Уравнение михаэлиса ментен анализ уравнения

Зависимость фермента от количества субстрата описывает ферментативная кинетика

Уравнения Михаэлиса-Ментен и Лайнуивера-Берка

Общую теорию ферментативной кинетики и зависимость активности фермента от субстрата.описали Л.Михаэлис и М.Л.Ментен, выразив его в своем уравнении. Бриггс и Холдейн усовершенствовали их уравнение, введя введя в него константу Михаэлиса (Km), определяемую экспериментально.

Уравнение Михаэлиса-Ментен показывает взаимосвязь максимально возможной скорости, реальной скорости реакции, константы Михаэлиса и концентрации субстрата. Так как пользоваться графиком, построенным в прямых координатах V и [S] для точных расчетов неудобно, то Г.Лайнуивер и Д.Бэрк преобразовали уравнение Бриггса–Холдейна в обратные координаты.

Уравнение Михаэлиса-Ментен
Уравнение Лайнуивера-Бэрка

На самом деле уравнение Михаэлиса-Ментен в данном виде предложили Бриггс и Холдейн, но в честь основоположников оно носит название Михаэлиса-Ментен.

Выделяют три основных решения уравнения Михаэлиса-Ментен:

1. Концентрация субстрата равна величине константы Михаэлиса ([S] = Km).
В этом случае, решая уравнение Михаэлиса-Ментен, получаем, что скорость реакции V будет равна половине максимальной Vmax.(V = ½ Vmax).

В математическом смысле Km соответствует концентрации субстрата при которой скорость реакции равна половине максимальной. Ее биологический смысл заключается в характеристике сродства фермента к субстрату, а именно: увеличение величины Кm означает снижение сродства фермента к субстрату.

2. Концентрация субстрата значительно больше Km ([S] >> Km). В этом случае величиной Km можно пренебречь, при решении получим, что скорость реакции максимальна (плато на графике).

3. Концентрация субстрата значительно меньше Km ([S]

Видео:ФЕРМЕНТАТИВНАЯ КИНЕТИКА: Занятие 1. Вывод уравнения Михаэлиса-МентенСкачать

ФЕРМЕНТАТИВНАЯ КИНЕТИКА: Занятие 1. Вывод уравнения Михаэлиса-Ментен

Анализ уравнения Михаэлиса-Ментена

1. Если концентрация субстрата в реакции низкая, т. е. [S] > Кs, величиной К можно пренебречь, тогда

где Vбиохим.р. = Vmax – уравнение нулевого порядка.

Уравнение Михаэлиса-Ментена было преобразовано Лайнуивером и Берком по методу двойных обратных величин: если имеется ра­венство между двумя величинами, то и обратные величины тоже равны:

1/V = (1/V) / (KS + [S]) / [S] – уравнение Михаэлиса — Ментена.

Уравнение михаэлиса ментен анализ уравнения

Уравнение михаэлиса ментен анализ уравнения– уравнение Лайнуивера — Берка.

Уравнение Михаэлиса-Ментена, где КS = К-1/K+1, носит ограни­ченный характер, так как учитывает только первый период процесса

и не учитывает второй

Оно справедливо лишь для коротких сроков действия ферментов, когда наблюдается избыток субстрата и малый выход продукта реакции.

Д. Холдейн и Д. Бриггс для механизма Е + S ↔ ЕS ↔ Е + Р

вывели улучшенное уравнение Михаэлиса- Ментена:

Уравнение михаэлиса ментен анализ уравнения,

где Кm = К-1 + К+2 / К+1 – константа Михаэлиса.

Константа Михаэлиса Кm является важной характеристикой фер­мента, которая определяет его сродство к субстрату:

Так как Кs = К-1 / К+1, то Кm > Кs, на величину К+2 / К+1. Константу Михаэлиса выражают в молях на литр (моль/л).

Физический смысл константы Михаэлиса

Если V = 1/2V, то Кm = [S]. Константа Михаэлиса равна концен­трации субстрата (S), при которой наблюдается скорость реакции, равная 1/2 максимальной скорости (моль/л).

5.4. Методы графического определения константы Михаэлиса

Графическое изображение константы Михаэлиса выглядит сле­дующим образом:

Уравнение михаэлиса ментен анализ уравнения

На графике по оси абсцисс откладывают концентрацию субстрата, по оси ординат – скорость реакции V, причем V – максимальная скорость, а V/2 – половина максимальной скорости. Отрезок на оси абсцисс – Кm.

Кроме того, используется графический способ определения констан­ты Михаэлиса по методу двойных обратных величин Лайнуивера и Берка.

Уравнение михаэлиса ментен анализ уравнения

Уравнение Лайнуивера – Берка имеет вид:

Это уравнение изображено на графике прямой линией у = ах + b. По оси абсцисс откладывают 1/[S], по оси ординат – 1/V. Наклон полученной прямой равен Кm/V, отрезок, отсекаемый прямой от оси ординат – 1/V.Если полученную прямую продолжить за ось орди­нат, то она отсечет от оси абсцисс отрезок, равный обратной величине константы Михаэлиса – 1/Кm.

Определить значение константы Михаэлиса можно также по графику Иди-Хофсти:

Уравнение михаэлиса ментен анализ уравнения

Количественная характеристика активности фермента

В настоящее время используют две единицы ферментативной ак­тивности: стандартная единица U (или единица активности) и катал.

Единица активности U фермента – это такое его количество, которое при определенных условиях катализирует превращение 1 мкмоль субстрата в 1 мин, или, если атаке подвергается более чем одна связь в молекуле субстрата, 1 мк-экв (группы) в 1 мин.

Уравнение михаэлиса ментен анализ уравнения

Катал (кат) – это каталитическая активность фермента, которая увеличивает скорость реакции на 1 моль/с в определенной тест-системе.

В обоих случаях строго оговариваются условия, т. е. температура, рН, концентрация субстрата.

Удельную активность фермента определяют путем деления числа единиц ферментативной активности на массу белка или ткани (в г или мг).

Молярную активность фермента определяют путем деления чис­ла единиц ферментативной активности в образце на массу фермента, выраженную в микромолях (для очищенных ферментов):

Уравнение михаэлиса ментен анализ уравнения;

Видео:USMLE Step 1 - Фармакология: кинетика ферментов | уравнение Михаелиса - Ментена и не толькоСкачать

USMLE Step 1 - Фармакология: кинетика ферментов | уравнение Михаелиса - Ментена и не только

Это и есть уравнение Михаэлиса-Ментен.

Вариант 3.

Уравнение Михаэлиса – Ментена, его вывод и анализ приложенности к описанию зависимости начальной скорости ферментативных реакций от концентрации субстрата.

ВЫВОД И АНАЛИЗ УР МИХАЭЛИСА-МЕНТЕН

Михаэлис и Ментен предположили, что мех-м ферм р-й описывается моделью:

При формулировке кинетического выражения для скорости ферментативной реакции Михаэлис и Ментен сделали три допущения:

1) Стационарное состояние реакции в момент равновесия, когда скорости образования и расходования ES равны;

2) Весь фермент в условиях насыщающих концентраций субстрата превращается в энзимсубстратный комплекс ES;

3) Если весь фермент в виде ES, то скорость реакции максимальна и Vmax=k2[ES].

Образование ES: [ES]=k1[S][E] (I)

Расходование ES: [ES]=k-1[ES]+k2[ES] (II)

Приравнивая выражения (I) и (II) и сокращая обе части на k1 получаем:

[S][E] = [ES](k-1 + k2)/k1 = [ES]Km, где Km = (k-1 + k2)/k1

Выразим равновесную концентрацию [E] через начальную [Eo]: [E] = [Eo] — [ES]

[S]([Eo]-[ES])= [ES]Km, переносим [S] в правую часть выражения и делим обе части на [ES]:

Поскольку трудно (если не невозможно) измерить [ES], произведем замену с учетом того, что в насыщающих концентрациях [S] весь [Eo] перейдет в [ES] и максимальная скорость при этом будет равна Vmax=k2[ES]=k2[Eo].

В это же время скорость реакции равна V=k2[ES]. Через отношение этих скоростей выразим [Eo]/[ES]:

В уравнении (III) произведем замену отношения [Eo]/[ES] на Vmax/V и получаем:

Это и есть уравнение Михаэлиса-Ментен.

Ограничения кинетики Михаэлиса-Ментен

Михаэлис и Ментен вывели уравнение с учетом двух предположений (быстро устанавливающееся равновесие и избыток субстрата). Позднее было показано, что уравнение справедливо, то есть хорошо описывает реакцию, при выполнении всех следующих условий.

7 основных постулатов для выполнения уравнения Михаэлиса-Ментен.

1. В ходе реакции образуется кинетически устойчивый фермент-субстратный комплекс.

2. Определяемая с помощью уравнения константа Кs является константой диссоциации фермент-субстратного комплекса: это справедливо, только если k2

V = Vmax[S]/(Km+[S]) — ур михаэлиса-ментен

Граф зав-сть для ур имеет вид: Кривая уравнения Михаэли-са-Ментен: гиперболическая зависимость начальных скоростей катализируемой ферментом реакции от концентрации субстрата.

Уравнение михаэлиса ментен анализ уравнения

Константа Михаэлиса измеряется в молях на литр и бывает от 10-2 до 10-7, чем меньше Кm, тем активнее фермент. При V=1/2Vmax, имеем Km = [S]. Однако, определение Vmax затруднительно по асимптоте. Для устранения этого неудобства ЛАЙНУИВЕР и БЭРК приравняли обратные зависимости левой и правой частей уравнения.

Уравнение михаэлиса ментен анализ уравнения

Своеобразие проявления второго закона термодинамики в биологических системах.

— ограничивает переход какой –либо Е в работу или в другой тип энергии. Ни какой тип Е не может перейти в работу с КПД – 100%.

1) не возможно перевести тепло от более холодной системы к более горячей без соответствующих изменений в этих системах и в окр. среде, т.е нельзя закипятить стакан с водой в холодильнике.

2) Самопроизвольно могут протекать лишь те процессы, которые связаны с переносом Е от более высокого уровня к более низкому, т.е. по градиенту.

3) Невозможно совершить работу против градиента без соответствующих изменений.

Градиент — векторная величина, разность величин того или иного параметра в 2-х точках, отнесенных к расстоянию между ними. Градиент концентрации – это концентрация «в» и «извне» на толщину мембраны (осмотич. градиент, концентрационный гр. (транспорт ионов и др. в-в), электрический гр.).

Все процессы, протекающее в природе, подчиняются первому закону ТД, однако не всякий возможный процесс осуществим на практике. Исходя из первого закона, нельзя определить направление самопроизвольного процесса. Второй закон ТД позволяет предсказать направление пр-са при заданных усл.. В отл. от 1 закона ТД он не носит всеобщего характера и применим лишь к сист., сост. из большого числа частиц.

14. Доказательства применимости второго закона ТД к биосистемам.

Применимость второго закона ТД к биосистемам:

1. Второй закон ТД был сформулирован для характристики изолированных систем. Реальные био системы являются открытыми.

2. Значение энтропии строго определено для равновесного состояния. Био системы в своем развитии проходят через целый ряд неравновесных состояний.

Развитие орг-мов сопровождаются усложнением их организации – это самопроизвольное ↓ энтропии живых систем. В реальных усл. развитие орг-мов, сопр-ся ↓ общей величины их энтропии за счет того, что в др. участках внешней среды идут сопряженные процессы с обр-нием положительной энтропии. Суммарное изменение энтропии в системе организм + внешняя среда всегда положительно.

Био системы характеризуются наличием большого кол-ва градиентов (осмотический, электрический, концентрационный). Градиент какого-либо т/д параметра изменяется с расстоянием. Биосистема способна совершать работу, если в ней имеется градиент. Градиент – своеобразное депо энергии.

Совершение работы в системе связано с реализацией этой свободной энергии. Если совершается работа, то градиент, за счет Е которого это происходит, ↓, но параллельно возникает другой градиент противоположной направленности. При необратимых пр-сах величина второго градиента будет меньше, чем величина первого.

Вариант 1.

Закон термодинамики, закон Гисса, термодинамическое равновесие, стационарные системы.

8. Первый закон ТД в биологии; доказательства его применимости к живым системам. Своеобразие проявления первого закона ТД в биосистемах.

Закон: работа совершаемая системой = разности м/у количеством теплоты, сообщаемой системой и изменением её внутр. Е: ∆А = ∆Q — ∆U. Закон – это количественная форма закона сохранения энергии. Кол-во теплоты, поступающей в систему расходуется на ↑ внутр. Е системы за вычетом совершенной работы.

Внутренняя Е (U) – сумма (совокупность) всех типов Е и взаимодействий входящих в систему частиц. (Е вращательного движения атомов, Е взаим-вия водородных атомов).

Работа биоситемы может совершаться за счёт энтропии и внутр. Е (но не внеш. теплоты, т.к. если бы можно было за счёт притока из вне биосист. нагревались бы 1740С, см. ниже в этом же вопросе – это типа своеобразие закона) (это следствие 1 закона).

Доказательство справедливости закона для био систем: 1780 Лавуазье и Лаплас опыт с морскими свинками. Е хим. связей в белках, жирах и углеводах переходит в тепловую – метод непрямой (?) калориметрии. Свинок кормили – мерили тепло, столько же хавчика сжигали – тоже мерили, сравнили, получили числа одного порядка. По умному: совпадение тепловых эффектов при прямом сжигании продуктов и при их окислении в орг-ме морской свинки свид-т о том, что пути превращения прод-в питания в метаб-ких процессах и хим. р-циях вне живой клетки яв-ся эквивалент-ми с точки зрения суммарных тепловых эффектов. Живые орг-мы не являются источником новой Е. Окисление поступающих в живой организм пит. в-в приводит к высвобождению в нем эквивалетного к-ва Е.

Еще док-во: работа мышцы при 250С (289К = Т), КПД = 30% = 1/3.

Т1 = (298*3) /2 = 447К = 1740С.

Метод прямой калориметрии исполь-ся и на человеке (Этуотер). Исполь-ся герметичная камера: ч/з систему труб подается определ. кол-во О2, считают сколько выд-ся СО2, Н2О и т.д. есть датчики на t. Ограничения: 1) живой объект не должен накапливать массу и расти. 2) жив организм не должен совершать работу (физ. нагрузку). Кол-во Е, поглощенной за сутки чел. орг-мом вместе с пит. в-ми, равно выделенной за это же время теплоте. След-но, закон справедлив для жив. орг-мов.

Метод непрямой калориметрии: С полным и неполным газовым анализом. Ввели коэффициент: при расщеплении 1 мол-лы глюкозы исп-ся 6 мол-л О2, а выделяется 6 мол-л СО2, 6 мол-л Н2О и 678 кал. ДК = выд СО2 в ед времени / погл О2 в ед времени. Производят сравнение состава и объема вдых. и выдых. воздуха. Исп. мешок Дугласа. Для анализа исп. газоанализаторы: ГА Холдейна: система стеклян. трубочек, погл-щая CO2 и O2. Сейчас ГА с поглощением световых потоков. Нормальный дых. коэфф. 0,85±0,03. Нахождение КЭК (калориметрический эквивалент кислорода) – численно равен кол-ву Е, высвобождающейся в организме при потреблении 1 л О2. В клинических условиях исп. неполный ГА, не считают СО2. Считают объем поглощенного О2 с пом. спирографа. Диаграмма под наклоном, из замкнутой системы постепенно уходит О2.

10. Закон Гесса, его применимость к биопроцессам.Следствие закона Гесса, его практическое значение.

Теплоту у теплокровных раздел. на 2 типа:1) первичная (осн. обмен, Q, кот. выд-ся сразу после поглощения пищи при взаимод. с О2, т.е выд-ся в рез-те протекания биохим. проц-ов. В живых орг-мах любая хим. р-ция идет с КПД термин «тепловой эффект р-ции» заменяют термином «энтальпия р-ции». Энтальпия р-ции – это изменение энтальпии системы при протекании химической реакции. Она может быть больше нуля или меньше нуля. Если ∆H > 0, то Q > 0 (эндотермические реакции).

Для равновесного сост. S стремится к мах, U=0. Стац. сост. отличается тем, что S ≠ мах, а является постоянной величиной, S=const, U не равняется 0, U=const. Ежесекундный прирост энтропии стремится к min. Любая живая система может находиться только в стац. сост. Если достигнуто состояние ТД равновесия — это уже не живая система. Качество стационарного состояния может быть различным.

В открытых системах:

S состоит из двух показателей.

Si – внутри самой сист., S — самой системы, Se – внешняя среда.

dS=dSi+dSe (d – это ∆ — это изменение)

Когда dSe > dSi и dSe 0.

Состоянию ТД равновесия — характерно мах значение S (S=max), U=0, т.е. Е, которая расходуется на совершение А.

Сходство: стац. и равновесное состояния не зависят от времени.

Отличия стац. сост. от равновесия (из конспекта):

1) своб. Е (∆G) в стац. сост. есть величина постоянная во времени и не равна 0. В ТД равн. ∆G=const, но ∆G =0 => открытые сист., если вывести из стац. сост. могут совершать работу; при ТД равновесии не способны совершать работу.

2) энтропия. В стац. сост. =const, но она не max. (∆G) ∆S ≠ max = const.

3) . в стац. сост. проявляется кинетический параметр (фактор) (изменение энтропии во времени) dS/dt = dSi/dt + dSe/dt.

* постоянный обмен энергией с окружающей средой

* постоянно тратится свободная энергия на поддержание состояния

* т/д потенциалы постоянны, G и F не равны 0

* энтропия постоянна, но не максимальна

* отсутствует поток вещества и энергии в окружающую среду и обратно

* на поддержание этого состояния не затрачивается свободная энергия

* работа способности системы равна 0, т/д потенциалы равны 0

* в системе отсутствуют градиенты

Переход на новый стац. уровень:

2 пути: 1) «овершот» — по нему переходят живые организмы при изм внеш. усл. (приспособление). График.

Нижняя стрелочка – это старый стац. уровень.

Верхняя стрелочка – это новый стац. уровень.

2) «ложный старт» — усиление или уменьшение О2, выращивание лука с О2 и без. График. С О2 – аэробный распад углеродов. Без О2 – обмен в-в переходит на анаэробный путь. А если потом снова дать О2 – то получится график 2 (то что обведено кружочком – там осущ-ся уничтожение продуктов анаэробного пути). Пример для чела: пока не расщепится молочная к-та осуществлять работу дальше нельзя.

17. Теорема Пригожина и направленность эволюции биосистем. Энтропия и биологический прогресс.

Стац. сост. хар-ся min ежесекундным приростом энтропии (благодаря этому происходит эволюция).

Теорема: при постоянных внеш. усл. в системе, находящейся вблизи положения ТД равновесия в стац. сост., скорость возрастания энтропии, за счёт необходимости внутр. процессов, принимает постоянное минимальное значение отличное от нуля.

Или: В стационарных состояниях при фиксированных внешних параметрах локальная продукция энтропии в открытой т/д системе стремится к минимальному значению.

Энтропия – мера рассеивания свободной энергии, следовательно любая открытая т/д система в стационарном состоянии стремится к минимальному рассеиванию свободной энергии. Если в силу причин система отклонилась от стационарного состояния, то вследствие стремления системы к минимальной энтропии, в ней возникают внутренние изменения, возвращающие ее в стационарное состояние.

Величина, кот это всё характеризует:

β= T* (dS/dt), где β – диссипативная фукнкция. β>0, min. С этим связан Критерий эволюции открытых систем: ∆β/dt происходит преобразование одного вида Е в другой – это центральное событие фотосинтеза.

Физ-хим. сущность фотосинтеза: Ф. – процесс преобразования электромагнитной Е в Е хим. связей, сопровождающийся ↑ энергетического потенциала системы. Система является ТД открытой. При поглощении солнечного излучения растениями, водорослями, нек. микро, возрастают уровни свободной Е (∆F) и общей энергии (∆U), в которой значительную часть составляет Е электрона: ∆F = ∆U — Т∆S

КПД процесса фотосинтеза составляет обычно 6-8%, у хлореллы он достигает 20-25%. Большая часть поглощённой листом энергии теряется на тепловое излучение. В энергию химич. связей включается в ср. 1—2% поглощённой ФАР. Осн. показатель Ф.— его интенсивность, т. е. кол-во газа, поглощённого или выделенного единицей массы или поверхности листа в единицу времени. Интенсивность Ф. зависит от вида растений, состояния листьев, внеш. условий (свет, СO2). Ф. лесных древесных растений в 5—8 раз ниже, чем Ф. травянистых растений открытых местообитаний.

Реакции, протекающие под воздействием светового излучения, называются фотохимическими Основной закон фотохимии – закон квантовой эквивалентности (А. Эйнштейн, 1912 г): каждый поглощенный квант света hν вызывает изменение одной молекулы.

Важнейшим параметром фотохимической реакции служит квантовый выход γ:

γ = число фотохим. превращений/число поглощений квантов.

В зависимости от типа фотохимической реакции квантовый выход может меняться в широких пределах. Это связано с возможностью потери поглощенной энергии до фотопревращения. Если время существования фотовозбужденной молекулы и скорость фотодиссоциации совпадают, то γ

1. При γ >> 1 фотореакция идет по цепному механизму. В частности для реакции H2 + Cl2 = 2HCl γ = 105.

Типы фотохимических реакций:

1) Фотодиссоциация (фотолиз) приводит к разложению исходного вещества, поглотившего световую энергию. Примерами реакции фоторазложения служат такие: разложение галогенидов серебра (основа серебряной фотографии), фотолиз паров ацетона CH3CO CH3 → CO + другие продукты.

2) Фотосинтез приводит к образованию более сложных соединений. Примерами реакций фотосинтеза служат:

фотосинтез озона в верхних слоях атмосферы, создающий защитный озоновый слой:

О2→О +О — фотодиссоциация

О2+ О→ О3 — фотосинтез

фотосинтез органических соединений из углекислого газа, воды, минеральных веществ зелеными растениями. В частности, синтез глюкозы может быть описан уравнением:

6СО2 + 6Н2О →глюкоза + 6О2

3) Фотохромизм – явление обратимого изменения пространственного или электронного строения молекул под действием света, сопровождающееся изменением окраски вещества. На основе фотохромных материалов изготовляются линзы с переменным светопропусканием, оконные стекла, фотохромные системы на основе некоторых органических и координационных соединений.

Вариант 2.

Графическая зависимость скорости реакции от субстрата, фермента и температуры

42 Зависимость скор р-ции от темп. Ур Аррениуса

Для характеристики зависимости скорости химической реакции от температуры было введено понятие температурного коэффициента скорости (γ), равного отношению константы скорости при температуре (Т + 10) к константе скорости при температуре Т (т.е. γ показывает, во сколько раз изменяется константа скорости при увеличении температуры на 10 градусов):

Температурный коэф. Вант-гоффа-Q10= V t+10/V t.

Экспериментально было установлено, что повышение температуры на 10 К в области обычных температур (≈ 300 К) увеличивает скорость многих гомогенных реакций в 2 4 раза, т. е. для этих реакций γ = (2 4). Это правило называется правилом Вант–Гоффа.

В общем случае отношение констант скорости реакции k2 и k1, определенных при двух различных температурах Т2 и Т1, равно

Более точную зависимость скорости реакции от температуры дает уравнение Аррениуса:

где k — константа скорости реакции, R — универсальная газовая постоянная, Е — энергия активации химической реакции. В случае простых реакций величина Е показывает, какой минимальной (избыточной по сравнению со средней) энергией в расчете на 1 моль должны обладать реагирующие частицы, чтобы они могли вступить в химическую реакцию. В случае сложных реакций величина Е называется эмпирической или кажущейся энергией активации и в общем случае зависит от энергий активации отдельных стадий данной реакции.

Проинтегрировав уравнение (10.16), получим уравнение Аррениуса в интегральной форме:

где А — предэкспоненциальный множитель. Физический смысл А в случае простых реакций: мономолекулярных — это частота колебаний по разрываемой связи (А  1013 сек-1), бимолекулярных — величина А пропорциональна общему числу столкновений между молекулами реагирующих веществ (А  10-10  10-11 см3/(мол-л•сек).

Есть еще такое Ур-е: V= pZeEакт/RT, где р-стерический фактор, Z- число столкновений молекул, Еакт — энергия активации

Зависимость скорости реакции от температуры дает уравнение Аррениуса:

где k — константа скорости реакции, R — универсальная газовая постоянная, Е — энергия активации химической реакции. В случае простых реакций величина Е показывает, какой минимальной (избыточной по сравнению со средней) энергией в расчете на 1 моль должны обладать реагирующие частицы, чтобы они могли вступить в химическую реакцию. В случае сложных реакций величина Е называется эмпирической или кажущейся энергией активации и в общем случае зависит от энергий активации отдельных стадий данной реакции.

Проинтегрировав уравнение (10.16), получим уравнение Аррениуса в интегральной форме:

где А — предэкспоненциальный множитель. Физический смысл А в случае простых реакций: мономолекулярных — это частота колебаний по разрываемой связи (А  1013 сек-1), бимолекулярных — величина А пропорциональна общему числу столкновений между молекулами реагирующих веществ (А  10-10  10-11 см3/(мол-л•сек).

Проинтегрировав ур-е (10.16) в пределах температур от Т1 до Т2, получим:

Энергию активации можно определить как аналитически по уравнению (10.18), так и графическим методом. Для этого необходимо знать ряд констант скоростей при разных температурах. Если реакция подчиняется уравнению Аррениуса, то зависимость lnk от 1/T должна выражаться прямой линией, что следует из уравнения (10.17) (рис. 7).

Уравнение михаэлиса ментен анализ уравнения

Для очень большого числа реакций энергия активации находится в пределах от 60 до 240 кДж/моль, т.е. примерно соответствует энергиям химических связей.

Энерг актив. Связана с Q10: Е=0,46T1*T2lgQ10

44 КИНЕТИКА ФЕРМЕНТ РЕАКЦИЙ, акт ферм, ед измерен акт и колич ферм.

ферм– это специфические органические катализаторы, синтезируемые живыми клетками. Как правило все ферменты представляют собой белки с различными молекулярными массами: от 9 кДа до 1000 кДа. Каждый фермент катализирует определённую химическую реакцию.

Субст- это вещества, с которыми происходит химическое превращение под действием ферментов. Субстратами ферментов могут быть как природные, так и химически синтезированные вещества.

1. с 1 активным центром (связывает S, расщепляет связи + связан с активацией и

2. кроме активного каталитического центра имеется аллостерический центр.

По взаимодействию с кофакторами:

1. ковалентная связь с кофактором — простетическая группа

2. нековалентное связывание — отделяется при гидролизе.

1. ускоряют протекание реакций

2. являются специфичными (мало-, относительно, абсолютно)

При присоединении субстрата к ферменту, его связи переходят в напряжённое состояние, что снижает энергию активации.

Факторы влияющие на активность:

t — идет как ферментативный процесс, так и денатурация белка. Q10 – 2

Уравнение михаэлиса ментен анализ уравнения

2. кислотность среды. Амилаза слюны — рН =7-7.5 , пепсин желудка

3. концентрация S

Уравнение михаэлиса ментен анализ уравнения

На начальном участке графика [S] низкая→ реакция первого порядка.

На втором — переходная стадия → переходный порядок реакции. На третьем участке (плато) → перенасыщение S→0 порядок реакции.

Кат. акт ферм — это способность фермента превращать большое количество молекул субстрата, в то время как сам он к концу реакции остается неизменным. Ферменты различаются по своей каталитической способности. Например, 1 моль трипсина осуществляет 102 циклов в секунду, глюкозоксидаза — 17×103 циклов в секунду и т.д. Это называется “числом оборотов фермента”. Число оборотов варьирует от 1 до 106 в зависимости от природы фермента. Каталитическую активность ферментов выражают в единицах активности.

Международная ед акт (E) — это количество фермента, которое катализирует превращение 1 мкмоля субстрата в 1 минуту в оптимальных условиях.

Ед акт в системе СИ (катал) — соответствует количеству фермента, которое катализирует превращение 1 моля субстрата в 1 секунду.

Соотношение между единицами активности: 1 E = 16,67 нанокатал; В медицине активность ферментов выражают чаще всего в единицах активности на 1 л биологической жидкости. Удельная активность фермента — это активность, выраженная в единицах активности на 1 мг (или 1 г) белка или 1 мг (1 г) препарата фермента. Используется в биохимической практике.

45 Осн положен теор ферм кинетики и общ теор действ фер-та

Предварительные эксперименты по изучению кинетики ферментативных реакций показали, что скорость реакции E + S —> E + P, вопреки теоретическим ожиданиям, не зависит от концентрации фермента и субстрата так, как в случае обычной реакции второго порядка. Самая ранняя попытка математически описать ферментативные реакции была предпринята Дюкло в 1898 г. Браун (1902) и независимо от него Анри (1903) впервые выдвинули гипотезу об образовании в ходе реакции фермент-субстратного комплекса. Это предположение основывалось на трех экспериментальных фактах:

1. папаин образовывал нерастворимое соединение с фибрином

2. субстрат инвертазы — сахароза могла защищать фермент от тепловой денатурации

3. было показано, что ферменты являются стереохимически специфическими катализаторами

Х-КА ДЕЙСТВИЯ ФЕРМ:

1. специфичность действия-способность ускорять протекание 1 или нескольких реакций (амилазная реакция расщепляет крахмал до глюкозы)

а. абсолютная- определенный субстрат;

б. относительная- ферменты, которые катализируют ращепление определенного типа связи. (пепсин)

2. ускорение протекания ферментативн. Реакций- каталитичность. Ферменты действуют в мыгких условиях (норм давление, pH, температура): гидролиз крахмала

Амилаза = 37 градусов, pH7, скорость выше, чем при неорган.катализе.

2. регулируемость – есть факторы под воздействием которых скорость может увеличится или уменшаться

В 1913 году Михаэлис и Ментен опубликовали свою теорию общего механизма ферментативных реакций. Их уравнение стало фундаментальным принципом всех кинетических исследований ферментов вот уже почти целый век.

т.е. фермент Е вступает во взаимодействие с субстратом S с образованием промежуточного комплекса ES, который далее распадается на свободный фермент и продукт реакции Р. Математическая обработка на основе закона действующих масс дала возможность вывести уравнение, названное в честь авторов уравнением Михаэлиса–Ментен, выражающее количественное соотношение между концентрацией субстрата и скоростью ферментативной реакции:

где v – наблюдаемая скорость реакции при данной концентрации субстрата [S]; KS– константа диссоциации фермент-субстратного комплекса, моль/л; Vmax– максимальная скорость реакции при полном насыщении фермента субстратом.

Основной механизм действия ферментов-они снижают Е активации за счет образования фермент-субстрат копмлекса.

Катализ приводит к ускорению достижения равновесия за счет снижения энергии активации (Еа), часто ступенчато.

Уравнение михаэлиса ментен анализ уравнения

Три стадии процесса:

1) E + S —— ES (K = k1/k-1) (БЫСТРАЯ)

2) ES —— EP (k2)(медленная)

Таким образом, в момент равновесия скорости образования и исчезновения энзимсубстратного комплекса (ES) равны:

📹 Видео

Биохимия | Кинетика ферментативных реакций: константа Михаэлиса и график Лайнуивера-БеркаСкачать

Биохимия | Кинетика ферментативных реакций: константа Михаэлиса и график Лайнуивера-Берка

Асеев В. В. - Основы энзимологии - Кинетика ферментативных реакцийСкачать

Асеев В. В. - Основы энзимологии - Кинетика ферментативных реакций

Ферментативная кинетикаСкачать

Ферментативная кинетика

Асеев В. В. - Основы энзимологии - Ферментативная кинетика Уравнение Михаэлиса-МентенСкачать

Асеев В. В. - Основы энзимологии - Ферментативная кинетика Уравнение Михаэлиса-Ментен

Разбираем Michaelis-Menten and Lineweaver-Burk plots.Скачать

Разбираем Michaelis-Menten and Lineweaver-Burk plots.

Кинетика. О чем говорят графики. БиохимияСкачать

Кинетика. О чем говорят графики. Биохимия

Влияние концентрации на скорость химических реакций. 10 класс.Скачать

Влияние концентрации на скорость химических реакций. 10 класс.

Гладилин А.К. - Введение в специальность - 10. Ферментативная кинетикаСкачать

Гладилин А.К. - Введение в специальность - 10. Ферментативная кинетика

ФЕРМЕНТЫ 5.Основы ферментативного катализа. Кинетика ферментативных реакций.Скачать

ФЕРМЕНТЫ 5.Основы ферментативного катализа. Кинетика ферментативных реакций.

Физическая химия #3. Первый, второй и третий порядки химической реакции. Времена полупревращенияСкачать

Физическая химия #3. Первый, второй и третий порядки химической реакции. Времена полупревращения

Рубин А. Б. - Биофизика I - Ферментативные реакцииСкачать

Рубин А. Б. - Биофизика I - Ферментативные реакции

Лекция 10 || 2021 || Параллельные реакции (завершение), катализ, схема Михаэлиса-Ментен (начало)Скачать

Лекция 10 || 2021 || Параллельные реакции (завершение), катализ, схема Михаэлиса-Ментен (начало)

Химическое равновесие. Закон действующих масс.Скачать

Химическое равновесие. Закон действующих масс.

Лекция 11 || 2021 || Схема Михаэлиса-Ментен (завершение), гетерогенный катализСкачать

Лекция 11 || 2021 || Схема Михаэлиса-Ментен (завершение), гетерогенный катализ

25. Схема реакции и химическое уравнениеСкачать

25. Схема реакции и химическое уравнение

Гладилин А.К. - Введение в специальность - 12. Полное неконкурентное ингибированиеСкачать

Гладилин А.К. - Введение в специальность - 12. Полное неконкурентное ингибирование

Этапы ферментативного катализа. Взаимодействие ферментов с несколькими субстратамиСкачать

Этапы ферментативного катализа. Взаимодействие ферментов с несколькими субстратами

Уравнение Гендерсона-ХассельбахаСкачать

Уравнение Гендерсона-Хассельбаха
Поделиться или сохранить к себе: