потребителя подвергается трех-, а иногда и четырехкратному трансформированию.
В зависимости от назначения трансформаторы разделяются на силовые и специальные.
Силовые трансформаторы используются в линиях электропередачи и распределения электроэнергии.
К специальным трансформаторам относятся: печные, выпрямительные, сварочные, автотрансформаторы, измерительные, трансформаторы для преобразования частоты и т.д.
Трансформаторы разделяются на однофазные и многофазные , из которых наибольшее применение имеют трехфазные.
Кроме того, трансформаторы могут быть двухобмоточными (если они имеют по две обмотки) или многообмоточными (если они имеют более двух обмоток). В зависимости от способа охлаждения трансформаторы разделяются на масляные и сухие .

Видео:Что такое РЕЗОНАНС НАПРЯЖЕНИЙ | САМОЕ ПОНЯТНОЕ объяснениеСкачать

Что такое РЕЗОНАНС НАПРЯЖЕНИЙ | САМОЕ ПОНЯТНОЕ объяснение

4.2. ПРИНЦИП ДЕЙСТВИЯ И КОНСТРУКЦИИ ТРАНСФОРМАТОРОВ

Простейший трансформатор состоит из магнитопровода и двух расположенных на нем обмоток. Обмотки электрически не связаны друг с другом. Одна из обмоток — первичная , подключена к источнику переменного тока. К другой обмотке — вторичной подключают потребитель.

Уравнение напряжений для первичной цепи

Действие трансформатора основано на явлении электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток I1, который создает в магнитопроводе переменный магнито-поток Ф. Замыкаясь в магнитопроводе, этот поток пронизывает обе обмотки, индуктируя в них ЭДС:

Уравнение напряжений для первичной цепи

Из этих формул следует, что вычисленные ЭДС е1 и е2 могут отличаться друг от друга числами витков в обмотках. Применяя обмотки с различным соотношением витков, можно изготовить трансформатор на любое отношение напряжений.
При подключении ко вторичной обмотке нагрузки zн в цепи потечет ток I2 и на выводах вторичной обмотки установится напряжение U2.
Обмотка трансформатора, подключенная к сети c более высоким напряжением, называется обмоткой высшего напряжения (ВН); обмотка, присоединенная к сети меньшего напряжения, называется обмоткой низшего напряжения (НН).
Трансформаторы — обратимые аппараты, т.е. могут работать как повышающими, так и понижающими.
Основными частями трансформатора являются его магнитопровод и обмотки. Магнитопровод выполняется из тонких листов электротехнической стали. Перед cборкой листы изолируются друг от друга лаком или окалиной. Это дает возможность в значительной мере ослабить в нем вихревые токи и уменьшить потери на перемагничивание.
Трансформаторы бывают стержневыми и броневыми . Наиболее широкое распространение получили стержневые трансформаторы.
Трансформаторы броневого типа имеют разветвленный магнитопровод с одним стержнем и ярмами, частично прикрывающими (бронирующими) обмотки.
В трехфазном трансформаторе применяют трехстержневой магнитопровод, который похож на броневой, но обмотки на нем расположены на всех трех стержнях.

Уравнение напряжений для первичной цепи

По способу сочленения стержней с ярмами различают шихтованные магнитопроводы и стыковые. В работе удобнее шихтованные магнитопроводы, т.к. воздушный зазор в местах сочленения у них меньше и они прочнее.
Форма поперечного сечения стержней зависит от мощности трансформатора: в небольших — это прямоугольник, а в средних и крупных — ступенчатое сечение.
Уравнение напряжений для первичной цепи

Обмотки трансформаторов выполняют из медных проводов круглого и прямоугольного сечения, изолированных хлопчатобумажной пряжей или кабельной бумагой.
По взаимному расположению обмоток ВН и НН и по способу их размещения на стержнях различают обмотки концентрические и дисковые.

Уравнение напряжений для первичной цепи

В масляных трансформаторах магнитопровод с обмотками помещается в бак, заполненный маслом, которое отбирает от них тепло, передавая его стенкам бака. Кроме того, электрическая прочность масла выше, чем у воздуха, что обеспечивает более надежную работу высоковольтных трансформаторов.
Для увеличения охлаждающей поверхности применяются трубчатые баки.
При нагревании масло расширяется. Излишек его попадает из общего бака в бак-расширитель, установленный на крышке трансформатора.
Для предотвращения аварии у трансформаторов напряжением 1000 кВ и выше на расширителе устраивают выхлопную трубу, закрытую мембраной — стеклянной пластиной. При образовании в баке большого количества газов мембрана выдавливается, и газы выходят наружу.

Видео:Резонанс напряжений в электрической цепи. Практическая часть - решение задачи. 11 класс.Скачать

Резонанс напряжений в электрической цепи. Практическая часть - решение задачи. 11 класс.

4.3. ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ТРАНСФОРМАТОРЕ.
УРАВНЕНИЕ ЭДС

Как видно из рис. 4.2.1, основной магнитный поток Ф, действующий в магнито-проводе трансформатора, сцепляется с витками обмоток и наводит в них ЭДС:

Уравнение напряжений для первичной цепи

Предположим, что магнитный поток Ф является синусоидальной функцией, т.е.

Уравнение напряжений для первичной цепи

Подставим это значение в выражения для ЭДС и, произведя дифференцирование, получим:

Уравнение напряжений для первичной цепи

где Уравнение напряжений для первичной цепи

Из последних формул видно, что ЭДС е1 и е2 отстают по фазе от потока Ф на угол p /2.

Максимальное значение ЭДС:

Уравнение напряжений для первичной цепи

Переходя к действующим значениям, имеем

Уравнение напряжений для первичной цепи

Если Фmах выражено в максвеллах, а Е в вольтах, то

Уравнение напряжений для первичной цепи

Отношение ЭДС обмотки высшего напряжения к ЭДС обмотки низшего напряжения называется коэффициентом трансформации.

Уравнение напряжений для первичной цепи

Подставив вместо ЭДС Е1 и Е2 их значения, получим:

Уравнение напряжений для первичной цепи

Токи I1 и I2, протекающие по обмоткам трансформатора, помимо основного потока Ф создают магнитные потоки рассеяния ФР1 и ФР2 (рис. 4.2.1). Каждый из этих потоков сцепляется только с витками собственной обмотки и индуктирует в них реактивные ЭДС рассеяния ЕР1 и ЕР2. Величины этих ЭДС прямо пропорциональны возбуждающим их токам:

Уравнение напряжений для первичной цепи

где x1 и x2 — индуктивные сопротивления рассеяния обмоток.
Кроме этого, в каждой обмотке трансформатора имеет место активное падение напряжения, которое компенсируется своей ЭДС:

Уравнение напряжений для первичной цепи

Рассмотрим действие изученных выше ЭДС в обмотках трансформатора.
В первичной обмотке Е1 представляет собой ЭДС самоиндукции, а поэтому она направлена против первичного напряжения u1. В связи с этим уравнение ЭДС для первичной обмотки имеет вид:

Уравнение напряжений для первичной цепи

Величины j I1 x1 и I1 r1 представляют собой падение напряжений в первичной обмотке трансформатора. Обычно j I1 x1 и I1 r1 невелики, а поэтому, с некоторым приближением, можно считать, что подведенное к трансформатору напряжение u1 уравновешивается ЭДС Е1:

Уравнение напряжений для первичной цепи

Во вторичной обмотке Е2 выполняет роль источника тока, поэтому уравнение ЭДС для вторичной обмотки имеет вид:

Уравнение напряжений для первичной цепи

где j I2 x2 и I2 r2 — падение напряжения во вторичной обмотке.
При холостом ходе трансформатора первичная обмотка включена на напряжение u1, а вторичная разомкнута (I2 = 0).
При этих условиях в трансформаторе действует только одна намагничивающая сила первичной обмотки I10 w1, созданная током I10, которая наводит в магнитопроводе трансформатора основной магнитный поток:

Уравнение напряжений для первичной цепи

где Rм — магнитное сопротивление магнитопровода потоку.
При подключении к вторичной обмотке нагрузки ZН в ней возникает ток I2. При этом ток в первичной обмотке увеличивается до значения I1.
Теперь поток Ф создается действием двух намагничивающих сил I1 w1 и I2 w2.

Уравнение напряжений для первичной цепи

Уравнение напряжений для первичной цепи

видно, что основной поток Ф0 не зависит от нагрузки трансформатора, при неизменом напряжении u1. Этот вывод дает право приравнять:

Уравнение напряжений для первичной цепи

Разделим обе части уравнения на w1, получим:

Уравнение напряжений для первичной цепи

где Уравнение напряжений для первичной цепи— вторичный ток, приведенный к числу витков первичной обмотки.
Перепишем уравнение

Уравнение напряжений для первичной цепи

из которого следует, что ток I1 имеет две составляющие: одна из них (I10) затрачивается на создание основного потока в магнитопроводе, а другая (- I2‘) компенсирует размагничивающее действие вторичного тока.
Любое изменение тока во вторичной цепи трансформатора всегда сопровождается соответствующим изменением первичного тока. В итоге величина потока Ф (а, следовательно, и ЭДС Е1) остаются практически неизменными.
Вследствие перемагничивания стали в магнитопроводе трансформатора возникают потери энергии от гистерезиса и вихревых токов. Мощность этих потерь эквивалентна активной составляющей тока I10. Следовательно, ток I10 наряду с реактивной составляющей Iоp, идущей на создание основного потока Ф, имеет еще и активную составляющую Iоа. В итоге:

Уравнение напряжений для первичной цепи

На рис. 4.4.1 приведена векторная диаграмма трансформатора в режиме холостого хода.
Обычно ток Iоа не превышает 10% от тока Io, поэтому незначительно влияет на величину I10. Обычно он равен (0,02 0,1) I1, поэтому при нагрузке I10 принимаем равным нулю, и тогда:

Уравнение напряжений для первичной цепи

т. е. отношение токов обратно пропорционально числам витков обмоток.

Уравнение напряжений для первичной цепи

Заключая разделы 4.3 и 4.4, перепишем вместе уравнения ЭДС и токов трансформатора:

Уравнение напряжений для первичной цепи Уравнение напряжений для первичной цепи Уравнение напряжений для первичной цепи

Эти уравнения получили название основных уравнений, на которых базируется теория трансформатора и общая теория электрических машин переменного тока.

Видео:Расчет переходного процесса через ДИФФЕРЕНЦИАЛЬНОЕ уравнение по законам Кирхгофа│Классический методСкачать

Расчет переходного процесса через ДИФФЕРЕНЦИАЛЬНОЕ уравнение по законам Кирхгофа│Классический метод

4.5.ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР

В общем случае параметры первичной обмотки трансформатора отличаются от параметров вторичной обмотки. Разница наиболее ощутима при больших коэффициентах трансформации, что затрудняет расчеты и (особенно) построение векторных диаграмм. Векторы электрических величин, относящиеся к первичной обмотке, значительно отличаются по своей длине от одноименных векторов вторичной обмотки. Затруднения можно устранить, если привести все параметры трансформатора к одинаковому числу витков, например, к w1. С этой целью параметры вторичной обмотки пересчитываются на число витков w1.
Таким образом, вместо реального трансформатора с коэффициентом трансформации Уравнение напряжений для первичной цепиполучают эквивалентный трансформатор с Уравнение напряжений для первичной цепи
Такой трансформатор называется приведенным. Приведение параметров трансформатора не должно отразиться на его энергетическою процессе, т.е. все мощности и фазы вторичной обмотки должны остаться такими же, что и в реальном трансформаторе.
Так, например, если полная мощность вторичной обмотки реального трансформатора Уравнение напряжений для первичной цепито она должна быть равна полной мощности вторичной обмотки приведенного трансформатора:

Уравнение напряжений для первичной цепи

Используя ранее полученное выражение I 2 ‘ = I2 w2/w1, напишем выражение для E2 ‘ :

Уравнение напряжений для первичной цепи

Приравняем теперь активные мощности вторичной обмотки:

Уравнение напряжений для первичной цепи

Определим приведенное активное сопротивление:

Уравнение напряжений для первичной цепи

Уравнение напряжений для первичной цепи

Уравнения ЭДС и токов для приведенного трансформатора теперь будут иметь вид:

Уравнение напряжений для первичной цепи Уравнение напряжений для первичной цепи Уравнение напряжений для первичной цепи

Видео:РЕЗОНАНС ТОКОВ в идеальной и реальной цепях │Теория ч. 1Скачать

РЕЗОНАНС ТОКОВ в идеальной и реальной цепях │Теория ч. 1

4.6.ЭКВИВАЛЕНТНАЯ СХЕМА ТРАНСФОРМАТОРА

Одним из методических приемов, облегчающих исследование электромагнитных процессов и расчет трансформаторов, является замена реального трансформатора с магнитными связями между обмотками эквивалентной электрической схемой (рис. 4.6.1).

Уравнение напряжений для первичной цепи

На этом рисунке представлена эквивалентная схема приведенного трансформатора, на которой сопротивления г и х условно вынесены из соответствующих обмоток и включены с ними последовательно. Т.к. k = 1, то E1 = E2. Поэтому точки А и а, а также Х и х на приведенном трансформаторе имеют одинаковые потенциалы, что позволит электрически соединить эти точки, получив Т-образную эквивалентную схему замещения (рис. 4.6.2).

Уравнение напряжений для первичной цепи

Произведя математическое описание этой схемы методами Кирхгофа, можно сделать вывод о том, что она полностью соответствует уравнениям ЭДС и токов реального трансформатора (см. раздел 4.5). Отсюда появляется возможность электрического моделирования трансформатора на ЭВМ. Проводя исследования относительно нагрузки z2 ‘ (единственного переменного параметра схемы), можно прогнозировать реальные ха-рактеристики трансформатора, начиная от холостого хода (z2 ‘ = ) и кончая коротким замыканием (z2 ‘ = 0).

Видео:Последовательное соединение RLC элементов в цепи синусоидального токаСкачать

Последовательное соединение RLC элементов в цепи синусоидального тока

4.7. ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРОВ

Построение векторной диаграммы удобнее начинать с вектора основного потока Ф. Отложим его по оси абсцисс. Вектор I10 опережает его на угол a . Далее строим векторы ЭДС Е1 и Е2 ‘ , которые отстают от потока Ф на 90°. Для определения угла сдвига фаз между E2 ‘ и I2‘ следует знать характер нагрузки. Предположим, она — активно-индуктивная. Тогда I2‘ отстает от E2’ на угол f 2.
Получилась так называемая заготовка векторной диаграммы (рис. 4.7.1.). Для того чтобы достроить ее, необходимо воспользоваться тремя основными уравнениями приведенного трансформатора.
Уравнение напряжений для первичной цепи

Воспользуемся вторым основным уравнением:

Уравнение напряжений для первичной цепи

и произведем сложение векторов.
Для этого к концу вектора E2 ‘ пристроим вектор — j I2‘ x2 ‘ , а к его концу — вектор — I2 ‘ r2 ‘ . Результирующим вектором U2 ‘ будет вектор, соединяющий начало координат с концом последнего вектора.
Теперь используем третье основное уравнение

Уравнение напряжений для первичной цепи

из которого видно, что вектор тока I1 состоит из геометрической суммы векторов I10 и — I2‘. Произведем это суммирование и достроим векторную диаграмму.
Теперь вернемся к первому основному уравнению:

Уравнение напряжений для первичной цепи

Чтобы построить вектор — Е1 , нужно взять вектор +Е1 и направить его в противоположную сторону.
Теперь можно складывать с ним и другие векторы: + j I1 x1 и I1 r1 . Первый будет идти перпендикулярно току, а второй — параллельно ему. В результате получим суммарный вектор u1.
Построенная векторная диаграмма имеет общий характер. По этой же методике можно осуществить ее построение как для различных режимов, так и для разных характеров нагрузки.

Видео:2020 г. Дифференциальные уравнения для электрических цепей. Лекция и практикаСкачать

2020 г.  Дифференциальные уравнения для электрических цепей.  Лекция и практика

4.8.ПОТЕРИ И КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

В работающем трансформаторе всегда имеются как магнитные, так и электрические потери. Магнитные потери слагаются из потерь на вихревые токи и гистерезис.

Уравнение напряжений для первичной цепи

Величина этих потерь зависит от напряжения u1 и магнитной индукции В. Можно считать, что при U1 = const, рон= В 2 . Они не зависят от нагрузки, т.е. являются постоянными. Электрические потери в обмотках, наоборот, переменные, т.е.:

Уравнение напряжений для первичной цепи

где ркн — соответствует потерям при коротком замыкании трансформатора.
Если известны потери короткого замыкания при номинальной нагрузке, то электрические потери можно определить по формуле:

Уравнение напряжений для первичной цепи

где — коэффициент загрузки трансформатора.
Общие потери в трансформаторе:

Уравнение напряжений для первичной цепи

КПД представляет собой отношение активной мощности Р2, отбираемой от трансформатора, к активной модности Р1, подводимой к трансформатору:

Уравнение напряжений для первичной цепи

Мощность Р2 подсчитывается по формуле:

Уравнение напряжений для первичной цепи

где Уравнение напряжений для первичной цепи— номинальная мощность, кВт.

Мощность
Уравнение напряжений для первичной цепи

тогда КПД трансформатора

Уравнение напряжений для первичной цепи

Уравнение напряжений для первичной цепи

Как видно из последней формулы, величина К.П.Д. зависит от загрузки трансформатора. Кроме того, К.П.Д. тем больше, чем выше cos f 2. Максимальный КПД соответствует такой загрузке, при которой магнитные потери равны электрическим потерям:

Уравнение напряжений для первичной цепи

Отсюда значение коэффициента загрузки, соответствующее максимальному К.П.Д., равно:
Уравнение напряжений для первичной цепи

Обычно К.П.Д. имеет максимальное значение при b = 0,5 — 0,6. Тогда
h = 0,98 — 0,99.

Видео:Урок 366. ТрансформаторСкачать

Урок 366. Трансформатор

4.9.ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ

4.9.1. Общие положения

Для трансформирования энергии в трехфазных системах используют либо группу из трех однофазных трансформаторов, у которых первичные и вторичные обмотки соединяются звездой или треугольником, либо один трехфазный трансформатор с общим магнитопроводом.
Трехфазные трансформаторы могут иметь различные схемы соединения первичных и вторичных обмоток. Все начала первичных обмоток трансформатора обозначают большими буквами: А, В, С; начала вторичных обмоток — малыми буквами: а, Ь, с.
Концы обмоток обозначаются соответственно: X, У, Z и х, у, z.
Зажим выведенной нулевой точки при соединении звездой обозначают буквой О.
Наибольшее распространение имеют соединения обмоток по схеме «звезда» (Y) и «треугольник» ( D ), причем первичные и вторичные обмотки могут иметь как одинаковые, так и различные схемы. Если при соединении обмоток «звездой» нулевая точка выводится, то такое соединение называют «звезда c нулем» (Yо).
На рис. 4.9.1 приведен трехфазный трансформатор при включении обмоток Y/Y.
Уравнение напряжений для первичной цепи

Видео:Принцип работы трансформатораСкачать

Принцип работы трансформатора

4.10.ГРУППЫ СОЕДИНЕНИЯ ОБМОТОК

До сих пор мы считали, что при построении векторной диаграммы ЭДС Е1 и Е2 совпадают по фазе. Но это соответствует действительности лишь при условии намотки первичной и вторичной обмоток в одном направлении, или одноименной маркировки их выводов (рис. 4.10.1, а).

Уравнение напряжений для первичной цепи

Если же в трансформаторе изменить направление намотки обмоток иди же переставить обозначение их выводов, то вектор ЭДС Е2 окажется сдвинутым относительно вектора Е1 на 180° (рис. 4.10.1, б).
Сдвиг фаз между ЭДС Е1 и Е2 принято выражать группой соединений. Так как этот сдвиг фаз может изменяться от 0 до 360°, а кратность сдвига обычно составляет 30°, то для обозначения групп соединения выбирается ряд чисел от 1 до 12, в котором каждая единица соответствует углу сдвига 30°.
В основу этого положено сравнение относительного положения векторов Е1 и Е2 с положением минутной и часовой стрелок часов. Вектор обмотки В.Н. считается минутной стрелкой, установленной на цифре 12, а вектор Н.Н. — часовой стрелкой. По положению часовой стрелки относительно минутной определяют положение вектора ЭДС обмотки Н.Н. относительно обмотки В.Н. Так, на рис. 4.10.1, а соединение имеет группу 12, а на рис. 4.10.1, б — группу 6.
Таким образом, в однофазном трансформаторе имеется только две группы -12 и 6. В 3-х фазном трансформаторе группу соединения определяют по углу сдвига фаз между линейными векторами ЭДС Е1 и Е2 .
ГОСТ ограничивает применение только двух групп: Y / Y — 12 и Y / — 11. В качестве примера рассмотрим схему Y / Y — 12 (рис. 4.10.2).
Уравнение напряжений для первичной цепи

Векторная диаграмма показывает, что сдвиг между E1 и Е2 равен нулю или 360°, т.е. (360° / 30° — 12 группа).
Если же поменять начала и концы обмоток Н.Н., то будем иметь группу 6 (рис. 4.10.3).

Уравнение напряжений для первичной цепи

Видео:Задача на Резонанс НАПРЯЖЕНИЙ с Тремя реактивными элементамиСкачать

Задача на Резонанс НАПРЯЖЕНИЙ с Тремя реактивными элементами

4.11. ПАРАЛЛЕЛЬНАЯ РАБОТА ТРАНСФОРМАТОРОВ

При выборе трансформаторов для электроснабжения производственного предприятия часто возникает дилемма: либо установить один мощный трансформатор, либо применить их несколько, в сумме обеспечивающих требуемую мощность.
Второй вариант будет всегда предпочтительней, т.к. режим работы предприятия в течение суток неравномерный и потребляемая мощность будет различной. Например, в ночное время нагрузка будет минимальной, т.к. потребляемая мощность складывается лишь из охранного освещения и нескольких дежурных объектов. Днем, когда работают основные потребители электроэнергии, потребляемая мощность будет максимальной. Какой-то промежуточный режим будет в вечернее время суток. Короче говоря, в работе могут находиться один, два или сразу три трансформатора.
Параллельная работа нескольких трансформаторов связана с тем, что их вторичные обмотки питают общую нагрузку.
Однако не все трансформаторы способны работать параллельно.
Определим условия, при которых возможно включение трансформаторов на параллельную работу. Во-первых, это одинаковые первичные и вторичные напряжения на обмотках. Во-вторых, должны быть одинаковые схемы и группы соединения. Помимо этого, регламентируются напряжения короткого замыкания, указанные в паспорте трансформатора. И, конечно, порядок чередования фаз у параллельно работающих трансформаторов должен быть одинаковым. В качестве примера приведем схему параллельно включенных пяти сварочных трансформаторов, обеспечивающих работу 14 сварочных постов (рис. 4.11.1).
Уравнение напряжений для первичной цепи

Видео:Лабораторная работа №5 по физике для 8 класса "Измерение напряжения на различных участках цепи"Скачать

Лабораторная работа №5 по физике для 8 класса "Измерение напряжения на различных участках цепи"

4.12. ТРАНСФОРМАТОРЫ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

4.12.1. ТРЕХОБМОТОЧНЫЙ ТРАНСФОРМАТОР

В трех обмоточном трансформаторе имеются три электрически несвязанные друг с другом обмотки, из которых одна является первичной, а две другие — вторичными (рис. 4.12.1).

Уравнение напряжений для первичной цепи

Первичная обмотка трансформатора является намагничивающей и создает в магнитопроводе магнитный поток, который пронизывает две вторичные обмотки и наводит в них ЭДС Е2 и Е3.
Пренебрегая током холостого хода, можно записать уравнение токов трех обмоточного трансформатора

Уравнение напряжений для первичной цепи

т.е. первичный ток равен геометрической сумме приведенных вторичных токов. Целесообразность применения трехобмоточных трансформаторов объясняется еще и тем, что один трехобмоточный трансформатор фактически заменяет два двухобмоточных.
За номинальную мощность принимается мощность первичной обмотки. По такому же принципу устроены многообмоточные трансформаторы малой мощности, применяемые в радиоустройствах, связи и в автоматике.

4.12.2. АВТОТРАНСФОРМАТОР

В автотрансформаторе (рис. 4.12.2) часть витков в обмотке В.Н. используется в качестве обмотки Н.Н., т.е. в автотрансформаторе имеется всего лишь одна обмотка, часть которой (а Х) принадлежит одновременно сторонам В.Н. и Н.Н.

Уравнение напряжений для первичной цепи

На участке аХ протекает ток i12 = i2 — i1, или переходя к действующим значениям, учитывая, что I1 и I2 находятся в противофазе, можно записат

Уравнение напряжений для первичной цепи

Таким образом, величина тока в общей части обмоток равна разности токов I1 и I2.
Если коэффициент трансформации близок к единице, то I1 и I2 мало отличаются друг от друга, разность между ними будет также небольшой. Это позволит выполнять часть обмотки аХ проводом меньшего поперечного сечения.
Мощность, передаваемая первичной обмоткой во вторичную цепь автотрансформатора, будет равна:

Уравнение напряжений для первичной цепи

Учитывая, что Уравнение напряжений для первичной цепи, ее можно записать в виде:

Уравнение напряжений для первичной цепи

Здесь U2 I1 = SЭ , есть мощность, поступающая во вторичную цепь электрическим путем, U2 I12 = Sм — мощность, поступающая во вторичную цепь посредством магнитного потока.
Следовательно, в автотрансформаторе посредством магнитного потока передается только часть мощности, что дает возможность уменьшить поперечное сечение магнитопровода. Магнитные потери при этом также уменьшаются.
При меньшем поперечном сечении магнитопровода уменьшается средняя длина витка обмотки, следовательно, вновь уменьшается расход обмоточной меди и снижаются электрические потери.
Таким образом, автотрансформатор имеет преимущества перед трансформаторами, заключающиеся в меньшем весе, меньших размерах более высоком К.П.Д., меньшей стоимости и. т.д.
Однако эти достоинства имеют значение лишь при коэффициенте трансформации k d , можно плавно менять сварочный ток. Максимальное значение тока будет при d мах. Для безопасного обслуживания вторичная обмотка сварочного трансформатора заземляется.

4.12.4. ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ ТОКА И НАПРЯЖЕНИЯ

Эти трансформаторы применяются совместно с измерительными приборами для расширения их пределов измерения (рис. 4.12.4.1).
Измерительный трансформатор напряжения представляет собой понижающий трансформатор с таким отношением витков w1/w2, чтобы при U1 = Uсети; U2 = 100 В.
Во вторичную цепь включаются вольтметры, частотомеры, обмотки напряжения ваттметров, счетчиков и фазометров. Так как электрическое сопротивление этих приборов велико (порядка 1000 0м), то трансформаторы напряжения работают в режиме, близком к холостому ходу. Такой режим связан с большими магнитными потерями, а это, в свою очередь, приводит к увеличению размеров магнитопровода и устройству специального масляного охлаждения.
Уравнение напряжений для первичной цепи

Измерительные трансформаторы тока (рис. 4.12.4.1) применяются для включения в сеть амперметров, обмоток тока ваттметров, счетчиков и фазометров.
Первичная обмотка трансформатора тока выполняется из провода большого поперечного сечения и включается в цепь последовательно.
Вторичная обмотка выполняется всегда на ток I2 = 5А. Рабочий режим трансформатора тока близок к короткому замыканию, поэтому размеры магнитопровода у него значительно меньше, чем у трансформатора напряжения.
Для определения напряжения или тока в цепи необходимо показания приборов умножить на коэффициент трансформации измерительных трансформаторов.
В целях безопасности нельзя оставлять вторичную обмотку трансформатора тока разомкнутой, если первичная включена в сеть. В этом режиме напряжение U2 возрастает до нескольких тысяч вольт.
Разновидностью измерительного трансформатора тока являются токоизмерительные клещи с разъемным магнитопроводом, где роль первичной обмотки выполняет сам провод, по которому течет измеряемый ток.

4.12.5. ТРАНСФОРМАТОР ДЛЯ ПРЕОБРАЗОВАНИЯ ЧИСЛА ФАЗ

Для питания различных выпрямителей или для электропечей возникает необходимость в увеличении числа фазных обмоток трансформатора. Так, трехфазная система сети с помощью специального трансформатора может быть преобразована в шестифазную или двенадцатифазную. На рис. 4.12.5.1, а приведена схема шестифазного преобразователя.

Уравнение напряжений для первичной цепи

Первичная обмотка такого преобразователя соединена «звездой», а вторичная — «двойной звездой». Векторная диаграмма вторичной обмотки преобразователя представляет собой шестизвездную звезду (рис. 4.12.5.1, б).

4.12.6. СТАБИЛИЗАТОР НАПРЯЖЕНИЯ

Для стабилизации напряжения в устройствах небольшой мощности (до 5 кВт) применяются электромагнитные стабилизаторы:
1) ферромагнитные насыщенного типа (без емкости), в которых используются явления, основанные на насыщении ферромагнитного сердечника;
2) феррорезонансные (с емкостью), работа которых основана на резонансе токов и напряжений.
Рассмотрим работу феррорезонансного стабилизатора. Он состоит из реактивной катушки 1, сердечник которой при заданном диапазоне напряжений U1 работает в состоянии магнитного насыщения, конденсатора С и автотрансформатора 2 магнитопровод которого не насыщен (рис. 4. 12.6.1).
Обмотка автотрансформатора включена таким образом, чтобы напряжение на выходе стабилизатора U2 было равно разности

где U2 » — напряжение на выходе автотрансформатора;
U2 ‘ — напряжение на выходах реактивной катушки.

Уравнение напряжений для первичной цепи

Напряжение U2 ‘ благодаря явлению феррорезонанса имеет резко нелинейную зависимость от тока I1 (кривая 1). Напряжение на выходе автотрансформатора U2 » в виду насыщенного состояния его магнитопровода пропорционально току I1 (кривая 2).
Если параметры автотрансформатора и реактивной катушки подобраны таким образом, что наклон кривой 1 к оси абсцисс в области магнитного насыщения равен наклону кривой 2, то разность U2 ‘ — U2 » = const.
В этом случае напряжение на выходе не зависит от тока I1 (кривая 3) и, следовательно, от напряжения U1.

4.12.7. МАГНИТНЫЙ УСИЛИТЕЛЬ

Магнитный усилитель — это статический аппарат, применяемый в схемах автоматического регулирования.
Работа магнитного усилителя основана на нелинейности характеристики намагничивания магнитопровода (рис. 4.12.7.1).
Уравнение напряжений для первичной цепи

На крайних стержнях магнитного усилителя находится рабочая обмотка, которая состоит из двух катушек соединенных последовательно. На среднем стержне размещается обмотка управления из большого количества витков. Если ток в нее не подается, а к рабочей обмотке подведено напряжение U1, то из за малого количества витков W

магнитопровод не насыщается и почти все напряжение сети падает на сопротивление рабочих обмоток ZН. На потребителе в этом случае выделяется малая мощность.
Если теперь пропустим по обмотке управления ток IУ, то даже при небольшом его значении (из-за большого W=), возникает насыщение магнитопровода. В результате сопротивление рабочей обмотки резко уменьшается, а величина тока в цепи — увеличивается.
Таким образом, посредством малых сигналов в обмотке управления можно управлять значительной величиной мощности в рабочей цепи магнитного усилителя.

4.12.8. ТРАНСФОРМАТОР ДЛЯ ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ

В школьной практике часто возникает необходимость создания источника переменного тока повышенной частоты.
С помощью трансформаторов легко построить удвоитель или утроитель частоты.
Утроитель частоты состоит из трех однофазных трансформаторов, работающих при сильно насыщенном сердечнике (рис. 4.12.8.1).
Первичные обмотки соединены «звездой», а вторичные — последовательно. Как известно, намагничивающий ток имеет сложную форму кривой и помимо основной гармонической составляющей имеет третью, изменяющуюся с частотой f3 = 3f1.
При соединении первичной обмотки «звездой» токи основной гармоники уравно-вешиваются, и под действием третьей гармоники магнитный поток наводит во вторичной обмотке напряжение, изменяющееся с тройной частотой.
Уравнение напряжений для первичной цепи

🎬 Видео

ПРОСТЫМ ЯЗЫКОМ: Что такое трансформатор?Скачать

ПРОСТЫМ ЯЗЫКОМ: Что такое трансформатор?

Классификация четырехполюсников. Системы уравнений четырехполюсниковСкачать

Классификация четырехполюсников. Системы уравнений четырехполюсников

Длинные линии │Цепи с распределенными параметрами │Теория, часть 1Скачать

Длинные линии │Цепи с распределенными параметрами │Теория, часть 1
Поделиться или сохранить к себе: