Уравнение моментов относительно точки статика

iSopromat.ru

Уравнение моментов относительно точки статика

Правила знаков для моментов и проекций сил на оси координат:

Видео:Определение реакций опор в балке. Сопромат.Скачать

Определение реакций опор в балке. Сопромат.

Правило знаков проекций сил

То есть, для уравнений сумм проекций сил на оси:
Проекции сил и нагрузок на координатную ось имеющие одинаковое направление принимаются положительными, а проекции усилий противоположного направления – отрицательными.

Уравнение моментов относительно точки статика

Например, для такой схемы нагружения:

Уравнение моментов относительно точки статика

уравнение суммы сил имеет вид

Уравнение моментов относительно точки статика

А так как суммы проекций разнонаправленных сил равны, то данное уравнение можно записать и так:

Уравнение моментов относительно точки статика

Здесь F(q) – равнодействующая от распределенной нагрузки, определяемая произведением интенсивности нагрузки на ее длину.

Видео:Момент силы. Определение, размерность и знаки. Плечо силыСкачать

Момент силы. Определение, размерность и знаки. Плечо силы

Правило знаков для моментов

Сосредоточенные моменты и моменты сил стремящиеся повернуть систему относительно рассматриваемой точки по ходу часовой стрелки записываются в уравнения с одним знаком, и соответственно моменты, имеющие обратное направление с противоположным знаком.

Уравнение моментов относительно точки статика
Например, для суммы моментов относительно точки A

Уравнение моментов относительно точки статика

Уравнение моментов относительно точки статика

или, что одно и то же

Уравнение моментов относительно точки статика

Здесь m(F) – моменты сил F относительно точки A.
M(q) – моменты распределенных нагрузок q относительно рассматриваемой точки.

При составлении уравнений статики для систем находящихся в равновесии (например при определении опорных реакций) правила знаков могут быть упрощены до следующего вида:
Нагрузки направленные в одну сторону принимаются положительными, а соответственно, нагрузки обратного направления записываются со знаком минус.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Видео:Момент силы относительно точки и осиСкачать

Момент силы относительно точки и оси

Момент силы и правило моментов

теория по физике 🧲 статика

Статика — раздел механики, изучающий условия равновесия тел.

Видео:Момент силы относительно точкиСкачать

Момент силы относительно точки

Виды равновесия

Устойчивое равновесие

Уравнение моментов относительно точки статикаЕсли тело вывести из устойчивого равновесия, то появляется сила, возвращающая его в положение равновесия. Устойчивому равновесию соответствует минимальное значение потенциальной энергии (Ep min).

Неустойчивое равновесие

Уравнение моментов относительно точки статикаЕсли тело вывести из неустойчивого равновесия, то возникает сила, удаляющая тело от положения равновесия. Неустойчивому равновесию соответствует максимальное значение потенциальной энергии (Ep max).

Безразличное равновесие

Уравнение моментов относительно точки статикаПри выведении тела из положения безразличного равновесия дополнительных сил не возникает.

Видео:Определение реакций опор простой рамыСкачать

Определение  реакций опор простой рамы

Момент силы

Момент силы — векторная физическая величина, модуль которой равен произведению модуля силы на плечо силы:

M — момент силы. Единица измерения — Ньютон на метр (Н∙м). Направление вектора момента силы всегда совпадает с направлением вектора силы. d — плечо силы. Единица измерения — метр (м).

Уравнение моментов относительно точки статика

Плечо силы — кратчайшее расстояние между осью вращения и линией действия силы.

Пример №1. Стальной шар массой 2 кг колеблется на нити длиной 1 м. Чему равен момент силы тяжести относительно оси, проходящей через точку О перпендикулярно плоскости чертежа, в состоянии, представленном на рисунке?

Уравнение моментов относительно точки статика

Плечом силы тяжести, или кратчайшим путем от прямой, проходящей через точку О перпендикулярно плоскости чертежа, до линии действия силы тяжести, будет отрезок, равный максимальному отклонению шара от положения равновесия. Следовательно:

Момент силы может быть положительным и отрицательным.

Если сила вызывает вращение тела по часовой стрелке, то такой момент считают положительным:

Если сила вызывает вращение тела против часовой стрелки, то такой момент считают отрицательным:

Видео:Момент силыСкачать

Момент силы

Правило моментов

Тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

Иначе правило моментов можно сформулировать так:

Сумма моментов сил, вызывающих вращение тела по часовой стрелке, равна сумме моментов сил, вызывающих вращение тела против часовой стрелки.

∑ M п о ч а с . с т р . = ∑ M п р . ч а с . с т р .

Видео:Момент силыСкачать

Момент силы

Условия равновесия тел

∑ → F i = 0 ; → v o = 0

∑ → F i = 0 ; → v o = 0 и ∑ → F i = 0 ; → v o = 0

Видео:Урок 80 (осн). Момент силы. Правило моментовСкачать

Урок 80 (осн). Момент силы. Правило моментов

Простые механизмы

Простые механизмы — приспособления, служащие для преобразования силы. К ним относится рычаг, наклонная плоскость, блоки, клин и ворот.

Наклонная плоскость

Тело не участвует в поступательном движении:
Тело не участвует во вращательном движении:
Тело находится в состоянии равновесия (не участвует ни в поступательном, ни во вращательном движении)
Уравнение моментов относительно точки статика

Дает выигрыш в силе. Чтобы поднять груз на высоту h, нужно приложить силу, равную силе тяжести этого груза. Но, используя наклонную плоскость, можно приложить силу, равную произведению силы тяжести на синус угла уклона плоскости:

Рычаг

Уравнение моментов относительно точки статика

Дает выигрыш в силе, равный отношению плеча второй силы к плечу первой:

F 1 F 2 . . = d 2 d 1 . .

Неподвижный блок

Уравнение моментов относительно точки статика

Изменяет направление действия силы. Модули и плечи сил при этом равны:

Подвижный блок

Уравнение моментов относительно точки статикаДает выигрыш в силе в 2 раза:
Уравнение моментов относительно точки статика

Делит силу на две равные части, направление которых зависит от формы клина:

Золотое правило механики

При использовании простых механизмов мы выигрываем в силе, но проигрываем в расстоянии. Поэтому выигрыша в работе простые механизмы не дают.

Алгоритм решения

Решение

Известна лишь масса батона: m1 = 0,8 кг. Но мы также можем выразить плечи для силы тяжести батона и хлеба. Для этого длину линейки примем за один. Так как линейка поделена на 10 секций, можем считать, что длина каждой равна 0,1. Тогда плечи сил тяжести батона и рыба соответственно равны:

Запишем правило моментов:

Сила тяжести равна произведению массы на ускорение свободного падения. Поэтому:

Отсюда масса рыбы равна:

m 2 = m 1 d 1 d 2 . . = 0 , 8 · 0 , 3 0 , 4 . . = 0 , 6 ( к г )

pазбирался: Алиса Никитина | обсудить разбор | оценить

Уравнение моментов относительно точки статикаОднородный куб опирается одним ребром на пол, другим на вертикальную стену (см. рисунок). Плечо силы трения F → тр «> F тр относительно оси, проходящей через точку О3 перпендикулярно плоскости чертежа, равно.

Алгоритм решения

  1. Сформулировать определение плеча силы.
  2. Найти плечо силы трения и аргументировать ответ.

Решение

Плечом силы трения называют кратчайшее расстояние от оси вращения до линии, вдоль которой действует сила. Чтобы найти такое расстояние, нужно провести из точки равновесия перпендикуляр к линии действия силы трения. Отрезок, заключенный между этой точкой и линией, будет являться плечом силы трения. На рисунке этому отрезку соответствует отрезок О3В.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Видео:Правило знаков при составлении суммы моментовСкачать

Правило знаков при составлении суммы моментов

Теоретическая механика. В помощь студенту

Теоретическая механика – это раздел механики, в котором излагаются основные законы механического движения и механического взаимодействия материальных тел.

Теоретическая механика является наукой, в которой изучаются перемещения тел с течением времени (механические движения). Она служит базой других разделов механики (теория упругости, сопротивление материалов, теория пластичности, теория механизмов и машин, гидроаэродинамика) и многих технических дисциплин.

Механическое движение — это изменение с течением времени взаимного положения в пространстве материальных тел.

Механическое взаимодействие – это такое взаимодействие, в результате которого изменяется механическое движение или изменяется взаимное положение частей тела.

Видео:Момент импульса и момент силы относительно точки и оси | Студенты, абитуриенты МФТИ | Вуз. физика #1Скачать

Момент импульса и момент силы относительно точки и оси | Студенты, абитуриенты МФТИ | Вуз. физика #1

Статика твердого тела

Статика — это раздел теоретической механики, в котором рассматриваются задачи на равновесие твердых тел и преобразования одной системы сил в другую, ей эквивалентную.

    Основные понятия и законы статики

  • Абсолютно твердое тело (твердое тело, тело) – это материальное тело, расстояние между любыми точками в котором не изменяется.
  • Материальная точка – это тело, размерами которого по условиям задачи можно пренебречь.
  • Свободное тело – это тело, на перемещение которого не наложено никаких ограничений.
  • Несвободное (связанное) тело – это тело, на перемещение которого наложены ограничения.
  • Связи – это тела, препятствующие перемещению рассматриваемого объекта (тела или системы тел).
  • Реакция связи — это сила, характеризующая действие связи на твердое тело. Если считать силу, с которой твердое тело действует на связь, действием, то реакция связи является противодействием. При этом сила — действие приложена к связи, а реакция связи приложена к твердому телу.
  • Механическая система – это совокупность взаимосвязанных между собой тел или материальных точек.
  • Твердое тело можно рассматривать как механическую систему, положения и расстояние между точками которой не изменяются.
  • Сила – это векторная величина, характеризующая механическое действие одного материального тела на другое.
    Сила как вектор характеризуется точкой приложения, направлением действия и абсолютным значением. Единица измерения модуля силы – Ньютон.
  • Линия действия силы – это прямая, вдоль которой направлен вектор силы.
  • Сосредоточенная сила – сила, приложенная в одной точке.
  • Распределенные силы (распределенная нагрузка) – это силы, действующие на все точки объема, поверхности или длины тела.
    Распределенная нагрузка задается силой, действующей на единицу объема (поверхности, длины).
    Размерность распределенной нагрузки – Н/м 3 (Н/м 2 , Н/м).
  • Внешняя сила – это сила, действующая со стороны тела, не принадлежащего рассматриваемой механической системе.
  • Внутренняя сила – это сила, действующая на материальную точку механической системы со стороны другой материальной точки, принадлежащей рассматриваемой системе.
  • Система сил – это совокупность сил, действующих на механическую систему.
  • Плоская система сил – это система сил, линии действия которых лежат в одной плоскости.
  • Пространственная система сил – это система сил, линии действия которых не лежат в одной плоскости.
  • Система сходящихся сил – это система сил, линии действия которых пересекаются в одной точке.
  • Произвольная система сил – это система сил, линии действия которых не пересекаются в одной точке.
  • Эквивалентные системы сил – это такие системы сил, замена которых одна на другую не изменяет механического состояния тела.
    Принятое обозначение: Уравнение моментов относительно точки статика.
  • Равновесие – это состояние, при котором тело при действии сил остается неподвижным или движется равномерно прямолинейно.
  • Уравновешенная система сил – это система сил, которая будучи приложена к свободному твердому телу не изменяет его механического состояния (не выводит из равновесия).
    Уравнение моментов относительно точки статика.
  • Равнодействующая сила – это сила, действие которой на тело эквивалентно действию системы сил.
    Уравнение моментов относительно точки статика.
  • Момент силы – это величина, характеризующая вращающую способность силы.
  • Пара сил – это система двух параллельных равных по модулю противоположно направленных сил.
    Принятое обозначение: Уравнение моментов относительно точки статика.
    Под действием пары сил тело будет совершать вращательное движение.
  • Проекция силы на ось – это отрезок, заключенный между перпендикулярами, проведенными из начала и конца вектора силы к этой оси.
    Проекция положительна, если направление отрезка совпадает с положительным направлением оси.
  • Проекция силы на плоскость – это вектор на плоскости, заключенный между перпендикулярами, проведенными из начала и конца вектора силы к этой плоскости.
  • Закон 1 (закон инерции). Изолированная материальная точка находится в покое либо движется равномерно и прямолинейно.
    Равномерное и прямолинейное движение материальной точки является движением по инерции. Под состоянием равновесия материальной точки и твердого тела понимают не только состояние покоя, но и движение по инерции. Для твердого тела существуют различные виды движения по инерции, например равномерное вращение твердого тела вокруг неподвижной оси.
  • Закон 2. Твердое тело находится в равновесии под действием двух сил только в том случае, если эти силы равны по модулю и направлены в противоположные стороны по общей линии действия.
    Эти две силы называются уравновешивающимися.
    Вообще силы называются уравновешивающимися, если твердое тело, к которому приложены эти силы, находится в покое.
  • Закон 3. Не нарушая состояния (слово «состояние» здесь означает состояние движения или покоя) твердого тела, можно добавлять и отбрасывать уравновешивающиеся силы.
    Следствие. Не нарушая состояния твердого тела, силу можно переносить по ее линии действия в любую точку тела.
    Две системы сил называются эквивалентными, если одну из них можно заменить другой, не нарушая состояния твердого тела.
  • Закон 4. Равнодействующая двух сил, приложенных в одной точке, приложена в той же точке, равна по модулю диагонали параллелограмма, построенного на этих силах, и направлена вдоль этой
    диагонали.
    По модулю равнодействующая равна:
    Уравнение моментов относительно точки статика
  • Закон 5 (закон равенства действия и противодействия). Силы, с которыми два тела действуют друг на друга, равны по модулю и направлены в противоположные стороны по одной прямой.
    Следует иметь в виду, что действие — сила, приложенная к телу Б, и противодействие — сила, приложенная к телу А, не уравновешиваются, так как они приложены к разным телам.
  • Закон 6 (закон отвердевания). Равновесие нетвердого тела не нарушается при его затвердевании.
    Не следует при этом забывать, что условия равновесия, являющиеся необходимыми и достаточными для твердого тела, являются необходимыми, но недостаточными для соответствующего нетвердого тела.
  • Закон 7 (закон освобождаемости от связей). Несвободное твердое тело можно рассматривать как свободное, если его мысленно освободить от связей, заменив действие связей соответствующими реакциями связей.
    • Связи и их реакции

    • Гладкая поверхность ограничивает перемещение по нормали к поверхности опоры. Реакция направлена перпендикулярно поверхности.
    • Шарнирная подвижная опора ограничивает перемещение тела по нормали к опорной плоскости. Реакция направлена по нормали к поверхности опоры.
    • Шарнирная неподвижная опора противодействует любому перемещению в плоскости, перпендикулярной оси вращения.
    • Шарнирный невесомый стержень противодействует перемещению тела вдоль линии стержня. Реакция будет направлена вдоль линии стержня.
    • Глухая заделка противодействует любому перемещению и вращению в плоскости. Ее действие можно заменить силой, представленной в виде двух составляющих и парой сил с моментом.
      Момент силы относительно точки

    • Абсолютное значение момента равно произведению модуля силы на кратчайшее расстояние h от центра вращения до линии действия силы. Расстояние h называют плечом силы.
      Уравнение моментов относительно точки статика
    • Момент считают положительным, если сила стремится вращать плечо h против хода часовой стрелки и отрицательным при вращении по ходу часовой стрелки.
    • Свойства момента силы относительно точки:
      1) Момент силы не изменится при переносе точки приложения силы вдоль линии действия силы.
      2) Момент силы равен нулю, если линия действия силы проходит через точку приложения силы.
      3) Момент равнодействующей силы относительно точки равен сумме моментов слагаемых сил относительно этой точки.
      Уравнение моментов относительно точки статика,
      где Уравнение моментов относительно точки статика
      Момент силы относительно оси

    • Момент силы относительно оси — это момент проекции этой силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью.
      Момент считается положительным, если с положительного конца оси поворот, который сила стремится совершить, виден происходящим против хода часовой стрелки, и отрицательным – если по ходу часовой стрелки.
      Уравнение моментов относительно точки статика
    • Чтобы найти момент силы относительно оси, нужно:
      1) Провести плоскость перпендикулярную оси z.
      2) Спроецировать силу Уравнение моментов относительно точки статикана эту плоскость и вычислить величину проекции Уравнение моментов относительно точки статика.
      3) Провести плечо h из точки пересечения оси с плоскостью на линию действия проекции силы Уравнение моментов относительно точки статикаи вычислить его длину.
      4) Найти произведение этого плеча и проекции силы с соответствующим знаком.
    • Свойства момента силы относительно оси.
      Момент силы относительно оси равен нулю, если:
      1) Уравнение моментов относительно точки статика, то есть сила Уравнение моментов относительно точки статикапараллельна оси.
      2) h=0, то есть линия действия силы пересекает ось.
      Момент пары сил

    • Момент пары сил равен произведению одной силы на кратчайшее расстояние между линиями действия сил пары, которое называется плечом пары (пара сил оказывает на тело вращающее действие)
      Уравнение моментов относительно точки статика,
      где: Уравнение моментов относительно точки статика— силы, составляющие пару;
      h — плечо пары.
      Момент пары считают положительным, если силы стремятся вращать плечо против хода часовой стрелки.
    • Свойства пары сил.
      1) Сумма проекций сил пары на любую ось равна нулю.
      2) Не изменяя момента пары можно одновременно соответственно изменять значение сил и плечо пары.
      3) Пару можно переносить в плоскости ее действия при этом действие пары на тело не изменится.
      Преобразование сходящейся системы сил

    • Равнодействующая Уравнение моментов относительно точки статикадвух сходящихся сил находится на основании аксиомы о параллелограмме сил.
      Геометрическая сумма любого числа сходящихся сил может быть определена путем последовательного сложения двух сил – способ векторного многоугольника.
      Вывод: система сходящихся сил (Уравнение моментов относительно точки статика) приводится к одной равнодействующей силе Уравнение моментов относительно точки статика.
    • Аналитически равнодействующая сила может быть определена через ее проекции на оси координат:
      Уравнение моментов относительно точки статика
      Согласно теореме: проекция равнодействующей на ось равна сумме проекций слагаемых сил на эту ось: Уравнение моментов относительно точки статика, или в общем виде Уравнение моментов относительно точки статика
      С учетом Уравнение моментов относительно точки статикаравнодействующая определяется выражением:
      Уравнение моментов относительно точки статика.
    • Направление вектора равнодействующей определяется косинусами углов между вектором Уравнение моментов относительно точки статикаи осями x, y, z:
      Уравнение моментов относительно точки статика
      Преобразование произвольной системы сил

    • Теорема: силу, приложенную к твердому телу, можно, не изменяя оказываемого ею действия, перенести параллельно в другую точку тела, прибавляя при этом пару сил с моментом, равным моменту переносимой силы относительно точки, в которую она переносится.
      В результате указанного преобразования получается сходящаяся система сил и сумма моментов пар сил. Действие сходящейся системы сил заменяют действием суммарной силы, действие моментов — суммарным моментом.
      Суммарный вектор Уравнение моментов относительно точки статика— это главный вектор системы сил.
      Суммарный момент Уравнение моментов относительно точки статика— это главный момент системы сил.
      Вывод: произвольная система сил в результате тождественного преобразования приводится к главному вектору и главному моменту системы сил.
    • Аналитически главный вектор и главный момент системы сил могут быть определены через их проекции на оси координат:
      Уравнение моментов относительно точки статика,
      Уравнение моментов относительно точки статика
      Условия равновесия систем сил

    • Равновесие системы сходящихся сил
      Действие системы сходящихся сил эквивалентно действию одной равнодействующей силы.
      Для равновесия тела необходимо и достаточно, чтобы равнодействующая равнялась нулю Уравнение моментов относительно точки статика.
      Из формулы Уравнение моментов относительно точки статикаследует, что для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Y,Z равнялась нулю:
      Уравнение моментов относительно точки статика
    • Для равновесия плоской сходящейся системы сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Y равнялась нулю:
      Уравнение моментов относительно точки статика
      Равновесие произвольной системы сил.

    • Действие произвольной системы сил эквивалентно действию главного вектора и главного момента. Для равновесия необходимо и достаточно выполнения условия:
      Уравнение моментов относительно точки статика.
    • Для равновесия произвольной системы сил необходимо и достаточно, чтобы суммы проекций всех сил на оси X,Y,Z и суммы моментов всех сил относительно осей X,Y,Z равнялись нулю:
      Уравнение моментов относительно точки статика
    • Для равновесия плоской произвольной системы сил необходимо и достаточно, чтобы сумма проекций главного вектора на оси X,Y, и алгебраическая сумма моментов сил относительно центра О были равны нулю:
      Уравнение моментов относительно точки статика

    Видео:Статика. Момент силы относительно точки. Правила и пример вычисления.Скачать

    Статика. Момент силы относительно точки. Правила и пример вычисления.

    Кинематика

    Кинематика — раздел теоретической механики, в котором рассматриваются общие геометрические свойства механического движения, как процесса, происходящего в пространстве и во времени. Движущиеся объекты рассматривают как геометрические точки или геометрические тела.

      Основные понятия кинематики

  • Закон движения точки (тела) – это зависимость положения точки (тела) в пространстве от времени.
  • Траектория точки – это геометрическое место положений точки в пространстве при ее движении.
  • Скорость точки (тела) – это характеристика изменения во времени положения точки (тела) в пространстве.
  • Ускорение точки (тела) – это характеристика изменения во времени скорости точки (тела).
    • Способы задания движения точки

    • Задать движение точки — значит задать изменение ее положения по отношению к выбранной системе отсчета. Существуют три основные системы отсчета: векторная, координатная, естественная.
    • В векторной системе положение точки относительно начала отсчета задается радиус-вектором.
      Закон движения: Уравнение моментов относительно точки статика.
    • В системе координат OXYZ положение точки задается тремя координатами X, Y, Z.
      Закон движения: x = x(t), y = y(t); z = z(t).
    • В естественной системе отсчета положение точки задается расстоянием S от начала отсчета до этой точки вдоль траектории.
      Закон движения: Уравнение моментов относительно точки статика.
      Движение точки, при естественном способе задания движения, определено если известны:
      1) Траектория движения.
      2) Начало и направление отсчета дуговой координаты.
      3) Уравнение движения.
      При естественном способе задания движения, в отличии от других способов, используются подвижные координатные оси, движущиеся вместе с точкой по траектории. Такими осями являются:
      Касательная (τ) – направлена в сторону возрастания дуговой координаты по касательной к траектории.
      Главная нормаль (n) – направлена в сторону вогнутости кривой.
      Бинормаль (b) – направлена перпендикулярно к осям τ, n.
      Определение кинематических характеристик точки

    • Траектория точки
      В векторной системе отсчета траектория описывается выражением: Уравнение моментов относительно точки статика.
      В координатной системе отсчета траектория определяется по закону движения точки и описывается выражениями z = f(x,y) — в пространстве, или y = f(x) – в плоскости.
      В естественной системе отсчета траектория задается заранее.
    • Определение скорости точки в векторной системе координат
      При задании движения точки в векторной системе координат отношение перемещения к интервалу времени Уравнение моментов относительно точки статиканазывают средним значением скорости на этом интервале времени: Уравнение моментов относительно точки статика.
      Принимая интервал времени бесконечно малой величиной, получают значение скорости в данный момент времени (мгновенное значение скорости): Уравнение моментов относительно точки статика.
      Вектор средней скорости Уравнение моментов относительно точки статиканаправлен вдоль вектора Уравнение моментов относительно точки статикав сторону движения точки, вектор мгновенной скорости Уравнение моментов относительно точки статиканаправлен по касательной к траектории в сторону движения точки.
      Вывод:скорость точки – векторная величина, равная производной от закона движения по времени.
      Свойство производной:производная от какой либо величины по времени определяет скорость изменения этой величины.
    • Определение скорости точки в координатной системе отсчета
      Скорости изменения координат точки:
      Уравнение моментов относительно точки статика.
      Модуль полной скорости точки при прямоугольной системе координат будет равен:
      Уравнение моментов относительно точки статика.
      Направление вектора скорости определяется косинусами направляющих углов:
      Уравнение моментов относительно точки статика,
      где Уравнение моментов относительно точки статика— углы между вектором скорости и осями координат.
    • Определение скорости точки в естественной системе отсчета
      Скорость точки в естественной системе отсчета определяется как производная от закона движения точки: Уравнение моментов относительно точки статика.
      Согласно предыдущим выводам вектор скорости направлен по касательной к траектории в сторону движения точки и в осях Уравнение моментов относительно точки статикаопределяется только одной проекцией Уравнение моментов относительно точки статика.
      Ускорение точки

    • По определению ускорение характеризует изменение скорости, то есть скорость изменения скорости.
    • Ускорения точки в векторной системе отсчета
      На основании свойства производной:
      Уравнение моментов относительно точки статика.
      Вектор скорости может изменяться по модулю и направлению.
      Вектор ускорения направлен по линии приращения вектора скорости, т. е. в сторону искривления траектории.
    • Ускорение точки в координатной системе отсчета
      Ускорение изменения координат точки равно производной по времени от скоростей изменения этих координат:
      Уравнение моментов относительно точки статика.
      Полное ускорение в прямоугольной системе координат будет определяться выражением:
      Уравнение моментов относительно точки статика.
      Направляющие косинусы вектора ускорения:
      Уравнение моментов относительно точки статика.
    • Ускорение точки в естественной системе отсчета Приращение вектора скорости Уравнение моментов относительно точки статикаможно разложить на составляющие, параллельные осям естественной системы координат:
      Уравнение моментов относительно точки статика.
      Разделив левую и правую части равенства на dt, получим:
      Уравнение моментов относительно точки статика,
      где Уравнение моментов относительно точки статика— тангенциальное ускорение;
      Уравнение моментов относительно точки статика— нормальное ускорение;
      R — радиус кривизны траектории в окрестности точки.
      Кинематика твердого тела

    • В кинематике твердых тел решаются две основные задачи:
      1) задание движения и определение кинематических характеристик тела в целом;
      2) определение кинематических характеристик точек тела.
    • Поступательное движение твердого тела
      Поступательное движение — это движение, при котором прямая, проведенная через две точки тела, остается параллельной ее первоначальному положению.
      Теорема:при поступательном движении все точки тела движутся по одинаковым траекториям и имеют в каждой момент времени одинаковые по модулю и направлению скорости и ускорения.
      Вывод:поступательное движение твердого тела определяется движением любой его точки, в связи с чем, задание и изучение его движения сводится к кинематике точки.
    • Вращательное движение твердого тела вокруг неподвижной оси
      Вращательное движение твердого тела вокруг неподвижной оси — это движение твердого тела, при котором две точки, принадлежащие телу, остаются неподвижными в течение всего времени движения.
      Положение тела определяется углом поворота Уравнение моментов относительно точки статика. Единица измерения угла – радиан. (Радиан — центральный угол окружности, длина дуги которого равна радиусу, полный угол окружности содержит радиана.)
      Закон вращательного движения тела вокруг неподвижной оси Уравнение моментов относительно точки статика.
      Угловую скорость и угловое ускорение тела определим методом дифференцирования:
      Уравнение моментов относительно точки статика— угловая скорость, рад/с;
      Уравнение моментов относительно точки статика— угловое ускорение, рад/с².
      Если рассечь тело плоскостью перпендикулярной оси, выбрать на оси вращения точку С и произвольную точку М, то точка М будет описывать вокруг точки С окружность радиуса R. За время dt происходит элементарный поворот на угол Уравнение моментов относительно точки статика, при этом точка М совершит перемещение вдоль траектории на расстояние Уравнение моментов относительно точки статика.
      Модуль линейной скорости:
      Уравнение моментов относительно точки статика.
      Ускорение точки М при известной траектории определяется по его составляющим Уравнение моментов относительно точки статика:
      Уравнение моментов относительно точки статика,
      где Уравнение моментов относительно точки статика.
      В итоге, получаем формулы
      тангенциальное ускорение: Уравнение моментов относительно точки статика;
      нормальное ускорение: Уравнение моментов относительно точки статика.
      Плоско-параллельное движение твердого тела

    • Плоско-параллельное движение твердого тела — это движение твердого тела, при котором все его точки перемещаются в плоскостях, параллельных одной неподвижной плоскости.
      Движение сечения S в своей плоскости можно рассматривать как сложное, состоящее из двух элементарных движений:
      1) поступательного и вращательного;
      2) вращательного относительно подвижного (мгновенного) центра.
    • В первом варианте движение сечения может быть задано уравнениями движения одной его точки (полюса) и вращением сечения вокруг полюса.
      В качестве полюса может быть принята любая точка сечения.
      Уравнения движения запишутся в виде:
      Уравнение моментов относительно точки статика.
      Ускорение точки движущейся плоской фигуры складывается из ускорения полюса относительно неподвижной системы отсчета и ускорения за счет вращательного движения вокруг полюса.
      Уравнение моментов относительно точки статика
      Уравнение моментов относительно точки статика
    • Во втором варианте движение сечения рассматривается как вращательное вокруг подвижного (мгновенного) центра P.
      В этом случае скорость любой точки В сечения будет определяться по формуле для вращательного движения:
      Уравнение моментов относительно точки статика.
      Угловая скорость вокруг мгновенного центра Р может быть определена если известна скорость какой либо точки сечения, например точки А.
      Уравнение моментов относительно точки статика.
    • Положение мгновенного центра вращения может быть определено на основании следующих свойств:
      1) вектор скорости точки перпендикулярен радиусу;
      2) модуль скорости точки пропорционален расстоянию от точки до центра вращения (Уравнение моментов относительно точки статика);
      3) скорость в центре вращения равна нулю.
    • Теорема:проекции скоростей двух точек твердого тела на прямую, проведенную через эти точки, равны между собой и одинаково направлены.
      Доказательство: расстояние АВ изменяться не может, следовательно, Уравнение моментов относительно точки статикане может быть больше или меньше Уравнение моментов относительно точки статика.
      Вывод:Уравнение моментов относительно точки статика.
      Сложное движение точки

    • Относительное движение — это движение точки относительно подвижной системы.
      Переносное движение — это движение точки вместе с подвижной системой.
      Абсолютное движение — это движение точки относительно неподвижной системы.
      Соответственно называют скорости и ускорения:
      Уравнение моментов относительно точки статика— относительные;
      Уравнение моментов относительно точки статика— переносные;
      Уравнение моментов относительно точки статика— абсолютные.
    • Абсолютная скорость точки равна векторной сумме относительной и переносной скоростей (согласно теореме о сложении скоростей):
      Уравнение моментов относительно точки статика.
      Абсолютное значение скорости определяется по теореме косинусов:
      Уравнение моментов относительно точки статика.
    • Ускорение по правилу параллелограмма определяется только при поступательном переносном движении
      Уравнение моментов относительно точки статика.
      Уравнение моментов относительно точки статика.
    • При непоступательном переносном движении появляется третья составляющая ускорения, называемое поворотным или кориолисовым.
      Уравнение моментов относительно точки статика,
      где Уравнение моментов относительно точки статика.
      Кориолисово ускорение численно равно:
      Уравнение моментов относительно точки статика,
      где Уравнение моментов относительно точки статика– угол между векторами Уравнение моментов относительно точки статикаи Уравнение моментов относительно точки статика.
      Направление вектора кориолисова ускорения удобно определять по правилу Н.Е. Жуковского: вектор Уравнение моментов относительно точки статикаспроектировать на плоскость, перпендикулярную оси переносного вращения, проекцию повернуть на 90 градусов в сторону переносного вращения. Полученное направление будет соответствовать направлению кориолисова ускорения.

    Видео:Урок 76. Задачи на правило моментовСкачать

    Урок 76. Задачи на правило моментов

    Динамика

    Динамика — это раздел теоретической механики, в котором изучаются механические движении материальных тел в зависимости от причин, их вызывающих.

      Основные понятия динамики

  • Инерционность — это свойство материальных тел сохранять состояние покоя или равномерного прямолинейного движения, пока внешние силы не изменят этого состояния.
  • Масса — это количественная мера инерционности тела. Единица измерения массы — килограмм (кг).
  • Материальная точка — это тело, обладающее массой, размерами которого при решении данной задачи пренебрегают.
  • Центр масс механической системы — геометрическая точка, координаты которой определяются формулами:
    Уравнение моментов относительно точки статика
    где mk, xk, yk, zk — масса и координаты k-той точки механической системы, m — масса системы.
    В однородном поле тяжести положение центра масс совпадает с положением центра тяжести.
  • Момент инерции материального тела относительно оси – это количественная мера инертности при вращательном движении.
    Момент инерции материальной точки относительно оси равен произведению массы точки на квадрат расстояния точки от оси:
    Уравнение моментов относительно точки статика.
    Момент инерции системы (тела) относительно оси равен арифметической сумме моментов инерции всех точек:
    Уравнение моментов относительно точки статика
  • Сила инерции материальной точки — это векторная величина, равная по модулю произведению массы точки на модуль ускорения и направленная противоположно вектору ускорения: Уравнение моментов относительно точки статика
  • Сила инерции материального тела — это векторная величина, равная по модулю произведению массы тела на модуль ускорения центра масс тела и направленная противоположно вектору ускорения центра масс: Уравнение моментов относительно точки статика,
    где Уравнение моментов относительно точки статика— ускорение центра масс тела.
  • Элементарный импульс силы — это векторная величина Уравнение моментов относительно точки статика, равная произведению вектора силы Уравнение моментов относительно точки статикана бесконечно малый промежуток времени dt:
    Уравнение моментов относительно точки статика.
    Полный импульс силы за Δt равен интегралу от элементарных импульсов:
    Уравнение моментов относительно точки статика.
  • Элементарная работа силы — это скалярная величина dA, равная скалярному произведению вектора силы Уравнение моментов относительно точки статикана бесконечно малое перемещение Уравнение моментов относительно точки статика.
    Скалярное произведение векторов равно произведению их модулей на косинус угла между направлениями векторов:
    Уравнение моментов относительно точки статика,
    где α — угол между направлениями векторов перемещения и силы.
  • Работа силы Уравнение моментов относительно точки статикана конечном перемещении точки её приложения равна интегралу от элементарной работы, взятому по перемещению:
    Уравнение моментов относительно точки статика.
    Единица измерения работы — Джоуль (1 Дж = 1 Н·м).
  • Количество движения материальной точки — это векторная величина Уравнение моментов относительно точки статика, равная произведению массы m на её скорость Уравнение моментов относительно точки статика:
    Уравнение моментов относительно точки статика.
  • Количество движения механической системы равно векторной сумме количества движения её точек.
    Уравнение моментов относительно точки статикаили
    Уравнение моментов относительно точки статика,
    где m — масса механической системы, Уравнение моментов относительно точки статика— вектор скорости центра масс системы.
  • Кинетическая энергия материальной точки — это скалярная величина Т, равная половине произведения массы точки на квадрат её скорости:
    Уравнение моментов относительно точки статика.
  • Кинетическая энергия механической системы равна сумме кинетических энергий всех её точек:
    Уравнение моментов относительно точки статика.
    • Аксиомы динамики

    • Первая аксиома — это закон инерции.
      Если на свободную материальную точку не действуют никакие силы или действует уравновешенная система сил, то точка будет находиться в состоянии покоя или равномерного прямолинейного движения.
    • Вторая аксиома — закон пропорциональности ускорения.
      Ускорение, сообщаемое материальной точке действующей на неё силой, пропорционально этой силе и по направлению совпадает с направлением силы: Уравнение моментов относительно точки статика— это основной закон динамики.
    • Третья аксиома — это закон противодействия.
      Силы, с которыми действуют друг на друга две материальные точки, равны по модулю и направлены вдоль прямой, соединяющей эти точки, в противоположные стороны:
      Уравнение моментов относительно точки статика.
    • Четвертая аксиома — закон независимости действия сил.
      При действии на материальную точку системы сил полное ускорение этой точки равно геометрической сумме ускорений от действия каждой силы:
      Уравнение моментов относительно точки статика
      Дифференциальные уравнения динамики

    • Дифференциальные уравнения движения точки связывают ускорение точки с действующими на нее силами. Фактически дифференциальные уравнения являются записью основного закона динамики в явной дифференциальной форме.
      Для абсолютного движения точки (движение в инерциальной системе отсчета) дифференциальное уравнение имеет вид:
      Уравнение моментов относительно точки статика.
    • Векторное уравнение Уравнение моментов относительно точки статикаможет быть записано в проекциях на оси прямоугольной инерциальной системы координат:
      Уравнение моментов относительно точки статика
    • При известной траектория движения точки уравнение Уравнение моментов относительно точки статикаможет быть записано в проекциях на оси естественной системы координат:
      Уравнение моментов относительно точки статика
      С учетом того, что Уравнение моментов относительно точки статика,
      где Уравнение моментов относительно точки статика— тангенциальное ускорение;
      Уравнение моментов относительно точки статика— нормальное ускорение,
      уравнения примут вид:
      Уравнение моментов относительно точки статика
      Общие теоремы динамики

    • Общие теоремы динамики устанавливают зависимость между мерами механического движения и механического взаимодействия. Выводы теорем являются результатом тождественного преобразования основного закона динамики.
    • Теорема об изменении количества движения: изменение количества движения материальной точки (механической системы) за конечный промежуток времени равно сумме импульсов внешних сил за тот же промежуток времени Уравнение моментов относительно точки статика— для материальной точки;
      Уравнение моментов относительно точки статика— для механической системы.
    • Теорема об изменении кинетической энергии: изменение кинетической энергии точки (механической системы) при её перемещении равно сумме работ всех действующих внешних сил на этом перемещении Уравнение моментов относительно точки статика— для материальной точки;
      Уравнение моментов относительно точки статика— для механической системы.
    • Кинетическая энергия механической системы определяется в соответствии с Уравнение моментов относительно точки статика, при этом для твердых тел выведены следующие зависимости:
      Уравнение моментов относительно точки статика— при поступательном движении тела;
      Уравнение моментов относительно точки статика— при вращательном движении тела;
      Уравнение моментов относительно точки статика— при плоско-параллельном движении тела.
    • Момент инерции цилиндра относительно его оси:
      Уравнение моментов относительно точки статика.
    • Момент инерции стержня относительно оси z:
      Уравнение моментов относительно точки статика.
    • Момент инерции прямоугольной пластины относительно осей х и y: Уравнение моментов относительно точки статика.
    • Момент инерции шара определяется по формуле:
      Уравнение моментов относительно точки статика.
    • Работа силы тяжести:
      Уравнение моментов относительно точки статика,
      где P — сила тяжести;
      h — изменение положения тела по вертикали.
    • Работа силы при вращательном движении тела
      Уравнение моментов относительно точки статика,
      где M — момент силы,
      w — угловая скорость тела.
      Следует иметь в виду, что работа, как скалярная величина, может быть положительной или отрицательной. Работа будет положительной если направление действия силы совпадает с направлением движения.
      Принцип Даламбера

    • Формулировка принципа Даламбера: если в любой момент времени к действующим на точку силам присоединить силы инерции, то полученная система сил будет уравновешенной:
      Уравнение моментов относительно точки статика.
    • Для механической системы:
      Уравнение моментов относительно точки статика.

    Видео:Определение опорных реакций балки. Сопромат для чайников ;)Скачать

    Определение опорных реакций балки. Сопромат для чайников ;)

    Примеры решения задач

    Решение примеров по теме: «Статика твердого тела»

    Пример 1. Условия равновесия

    Уравнение моментов относительно точки статика
    Висящий на нити, под углом в сорок пять градусов к гладкой стене шар весом в десять Ньютон, находится в состоянии равновесия (рис. а). Необходимо определить давление однородного шара на гладкую стенку и натяжение нити.

    Дано: P = 10 Н; α = 45°
    Найти: N, T — ?

    Решение.
    Отбрасываем связи, а их действие на шар заменяем реакциями.
    Реакция стенки N направлена перпендикулярно стенке (от точки касания С к центру шара О), реакция нити Т — вдоль нити от точки А к точке В.
    Тем самым выявляется полная система сил, приложенных к покоящемуся шару.

    Это система сил, сходящихся в центре О шара, и состоящая из веса шара Р (активная сила), реакции стенки N и реакции нити Т (рис. б).

    Реакции N и Т по величине неизвестны. Для их определения следует воспользоваться условиями равновесия (в той или иной форме — геометрической, аналитической).

    При геометрическом способе решения строится замкнутый многоугольник сил и используются соотношения школьной геометрии (теорема синусов, теорема косинусов, теорема Пифагора и т.д.).

    В данном случае это замкнутый силовой треугольник (рис. в), из которого получаем:
    Уравнение моментов относительно точки статика

    После подстановки в формулы числовых значений, получим:
    Уравнение моментов относительно точки статика.

    Ответ: Уравнение моментов относительно точки статика.

    Решение примеров по теме: «Кинематика»

    Пример 2. Уравнение траектории точки

    Дано:
    Движение точки задано уравнениями Уравнение моментов относительно точки статика;
    (x, у — в сантиметрах, t — в секундах).
    Найти: уравнение траектории точки в координатной форме.

    Решение. Для определения уравнения траектории из уравнений движения исключаем время t. Для этого из первого уравнения выражаем Уравнение моментов относительно точки статикаи подставляем это значение во второе уравнение, преобразованное к функциям одинарного угла:
    Уравнение моментов относительно точки статика.

    Опуская промежуточные выражения, получаем уравнение траектории:
    Уравнение моментов относительно точки статика.

    Уравнение моментов относительно точки статикаУравнение определяет параболу, расположенную симметрично относительно оси у, с вершиной в точке (0, 4). Траекторией служит кусок этой параболы, заключенный между точками с координатами (-2, -4) и (2, -4).

    Ответ: Уравнение моментов относительно точки статика.

    Решение примеров по теме: «Динамика»

    Пример 3. Основной закон динамики точки

    Свободная материальная точка, масса которой десять килограмм, движется прямолинейно с ускорением пол метра в секунду в квадрате. Определить силу, приложенную к точке.

    Дано: m = 10 кг; a = 0,5 м/с 2 .
    Найти: F — ?

    Решение.
    Согласно основному закону динамики: Уравнение моментов относительно точки статика.

    Подставив значения в формулу, получим:
    Уравнение моментов относительно точки статика

    Ответ: сила, сообщающая массе, равной 10 кг,
    ускорение 0,5 м/с 2 , равна 5 Н.

    В помощь студенту
      Формулы, правила, законы, теоремы, уравнения, примеры решения задач

    Список литературы:
    Бать М.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах.
    Буторин Л.В., Бусыгина Е.Б. Теоретическая механика. Учебно-практическое пособие.

    💡 Видео

    Статика. Что такое плечо силы?Скачать

    Статика. Что такое плечо силы?

    Основная теорема статикиСкачать

    Основная теорема статики

    Статика. Момент сил. Условия равновесия тел | Физика ЕГЭ, ЦТ, ЦЭ | Физика для школьниковСкачать

    Статика. Момент сил. Условия равновесия тел | Физика ЕГЭ, ЦТ, ЦЭ | Физика для школьников

    Теоретическая механика. Нахождение реакций связей на при плоской системе сил. Задача 1, часть 1Скачать

    Теоретическая механика. Нахождение реакций связей на при плоской системе сил. Задача 1, часть 1

    БАЛКА С СИЛОЙ ПОД УГЛОМ. Реакции опор. Техническая механикаСкачать

    БАЛКА С СИЛОЙ ПОД УГЛОМ. Реакции опор. Техническая механика

    § 2.1. Момент силы относительно точкиСкачать

    § 2.1. Момент силы  относительно  точки

    Термех. Статика. Расчётно-графическая работа по статике №2. Задание 1 и решениеСкачать

    Термех. Статика. Расчётно-графическая работа по статике №2. Задание 1 и решение
    Поделиться или сохранить к себе: