Уравнение моментов относительно точки сопромат

iSopromat.ru

Уравнение моментов относительно точки сопромат

Правила знаков для моментов и проекций сил на оси координат:

Видео:Определение реакций опор в балке. Сопромат.Скачать

Определение реакций опор в балке. Сопромат.

Правило знаков проекций сил

То есть, для уравнений сумм проекций сил на оси:
Проекции сил и нагрузок на координатную ось имеющие одинаковое направление принимаются положительными, а проекции усилий противоположного направления – отрицательными.

Уравнение моментов относительно точки сопромат

Например, для такой схемы нагружения:

Уравнение моментов относительно точки сопромат

уравнение суммы сил имеет вид

Уравнение моментов относительно точки сопромат

А так как суммы проекций разнонаправленных сил равны, то данное уравнение можно записать и так:

Уравнение моментов относительно точки сопромат

Здесь F(q) – равнодействующая от распределенной нагрузки, определяемая произведением интенсивности нагрузки на ее длину.

Видео:Момент силы. Определение, размерность и знаки. Плечо силыСкачать

Момент силы. Определение, размерность и знаки. Плечо силы

Правило знаков для моментов

Сосредоточенные моменты и моменты сил стремящиеся повернуть систему относительно рассматриваемой точки по ходу часовой стрелки записываются в уравнения с одним знаком, и соответственно моменты, имеющие обратное направление с противоположным знаком.

Уравнение моментов относительно точки сопромат
Например, для суммы моментов относительно точки A

Уравнение моментов относительно точки сопромат

Уравнение моментов относительно точки сопромат

или, что одно и то же

Уравнение моментов относительно точки сопромат

Здесь m(F) – моменты сил F относительно точки A.
M(q) – моменты распределенных нагрузок q относительно рассматриваемой точки.

При составлении уравнений статики для систем находящихся в равновесии (например при определении опорных реакций) правила знаков могут быть упрощены до следующего вида:
Нагрузки направленные в одну сторону принимаются положительными, а соответственно, нагрузки обратного направления записываются со знаком минус.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Видео:Момент силы относительно точки и осиСкачать

Момент силы относительно точки и оси

ПроСопромат.ру

Видео:КРУЧЕНИЕ ВАЛА. Касательные напряжения. Сопромат.Скачать

КРУЧЕНИЕ ВАЛА. Касательные напряжения. Сопромат.

Технический портал, посвященный Сопромату и истории его создания

Видео:Момент силы относительно точкиСкачать

Момент силы относительно точки

Момент силы относительно точки

Моментом силы относительно точки называется произведение величины силы на длину перпендикуляра, опу­щенного из точки на линию действия силы (рис. а).

Уравнение моментов относительно точки сопромат

Если бы тело было закреплено в точке О, то сила Р стремилась бы вращать тело вокруг этой точки. Точка О, относительно которой берется момент, называется центром

момента, а перпендикуляр а называется плечом силы относительно центра момента.

М = сила×плечо.

Момент силы Р относительно О обозначается

Моменты сил измеряют в ньютонометрах (Нм) или килограммометрах (кГм) или в соответствующих крат­ных и дольных единицах, как и моменты пар.

Принято считать момент положительным, если сила стремится вращать тело по часовой стрелке (рис. а), и отрицательнымпротив часовой стрелки (рис. б).

Установленное правило знаков для моментов сил, как и для моментов пар, условно.

Когда линия действия силы проходит через данную точку, ее момент относи­тельно этой точки равен нулю, так как в рассматривае­мом случае плечо равно нулю а = 0 (рис. в).

Между моментом пары и моментом силы есть одно существенное различие. У момента пары сил величина и направление не зависят от положения этой пары в пространстве. У момента силы величина и направление (знак) момента силы зависят от положения точки, относительно которой опре­деляется момент.

Видео:Правило знаков при составлении суммы моментовСкачать

Правило знаков при составлении суммы моментов

Как определить реакции в опорах?

Привет! В этой статье, предлагаю поговорить о реакциях опор, еще известных как опорные реакции. Для успешного освоения курса – «сопротивление материалов», каждый студент должен уметь определять реакции в опорах, и этому уделяют особое внимание на термехе. А курс термеха, по традиции, читают до сопромата. Для тех, кто проспал механику на первом курсе, я подготовил данную статью, чтобы каждый желающий мог приобрести навыки по расчету опорных реакций.

Уравнение моментов относительно точки сопромат

Видео:Определение реакций опор простой рамыСкачать

Определение  реакций опор простой рамы

Что такое реакция опоры?

Реакция опоры – это та сила, которая возникает в опоре от действия внешней нагрузки. В зависимости от конструкции опоры и ее назначения, в ней может появляться разное количество реакций, это может быть как сила, так и момент.

В начале этой статьи, расскажу о том, что должен уже уметь читатель, для успешного освоения данного урока. Если у Вас есть проблемы по поднятым вопросам на старте статьи, переходите по ссылкам на другие материалы на нашем сайте, после чего возвращайтесь к нам на чай реакции. Во второй части статьи, посмотрим, как вычисляются реакции на простейшем примере – балки, загруженной по центру сосредоточенной силой. Тут я покажу, как пользоваться уравнениями равновесия статики, как их правильно составлять. Дальше по плану, научу учитывать распределенную нагрузку, на примере той же балки. И завершать данный урок, будет пример определения реакций для плоской рамы, загруженной всевозможными типами нагрузок. Где применим уже все фишки, о которых я буду рассказывать по ходу урока. Что же, давайте начнем разбираться с реакциями!

Что вы должны уже уметь?

В этом блоке статье, я расскажу, как и обещал, что Вы должны УЖЕ уметь, чтобы понять то, что я буду докладывать дальше, про реакции опор.

Должны уметь находить сумму проекций сил

Да, это то, что Вам когда-то рассказывали на термехе, как собственно, и опорные реакции. Если Вы шарите немного в этих проекциях, то можете смело переходить к следующему пункту. Если же нет, то специально на этот случай, у меня есть другая статья, про проекции сил. Переходите, просвещайтесь, после чего, обязательно, возвращайтесь сюда!

Должны уметь составлять сумму моментов относительно точки

Немного теории! Познакомимся для начала с самим понятием момент силы. Момент силы — это произведение силы на плечо. Где плечо — это кратчайшее расстояние от точки до силы, то есть перпендикуляр. Проиллюстрирую написанное:

Уравнение моментов относительно точки сопромат

На изображении показано, как определить момент силы F, относительно точки O.

Так же, для моментов, нужно задаться каким-то правилом знаков. Сила относительно точки может поворачивать как по часовой стрелке, так и против нее. Я в своих уроках буду придерживаться такого правила:

  • Если сила относительно точки крутит ПРОТИВ часовой стрелке, то момент положительный.
  • Если она крутит ПО часовой стрелки, то соответственно момент отрицательный.

Уравнение моментов относительно точки сопромат

Причем, это правило условно! Какое правило Вы будете использовать совсем не важно, результат получите тот же самый. В теоретической механике, к примеру, делают также как я рассказываю.

Должны разбираться в основных видах опор

Теперь поговорим о самих опорах. В этой статье, будем работать с двумя типами опор: шарнирно-подвижной и шарнирно-неподвижной.

Уравнение моментов относительно точки сопромат

Шарнирно-подвижная опора препятствует вертикальному перемещению элементу конструкции, в связи с чем, в ней, под действием внешней нагрузки возникает вертикальная реакция. Обозначают ее обычно как Ri, где i — точка крепления опоры.

Шарнирно-неподвижная опора имеет две реакции: вертикальную и горизонтальную. Так как препятствует перемещению в этих двух направлениях.

Уравнение моментов относительно точки сопромат

Вообще-то способов закрепления элементов конструкций и их условных обозначений достаточно много, но в рамках этой статьи их рассматривать не будем.

Видео:Определение опорных реакций балки. Сопромат для чайников ;)Скачать

Определение опорных реакций балки. Сопромат для чайников ;)

Примеры определения сил реакций опор

Вроде, всю подготовительную информацию дал, теперь будем рассматривать конкретные примеры. И начнем с простейшей расчетной схемы балки.

Определение реакций опор для балки

Возьмем балку на двух опорах, длиной 2 метра. Загрузим ее, посередине пролета, сосредоточенной силой:

Уравнение моментов относительно точки сопромат

Для этой расчетной схемы, выгодно записать такое условие равновесия:
Уравнение моментов относительно точки сопроматТо есть, будем составлять две суммы моментов относительно опорных точек, из которых можно сразу выразить реакции в опорах. В шарнирно-неподвижной опоре горизонтальная реакция будет равна нулю, ввиду того, что горизонтальные силы отсутствуют. Последним уравнением, взяв сумму проекций на вертикальную ось, сможем проверить правильность нахождения опорных реакций, это сумма должна быть равна нулю.

Введем систему координат, пустим ось х вдоль балки, а ось y вертикально. Обозначим реакции в опорах как RA и RB:

Уравнение моментов относительно точки сопромат

Запишем уравнение моментов, относительно точки А. Сила F поворачивает ПО часовой стрелки, записываем ее со знаком МИНУС и умножаем на плечо. Сила RB поворачивает ПРОТИВ часовой стрелки, пишем ее со знаком ПЛЮС и умножаем на плечо. Все это приравниваем к нулю:

Уравнение моментов относительно точки сопромат

Из полученного уравнения выражаем реакцию RB.

Уравнение моментов относительно точки сопромат

Первая реакция найдена! Вторая реакция находится аналогично, только теперь уравнение моментов записываем относительно другой точки:

Уравнение моментов относительно точки сопромат

Уравнение моментов относительно точки сопромат

После нахождения реакций, делаем проверку:

Уравнение моментов относительно точки сопромат

Определение реакций опор для балки с распределенной нагрузкой

Теперь рассмотрим балку, загруженную распределенной нагрузкой:

Уравнение моментов относительно точки сопромат
Перед тем как посчитать реакции опор, распределенную нагрузку нужно свернуть до сосредоточенной силы. Если умножить интенсивность q на длину участка, на которой действует нагрузка, получим силу Q. Сила Q будет находиться ровно посередине балки, как и сила F в нашем первом примере:

Уравнение моментов относительно точки сопромат

Уравнение моментов относительно точки сопромат

Подробно комментировать нахождение реакций в опорах здесь, не буду. Просто приведу решение:

Уравнение моментов относительно точки сопромат

Уравнение моментов относительно точки сопромат

Уравнение моментов относительно точки сопромат

Уравнение моментов относительно точки сопромат

Уравнение моментов относительно точки сопромат

Уравнение моментов относительно точки сопромат

Определение опорных реакций для плоской рамы

Теперь, после освоения азов по расчету реакций, предлагаю выполнить расчет плоской рамы. Для примера, возьмем раму, загруженную всевозможными видами нагрузок:

Уравнение моментов относительно точки сопромат

Проводим ряд действий с расчетной схемой рамы:

  • заменяем опоры на реакции;
  • сворачиваем распределенную нагрузку до сосредоточенной силы;
  • вводим глобальную систему координат x и y.

Уравнение моментов относительно точки сопромат

Для такой расчетной схемы, лучше использовать следующую форму условий равновесия:

Уравнение моментов относительно точки сопроматСоставив первое уравнение, относительно точки A, сразу найдем реакцию в опоре B:

Уравнение моментов относительно точки сопромат

Уравнение моментов относительно точки сопромат

Уравнение моментов относительно точки сопромат

Записав второе уравнение, сумму проекций на ось х, найдем горизонтальную реакцию HA:

Уравнение моментов относительно точки сопромат

Уравнение моментов относительно точки сопромат

И, наконец, третье уравнение, позволит найти реакцию RA:

Уравнение моментов относительно точки сопромат

Уравнение моментов относительно точки сопромат

Не пугайтесь отрицательного значения реакции! Это значит, что при отбрасывании опоры, мы не угадали с направлением этой силы.

Расчет же показал, что RA, направленна в другую сторону:

Уравнение моментов относительно точки сопромат

В итоге, получили следующие реакции в опорах рамы:

Уравнение моментов относительно точки сопромат

Осталось проверить наши расчеты! Для этого предлагаю записать уравнение моментов, относительно точки B. И если, эта сумму будет равна нулю, то расчет выполнен верно:

Уравнение моментов относительно точки сопромат

Уравнение моментов относительно точки сопромат

Уравнение моментов относительно точки сопромат

Как видим, расчет реакций выполнен правильно!

На этом заканчиваю данный урок. Если у Вас остались какие-то вопросы по нахождению опорных реакций, смело задавайте их в комментариях к этой статье. Обязательно на все отвечу!

Спасибо за внимание! Если понравилась данная статья, расскажите о ней своим одногруппникам, не жадничайте 🙂

Также рекомендую подписаться на наши соц. сети, чтобы быть в курсе обновлений материалов проекта.

📹 Видео

Балка. Реакции в заделке. Реакции опор. Сопромат.Скачать

Балка. Реакции в заделке. Реакции опор. Сопромат.

РАМА. Определение реакций опор. Сопромат.Скачать

РАМА. Определение реакций опор. Сопромат.

ЗАПОМНИ ТРИ ГЛАВНЫХ ПРАВИЛА и ты сможешь удивить своего препода по сопромату!Скачать

ЗАПОМНИ ТРИ ГЛАВНЫХ ПРАВИЛА и ты сможешь удивить своего препода по сопромату!

Момент импульса и момент силы относительно точки и оси | Студенты, абитуриенты МФТИ | Вуз. физика #1Скачать

Момент импульса и момент силы относительно точки и оси | Студенты, абитуриенты МФТИ | Вуз. физика #1

Правило знаков для изгибающих моментовСкачать

Правило знаков для изгибающих моментов

МЕТОД НАЧАЛЬНЫХ ПАРАМЕТРОВ. ИЗГИБ. Сопромат.Скачать

МЕТОД НАЧАЛЬНЫХ ПАРАМЕТРОВ. ИЗГИБ. Сопромат.

Момент силыСкачать

Момент силы

ЭПЮРЫ. МЕТОД ТОЧЕК. СОПРОМАТ ДЛЯ СТРОИТЕЛЬНЫХ СПЕЦИАЛЬНОСТЕЙ. Балка.Скачать

ЭПЮРЫ. МЕТОД ТОЧЕК. СОПРОМАТ ДЛЯ СТРОИТЕЛЬНЫХ СПЕЦИАЛЬНОСТЕЙ. Балка.

Определение опорных реакций в балкеСкачать

Определение опорных реакций в балке

БАЛКА С СИЛОЙ ПОД УГЛОМ. Реакции опор. Техническая механикаСкачать

БАЛКА С СИЛОЙ ПОД УГЛОМ. Реакции опор. Техническая механика

Момент силыСкачать

Момент силы

Урок 80 (осн). Момент силы. Правило моментовСкачать

Урок 80 (осн). Момент силы. Правило моментов
Поделиться или сохранить к себе: