Уравнение множественной регрессии в чистом виде

Множественный регрессионый анализ

Мультиколлинеарность имеет место, если определитель матрицы межфакторной корреляции близок к нулю:

Уравнение множественной регрессии в чистом виде.
Если же определитель матрицы межфакторной корреляции близок к единице, то мультиколлинеарности нет.Существуют различные подходы преодоления сильной межфакторной корреляции. Простейший из них – исключение из модели фактора (или факторов), в наибольшей степени ответственных за мультиколлинеарность при условии, что качество модели при этом пострадает несущественно (а именно, теоретический коэффициент детерминации —R 2 y(x1. xm) снизится несущественно).

Определение факторов, ответственных за мультиколлинеарность, может быть основано на анализе матрицы межфакторной корреляции. При этом определяют пару признаков-факторов, которые сильнее всего связаны между собой (коэффициент линейной парной корреляции максимален по модулю). Из этой пары в наибольшей степени ответственным за мультиколлинеарность будет тот признак, который теснее связан с другими факторами модели (имеет более высокие по модулю значения коэффициентов парной линейной корреляции).

Еще один способ определения факторов, ответственных за мультиколлинеарность основан на вычислении коэффициентов множественной детерминации (R 2 xj(x1. xj-1,xj+1. xm)), показывающего зависимость фактора xj от других факторов модели x1. xj-1, xj+1. xm. Чем ближе значение коэффициента множественной детерминации к единице, тем больше ответственность за мультиколлинеарность фактора, выступающего в роли зависимой переменной. Сравнивая между собой коэффициенты множественной детерминации для различных факторов можно проранжировать переменные по степени ответственности за мультиколлинеарность.
При выборе формы уравнения множественной регрессии предпочтение отдается линейной функции:
yi =a+b1·x1i+ b2·x2i+. + bm·xmi+ui
в виду четкой интерпретации параметров.
Данное уравнение регрессии называют уравнением регрессии в естественном (натуральном) масштабе. Коэффициент регрессии bjпри факторе хjназывают условно-чистым коэффициентом регрессии. Он измеряет среднее по совокупности отклонение признака-результата от его средней величины при отклонении признака-фактора хj на единицу, при условии, что все прочие факторы модели не изменяются (зафиксированы на своих средних уровнях).
Если не делать предположения о значениях прочих факторов, входящих в модель, то это означало бы, что каждый из них при изменении хj также изменялся бы (так как факторы связаны между собой), и своими изменениями оказывали бы влияние на признак-результат.

Содержание
  1. Множественная линейная регрессия. Улучшение модели регрессии
  2. Понятие множественной линейной регрессии
  3. Уравнение множественной линейной регрессии и метод наименьших квадратов
  4. МНК-оценка коэффиентов уравнения множественной регрессии в скалярном виде
  5. МНК-оценка коэффиентов уравнения множественной регрессии в матричном виде
  6. Построение наилучшей (наиболее качественной) модели множественной линейной регрессии
  7. Оценка качества модели множественной линейной регрессии в целом
  8. Анализ значимости коэффициентов модели множественной линейной регрессии
  9. Исключение резко выделяющихся наблюдений
  10. Исключение незначимых переменных из модели
  11. Нелинейные модели для сравнения
  12. Применение пошаговых алгоритмов включения и исключения переменных
  13. Выбор самой качественной модели множественной линейной регрессии
  14. Множественная регрессия и корреляция
  15. 🎥 Видео

Видео:Множественная регрессияСкачать

Множественная регрессия

Множественная линейная регрессия. Улучшение модели регрессии

Видео:Эконометрика. Построение модели множественной регрессии в Excel. Часть 1.Скачать

Эконометрика. Построение модели множественной регрессии в Excel. Часть 1.

Понятие множественной линейной регрессии

Множественная линейная регрессия — выраженная в виде прямой зависимость среднего значения величины Y от двух или более других величин X 1 , X 2 , . X m . Величину Y принято называть зависимой или результирующей переменной, а величины X 1 , X 2 , . X m — независимыми или объясняющими переменными.

В случае множественной линейной регрессии зависимость результирующей переменной одновременно от нескольких объясняющих переменных описывает уравнение или модель

Уравнение множественной регрессии в чистом виде,

где Уравнение множественной регрессии в чистом виде— коэффициенты функции линейной регрессии генеральной совокупности,

Уравнение множественной регрессии в чистом виде— случайная ошибка.

Функция множественной линейной регрессии для выборки имеет следующий вид:

Уравнение множественной регрессии в чистом виде,

где Уравнение множественной регрессии в чистом виде— коэффициенты модели регрессии выборки,

Уравнение множественной регрессии в чистом виде— ошибка.

Видео:Множественная регрессия в ExcelСкачать

Множественная регрессия в Excel

Уравнение множественной линейной регрессии и метод наименьших квадратов

Коэффициенты модели множественной линейной регресии, так же, как и для парной линейной регрессии, находят при помощи метода наименьших квадратов.

Разумеется, мы будем изучать построение модели множественной регрессии и её оценивание с использованием программных средств. Но на экзамене часто требуется привести формулы МНК-оценки (то есть оценки по методу наименьших квадратов) коэффициентов уравнения множественной линейной регрессии в скалярном и в матричном видах.

МНК-оценка коэффиентов уравнения множественной регрессии в скалярном виде

Метод наименьших квадратов позволяет найти такие значения коэффициентов, что сумма квадратов отклонений будет минимальной. Для нахождения коэффициентов решается система нормальных уравнений

Уравнение множественной регрессии в чистом виде

Решение системы можно получить, например, методом Крамера:

Уравнение множественной регрессии в чистом виде.

Определитель системы записывается так:

Уравнение множественной регрессии в чистом виде

МНК-оценка коэффиентов уравнения множественной регрессии в матричном виде

Данные наблюдений и коэффициенты уравнения множественной регрессии можно представить в виде следующих матриц:

Уравнение множественной регрессии в чистом виде

Формула коэффициентов множественной линейной регрессии в матричном виде следующая:

Уравнение множественной регрессии в чистом виде,

где Уравнение множественной регрессии в чистом виде— матрица, транспонированная к матрице X,

Уравнение множественной регрессии в чистом виде— матрица, обратная к матрице Уравнение множественной регрессии в чистом виде.

Решая это уравнение, мы получим матрицу-столбец b, элементы которой и есть коэффициенты уравнения множественной линейной регрессии, для нахождения которых и был изобретён метод наименьших квадратов.

Видео:Уравнение множественной регрессии в ExcelСкачать

Уравнение множественной регрессии в Excel

Построение наилучшей (наиболее качественной) модели множественной линейной регрессии

Пусть при обработке данных некоторой выборки в пакете программных средств STATISTICA получена первоначальная модель множественной линейной регрессии. Предстоит проанализировать полученную модель и в случае необходимости улучшить её.

Качество модели множественной линейной регрессии оценивается по тем же показателям качества, что и в случае модели парной линейной регрессии: коэффициент детерминации Уравнение множественной регрессии в чистом виде, F-статистика (статистика Фишера), сумма квадратов остатков RSS, стандартная ошибка регрессии (SEE). В случае множественной регрессии следует использовать также скорректированный коэффициент детерминации (adjusted Уравнение множественной регрессии в чистом виде), который применяется при исключении или добавлении в модель наблюдений или переменных.

Важный показатель качества модели линейной регрессии — проверка на выполнение требований Гаусса-Маркова к остаткам. В качественной модели линейной регрессии выполняются все условия Гаусса-Маркова:

  • условие 1: математическое ожидание остатков равно нулю для всех наблюдений ( ε(e i ) = 0 );
  • условие 2: теоретическая дисперсия остатков постоянна (равна константе) для всех наблюдений ( σ²(e i ) = σ²(e i ), i = 1, . n );
  • условие 3: отсутствие систематической связи между остатками в любых двух наблюдениях;
  • условие 4: отсутствие зависимости между остатками и объясняющими (независимыми) переменными.

В случае выполнения требований Гаусса-Маркова оценка коэффициентов модели, полученная методом наименьших квадратов является

Затем необходимо провести анализ значимости отдельных переменных модели множественной линейной регрессии с помощью критерия Стьюдента.

В случае наличия резко выделяющихся наблюдений (выбросов) нужно последовательно по одному исключить их из модели и проанализировать наличие незначимых переменных в модели и, в случае необходимости исключить их из модели по одному.

В исследованиях поведения человека, как и во многих других, чтобы они претендовали на объективность, важно не только установить зависимость между факторами, но и получить все необходимые статистические показатели для результата проверки соответствующей гипотезы.

Кроме того, требуется на основе тех же данных построить две нелинейные модели регрессии — с квадратами двух наиболее значимых переменных и с логарифмами тех же наиболее значимых переменных. Они также будут сравниваться с линейными моделями, полученных на разных шагах.

Также требуется построить модели с применением пошаговых процедур включения (FORWARD STEPWISE) и исключения (BACKWARD STEPWISE).

Все полученные модели множественной регрессии нужно сравнить и выбрать из них наилучшую (наиболее качественную). Теперь разберём перечисленные выше шаги последовательно и на примере.

Видео:Эконометрика. Множественная регрессия и корреляция.Скачать

Эконометрика. Множественная регрессия и корреляция.

Оценка качества модели множественной линейной регрессии в целом

Пример. Задание 1. Получено следующее уравнение множественной линейной регрессии:

и следующие показатели качества описываемой этим уравнением модели:

Уравнение множественной регрессии в чистом видеadj.Уравнение множественной регрессии в чистом видеRSSSEEFp-level
0,4260,2792,8351,6842,8920,008

Сделать вывод о качестве модели в целом.

Ответ. По всем показателям модель некачественная. Значение Уравнение множественной регрессии в чистом видене стремится к единице, а значение скорректированного Уравнение множественной регрессии в чистом видеещё более низкое. Значение RSS, напротив, высокое, а p-level — низкое.

Для анализа на выполнение условий Гаусса-Маркова воспользуемся диаграммой рассеивания наблюдений (для увеличения рисунка щёлкнуть по нему левой кнопкой мыши):

Уравнение множественной регрессии в чистом виде

Результаты проверки графика показывают: условие равенства нулю математического ожидания остатков выполняется, а условие на постоянство дисперсии — не выполняется. Достаточно невыполнения хотя бы одного условия Гаусса-Маркова, чтобы заключить, что оценка коэффициентов модели линейной регрессии не является несмещённой, эффективной и состоятельной.

Видео:Построение модели множественной регрессии в программе GretlСкачать

Построение модели множественной регрессии в программе Gretl

Анализ значимости коэффициентов модели множественной линейной регрессии

С помощью критерия Стьюдента проверяется гипотеза о том, что соответствующий коэффициент незначимо отличается от нуля, и соответственно, переменная при этом коэффициенте имеет незначимое влияние на зависимую переменную. В свою очередь, в колонке p-level выводится вероятность того, что основная гипотеза будет принята. Если значение p-level больше уровня значимости α, то основная гипотеза принимается, иначе – отвергается. В нашем примере установлен уровень значимости α=0,05.

Пример. Задание 2. Получены следующие значения критерия Стьюдента (t) и p-level, соответствующие переменным уравнения множественной линейной регрессии:

Перем.Знач. коэф.tp-level
X10,1292,3860,022
X2-0,286-2,4390,019
X3-0,037-0,2380,813
X40,151,9280,061
X50,3280,5480,587
X6-0,391-0,5030,618
X7-0,673-0,8980,375
X8-0,006-0,070,944
X9-1,937-2,7940,008
X10-1,233-1,8630,07

Сделать вывод о значимости коэффициентов модели.

Ответ. В построенной модели присутствуют коэффициенты, которые незначимо отличаются от нуля. В целом же у переменной X8 коэффициент самый близкий к нулю, а у переменной X9 — самое высокое значение коэффициента. Коэффициенты модели линейной регрессии можно ранжировать по мере убывания незначимости с возрастанием значения t-критерия Стьюдента.

Видео:Критерий Стьюдента и Фишера в Excel, проверка уравнения множественной регрессии в ExcelСкачать

Критерий Стьюдента и Фишера в Excel, проверка уравнения множественной регрессии в Excel

Исключение резко выделяющихся наблюдений

Пример. Задание 3. Выявлены несколько резко выделяющихся наблюдений (выбросов, то есть наблюдений с нетипичными значениями): 10, 3, 4 (соответствуют строкам исходной таблицы данных). Эти наблюдения следует последовательно исключить из модели и по мере исключения заполнить таблицу с показателями качества модели. Исключили наблюдение 10 — заполнили значение показателей, далее исключили наблюдение 3 — заполнили и так далее. По мере исключения STATISTICA будет выдавать переменные, которые остаются значимыми в модели множественной линейной регрессии — они будут выделены красном цветом. Те, что не будут выделены красным цветом — незначимые переменные и их также нужно внести в соответствующую ячейку таблицы. По завершении исключения выбросов записать уравнение конечной множественной линейной регрессии.

adj.Уравнение множественной регрессии в чистом видеSEEFp- levelнезнач. пер.
100,4112,552,6550,015X3, X4, X5, X6, X7, X8, X10
30,212,582,2490,036X3, X4, X5, X6, X7, X8, X10
40,162,611,8780,082X3, X4, X5, X6, X7, X8, X10

Уравнение конечной множественной линейной регрессии:

Случается однако, когда после исключения некоторого наблюдения исключение последующих наблюдений приводит к ухудшению показателей качества модели. Причина в том, что с исключением слишком большого числа наблюдений выборка теряет информативность. Поэтому в таких случаях следует вовремя остановиться.

Видео:Множественная регрессия в Excel и мультиколлинеарностьСкачать

Множественная регрессия в Excel и мультиколлинеарность

Исключение незначимых переменных из модели

Пример. Задание 4. По мере исключения из модели множественной линейной регрессии переменных с незначимыми коэффициентами (получены при выполнении предыдущего задания, занесены в последнюю колонку таблицы) заполнить таблицу с показателями качества модели. Последняя колонка, обозначенная звёздочкой — список переменных, имеющих значимое влияние на зависимую переменную. Эти переменные STATISTICA будет выдавать выделенными красным цветом. По завершении исключения незначимых переменных записать уравнение конечной множественной линейной регрессии.

Искл. пер.adj.Уравнение множественной регрессии в чистом видеSEEFp- level*
X30,181,712,1190,053X4, X5, X6, X7, X8, X10
X40,1451,7451,9740,077X5, X6, X7, X8, X10
X50,1632,3682,2820,048X6, X7, X8, X10
X60,1712,3552,5860,033X7, X8, X10
X70,1672,2232,8420,027X8, X10
X80,1841,7053,5990,013X10

Когда осталась одна переменная, имеющая значимое влияние на зависимую переменную, больше не исключаем переменные, иначе получится, что в модели все переменные незначимы.

Уравнение конечной множественной линейной регрессии после исключения незначимых переменных:

Переменные X1 и X2 в задании 3 не вошли в список незначимых переменных, поэтому они вошли в уравнение конечной множественной линейной регрессии «автоматически».

Видео:Эконометрика Линейная регрессия и корреляцияСкачать

Эконометрика  Линейная регрессия и корреляция

Нелинейные модели для сравнения

Пример. Задание 5. Построить две нелинейные модели регрессии — с квадратами двух наиболее значимых переменных и с логарифмами тех же наиболее значимых переменных.

Так как в наблюдениях переменных X9 и X10 имеется 0, а натуральный логарифм от 0 вычислить невозможно, то берутся следующие по значимости переменные: X1 и X2.

Полученное уравнение нелинейной регрессии с квадратами двух наиболее значимых переменных:

Показатели качества первой модели нелинейной регрессии:

Уравнение множественной регрессии в чистом видеadj.Уравнение множественной регрессии в чистом видеRSSSEEFp-level
0,170,134159,91,8454,80,0127

Вывод: модель некачественная, так как RSS и SEE принимают высокие значения, p-level стремится к нулю, коэффициент детерминации незначимо отличается от нуля.

Полученное уравнение нелинейной регрессии с логарифмами двух наиболее значимых переменных:

Показатели качества второй модели нелинейной регрессии:

Уравнение множественной регрессии в чистом видеadj.Уравнение множественной регрессии в чистом видеRSSSEEFp-level
0,1820,148157,4311,835,2450

Вывод: модель некачественная, так как RSS и SEE принимают высокие значения, p-level стремится к нулю, коэффициент детерминации незначимо отличается от нуля.

Видео:Множественная линейная регрессия, часть 1Скачать

Множественная линейная регрессия, часть 1

Применение пошаговых алгоритмов включения и исключения переменных

Пример. Задание 6. Настроить пакет STATISTICA для применения пошаговых процедур включения (FORWARD STEPWISE) и исключения (BACKWARD STEPWISE). Для этого в диалоговом окне MULTIPLE REGRESSION указать Advanced Options (stepwise or ridge regression). В поле Method выбрать либо Forward Stepwise (алгоритм пошагового включения), либо Backward Stepwise (алгоритм пошагового исключения). Необходимо настроить следующие параметры:

  • в окне Tolerance необходимо установить критическое значение для уровня толерантности (оставить предложенное по умолчанию);
  • в окне F-remove необходимо установить критическое значение для статистики исключения (оставить предложенное по умолчанию);
  • в окне Display Results необходимо установить режим At each step (результаты выводятся на каждом шаге процедуры).

Построить, как описано выше, модели множественной линейной регрессии автоматически.

В результате применения пошагового алгоритма включения получено следующее уравнение множественной линейной регрессии:

Показатели качества модели нелинейной регрессии, полученной с применением пошаговой процедуры включения:

Уравнение множественной регрессии в чистом видеadj.Уравнение множественной регрессии в чистом видеRSSSEEFp-level
0,410,343113,671,616,110,002

В результате применения пошагового алгоритма исключения получено следующее уравнение множественной линейной регрессии:

Показатели качества модели нелинейной регрессии, полученной с применением пошаговой процедуры исключения:

Уравнение множественной регрессии в чистом видеadj.Уравнение множественной регрессии в чистом видеRSSSEEFp-level
0,220,186150,281,796,610

Видео:Регрессия - как строить и интерпретировать. Примеры линейной и множественной регрессии.Скачать

Регрессия - как строить и интерпретировать. Примеры линейной и множественной регрессии.

Выбор самой качественной модели множественной линейной регрессии

Пример. Задание 7. Сравнить модели, полученные на предыдущих шагах и определить самую качественную.

МодельРучнаяКв. перем.Лог. перем.forward stepwisebackward stepwise
Уравнение множественной регрессии в чистом виде0,2550,170,1820,410,22
adj.Уравнение множественной регрессии в чистом виде0,1840,1340,1480,3430,186
RSS122,01159,9157,43113,67150,28
SEE1,7051,8451,831,611,79
F3,5994,85,2456,116,61
p-level0,0130,012700,0020

Самая качественная модель множественной линейной регрессии — модель, построенная методом FORWARD STEPWISE (пошаговое включение переменных), так как коэффициент детерминации у неё самый высокий, а RSS и SEE наименьшие в сравнении значений оценок качества других регрессионных моделей.

Видео:Эконометрика. Построение модели множественной регрессии в Excel.Скачать

Эконометрика. Построение модели множественной регрессии в Excel.

Множественная регрессия и корреляция

Уравнение множественной регрессии в чистом виде

МНОЖЕСТВЕННАЯ РЕГРЕССИЯ И КОРРЕЛЯЦИЯ

2.1. МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Множественная регрессия — уравнение связи с несколькими независимыми переменными

Уравнение множественной регрессии в чистом виде

где у зависимая переменная (результативный признак);

Уравнение множественной регрессии в чистом виде независимые переменные (факторы).

Для построения уравнения множественной регрессии чаще ис­пользуются следующие функции:

• линейная — Уравнение множественной регрессии в чистом виде;

• степенная – Уравнение множественной регрессии в чистом виде

• экспонента — Уравнение множественной регрессии в чистом виде

• гипербола — Уравнение множественной регрессии в чистом виде

Можно использовать и другие функции, приводимые к линейно­му виду.

Для оценки параметров уравнения множественной регрессии применяют метод наименьших квадратов (МНК). Для линейных уравнений и нелинейных уравнений, приводимых к линейным, строится следующая система нормальных уравнений, решение кото­рой позволяет получить оценки параметров регрессии:

Уравнение множественной регрессии в чистом виде

Для ее решения может быть применён метод определителей:

Уравнение множественной регрессии в чистом виде, Уравнение множественной регрессии в чистом виде,…, Уравнение множественной регрессии в чистом виде,

где Уравнение множественной регрессии в чистом виде— определитель системы;

Уравнение множественной регрессии в чистом виде— частные определители, которые получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.

Другой вид уравнения множественной регрессии — уравнение регрессии в стандартизованном масштабе:

Уравнение множественной регрессии в чистом виде,

где Уравнение множественной регрессии в чистом виде, Уравнение множественной регрессии в чистом виде— стандартизованные переменные;

Уравнение множественной регрессии в чистом виде— стандартизованные коэффициенты регрессии.

К уравнению множественной регрессии в стандартизованном масштабе применим МНК. Стандартизованные коэффициенты регрессии (β-коэффициенты) определяются из следующей системы уравнений:

Уравнение множественной регрессии в чистом виде

Связь коэффициентов множественной регрессии Уравнение множественной регрессии в чистом видесо стандартизованными коэффициентами Уравнение множественной регрессии в чистом видеописывается соотношением

Уравнение множественной регрессии в чистом виде

Параметр a определяется как Уравнение множественной регрессии в чистом виде

Средние коэффициенты эластичности для линейной регрессии рассчитываются по формуле:

Уравнение множественной регрессии в чистом виде.

Для расчета частных коэффициентов эластичности применяется следующая формула:

Уравнение множественной регрессии в чистом виде.

Тесноту совместного влияния факторов на результат оценивает индекс множественной корреляции:

Уравнение множественной регрессии в чистом виде=Уравнение множественной регрессии в чистом виде.

Значение индекса множественной корреляции лежит в пределах от 0 до 1 и должно быть больше или равно максимальному парному индексу корреляции:

Уравнение множественной регрессии в чистом виде Уравнение множественной регрессии в чистом видеУравнение множественной регрессии в чистом виде.

Индекс множественной корреляции для уравнения в стандартизованном масштабе можно записать в виде:

Уравнение множественной регрессии в чистом виде=Уравнение множественной регрессии в чистом виде.

При линейной зависимости коэффициент множественной корреляции можно определить через матрицу парных коэффициентов корреляции:

Уравнение множественной регрессии в чистом виде=Уравнение множественной регрессии в чистом виде,

Уравнение множественной регрессии в чистом виде-определитель матрицы

парных коэффициентов корреляции;

Уравнение множественной регрессии в чистом виде-определитель матрицы

Частные коэффициенты (или индексы) корреляции, измеряющие влияние на у фактора х1 при неизменном уровне других факторов, можно определить по формуле

Уравнение множественной регрессии в чистом виде

или по рекуррентной формуле

Уравнение множественной регрессии в чистом виде

Частные коэффициенты корреляции изменяются в пределах от -1 до 1.

Качество построенной модели в целом оценивает коэффициент (индекс) детерминации. Коэффициент множественной детерминации рассматривается как квадрат индекса множественной корреляции:

Уравнение множественной регрессии в чистом виде.

Скорректированный индекс множественной детерминации содержит поправку на число степеней свободы и рассчитывается по формуле

Уравнение множественной регрессии в чистом виде

где n — число наблюдений;

m- число факторов.

Значимость уравнения множественной регрессии в целом оценивается с помощью F — критерия Фишера:

Уравнение множественной регрессии в чистом виде

Частный F-критерий оценивает статистическую значимость присутствия каждого из факторов в уравнении. В общем виде для фактора xi частный F-критерий определится как

Уравнение множественной регрессии в чистом виде

Оценка значимости коэффициентов чистой регрессии с помощью t-критерия Съюдента сводится к вычислению значения

Уравнение множественной регрессии в чистом виде

где mbi — средняя квадратическая ошибка коэффициента регрессии bi, она может быть определена по формуле:

Уравнение множественной регрессии в чистом виде.

При построении уравнения множественной регрессии может возникнуть проблема мультиколлинеарности факторов, их тесной линейной связанности.

Считается, что две переменные явно коллинеарны, т. е. находятся между собой в линейной зависимости, если rxixj≥0,7.

По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов. Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов.

Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами.

Если бы факторы не коррелировали между собой, то матрица парных коэффициентов корреляции между факторами была бы единичной матрицей, поскольку все недиагональные элементы rxixj (xi≠xj) были бы равны нулю. Так, для включающего три объясняющих переменные уравнения

Уравнение множественной регрессии в чистом виде

матрица коэффициентов корреляции между факторами имела бы определитель, равный 1:

Уравнение множественной регрессии в чистом виде,

так как Уравнение множественной регрессии в чистом видеи Уравнение множественной регрессии в чистом виде

Если же, наоборот, между факторами существует полная линейная зависимость и все коэффициенты корреляции равны 1, то определитель такой матрицы равен 0:

Уравнение множественной регрессии в чистом виде.

Чем ближе к 0 определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и надежнее результаты множественной регрессии. И наоборот, чем ближе к 1 определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.

Проверка мультиколлинеарности факторов может быть проведена методом испытания гипотезы о независимости переменных Ho: Уравнение множественной регрессии в чистом виде. Доказано, что величина Уравнение множественной регрессии в чистом видеимеет приближенное распределение x2 c Уравнение множественной регрессии в чистом видестепенями свободы. Если фактическое значение х2 превосходит табличное (критическое) Уравнение множественной регрессии в чистом виде, то гипотеза Ho отклоняется. Это означает, что Уравнение множественной регрессии в чистом виде,недиагональные ненулевые коэффициенты корреляции указывают на коллинеарность факторов. Мультиколлинеарность считается доказанной.

Для применения МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это означает, что для каждого значения фактора xj остатки имеют одинаковую дисперсию. Если это условие не соблюдается, то имеет место гетероскедастичность.

При нарушении гомоскедастичности мы имеем неравенства

Уравнение множественной регрессии в чистом видеУравнение множественной регрессии в чистом виде.

При малом объеме выборки для оценки гетероскедастичности может использоваться метод Гольдфельда-Квандта. Основная идея теста Гольдфельда-Квандта состоит в следующем:

1) упорядочение n элементов по мере взрастания переменной x;

2) исключение из рассмотрения С центральных наблюдений; при этом (nC):2>p, где p-число оцениваемых параметров;

3) разделение совокупности из (nC) наблюдений на две группы (соответственно с малыми и с большими значениями фактора х) и определение по каждой из групп уравнений регрессии;

При выполнении нулевой гипотезы о гомоскедастичности отношение R будет удовлетворять F-критерию со степенями свободы ((nC-2p):2) для каждой остаточной суммы квадратов Чем больше величина R превышает табличное значения F-критерия, тем более нарушена предпосылка о равенстве дисперсий остаточных величин.

Уравнения множественной регрессии могут включать в качестве независимых переменных качественные признаки (например, профессия, пол, образование, климатические условия, отдельные регионы и т. д.). Чтобы вест такие переменные в регрессионную модель, их необходимо упорядочить и присвоить им те или иные значения, т. е. качественные переменные преобразовать в количественные.

🎥 Видео

Уравнение множественной регрессии в Excel (устар.)Скачать

Уравнение множественной регрессии в Excel (устар.)

Эконометрика. Линейная парная регрессияСкачать

Эконометрика. Линейная парная регрессия

Множественная регрессия в MS Excel. Быстрое решение. И подробное решение. Калькулятор!Скачать

Множественная регрессия в MS Excel. Быстрое решение. И подробное решение. Калькулятор!

Множественная регрессия в программе Statistica (Multiple regression)Скачать

Множественная регрессия в программе Statistica (Multiple regression)

Множественная степенная регрессияСкачать

Множественная степенная регрессия

EViews. Урок 1. Построение модели множественной регрессии.Скачать

EViews. Урок 1. Построение модели множественной регрессии.

Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать

Эконометрика. Оценка значимости уравнения регрессии. Критерий Фишера

Множественная Линейная Регрессия || Машинное ОбучениеСкачать

Множественная Линейная Регрессия || Машинное Обучение
Поделиться или сохранить к себе: