Уравнение мгновенного тока индуктивной катушки

Реальная катушка в цепи переменного тока

Уравнение мгновенного тока индуктивной катушки

Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца — Джоуля.

Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р, а изменение энергии в магнитном поле — реактивной мощностью Q.

В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.

Видео:катушка в цепи постоянного токаСкачать

катушка в цепи постоянного тока

Схема замещения катушки с последовательным соединением элементов

В схеме с последовательным соединением элементов реальная катушка характеризуется активным сопротивлением R и индуктивностью L.

Активное сопротивление определяется величиной мощности потерь

R = P/I 2

Уравнение мгновенного тока индуктивной катушки

а индуктивность — конструкцией катушки. Предположим, что ток в катушке (рис. 13.9, а) выражается уравнением i = Imsinωt. Требуется определить напряжение в цепи и мощность.
При переменном токе в катушке возникает э. д. с. самоиндукции eL поэтому ток зависит от действия приложенного напряжения и эдс eL. Уравнение электрического равновесия цепи, составленное по второму закону Кирхгофа, имеет вид:Уравнение мгновенного тока индуктивной катушки

Приложенное к катушке напряжение состоит из двух слагаемых,одно из которых uR равно падению напряжения в активном сопротивлении, а другое uL уравновешивает эдс самоиндукции.

Уравнение мгновенного тока индуктивной катушки

В соответствии с этим катушку в схеме замещения можно представить активным и индуктивным сопротивлениями, соединенными последовательно (рис. 13.9, б).
Дополнительно заметим, что оба слагаемых в правой части равенства (13.12) являются синусоидальными функциями времени. Согласно выводам полученных в этих предыдущих двух (первая, вторая) статьях получим — uR совпадает по фазе с током, UL опережает ток на 90°.

u = R*Imsinωt + ωLImsin(ωt+π/2).

Видео:Урок 287. Индуктивность контура (катушки). Явление самоиндукцииСкачать

Урок 287. Индуктивность контура (катушки). Явление самоиндукции

Векторная диаграмма реальной катушки и полное её сопротивление

Несовпадение по фазе слагаемых в выражении (13.12) затрудняет определение амплитуды и действующей величины приложенного к цепи напряжения U. Поэтому воспользуемся векторным способом сложения синусоидальных величин. Амплитуды составляющих общего напряжения

а действующие величины

Вектор общего напряжения

Для того чтобы найти величину вектора U, построим векторную диаграмму (рис. 13.10, а), предварительно выбрав масштабы тока Mi и напряжения Мu.

За исходный вектор диаграммы принимаем вектор тока I. Направление этого вектора совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза заданного тока Ψi =0). Как и ранее, эту ось удобно (но не обязательно) направить по горизонтали.

Вектор UR по направлению совпадает с вектором тока I, а вектор UL направлен перпендикулярно вектору I с положительным углом.

Из диаграммы видно, что вектор тока I общего напряжения U отражает вектор тока I на угол φ>0, но φ 2 Z (13.21)

Величину полной мощности можно получить из выражения (13.22), которое легко доказать на основании формул (13.19) и (13.20):

Уравнение мгновенного тока индуктивной катушки (13.22)

Мощности S, Р, Q графически можно выразить сторонами прямоугольного треугольника (см. рис. 13.10, в). Треугольник мощностей получается из треугольника напряжений, если стороны последнего, выраженные в единицах напряжения, умножить на ток. Из треугольника мощностей можно определить

cosφ = P/S; sinφ = Q/S; tgφ = Q/P. (13.23)

Полная мощность имеет ту же размерность, что Р и Q, но для различия единицу полной мощности называют вольт-ампер (В · А).

Активная мощность Р меньше или равна полной мощности цепи.
Отношение активной мощности цепи к ее полной мощности P/S =
= cosφ называют коэффициентом мощности.

Назначение приемников электрической энергии — преобразование
ее в другие виды энергии. Поэтому колебания энергии в цепи не только
бесполезны, но и вредны, так как при этом в приемнике не совершается
полного преобразования электрической энергии в работу или тепло,
а в соединительных проводах она теряется.

Видео:Урок 28. КАТУШКА ИНДУКТИВНОСТИ в цепи переменного токаСкачать

Урок 28.  КАТУШКА ИНДУКТИВНОСТИ в цепи переменного тока

Схема замещения реальной катушки с параллельным соединением элементов

Уравнение мгновенного тока индуктивной катушки

Для реальной катушки можно составить и другую расчетную схему — с параллельным соединением двух ветвей: с активной G и индуктивной BL проводимостями. На рис. 13.12, б эта схема показана в сравнении со схемой последовательного соединения активного и индуктивного сопротивлений (рис. 13.12, а), рассмотренной ранее.
Покажем, что схемы рис. 13.12, а, б эквивалентны в том смысле, что при одинаковом напряжении сохраняются неизменными ток в неразветвленной части цепи, активная и реактивная мощности.

Вектор тока I можно разложить на две взаимно перпендикулярные составляющие и в соответствии со схемой и векторной диаграммой на рис. 13.12, б выразить векторным равенством

Для схемы параллельного соединения активного и индуктивного элементов общим является приложенное напряжение, а токи разные: IG —ток в ветви с активной проводимостью, по фазе совпадает с напряжением; IL — ток в ветви с индуктивной проводимостью, по фазе отстает от напряжения на угол 90°.

Вектор тока I и его составляющие IG и IL образуют прямоугольный треугольник, поэтомуУравнение мгновенного тока индуктивной катушки

Составляющая тока в активном элементе

Проекция вектора тока I на направление напряжения называется активной составляющей вектора тока и обозначается Iа. Для катушки по схеме на рис. 13.12, б Ia = IG.

Составляющая тока в реактивном элементе

Проекция вектора тока I на направление, перпендикулярное вектору напряжения, называется реактивной составляющей вектора тока и обозначается . Для катушки Iр = IL .

Стороны треугольника токов, выраженные в единицах тока, можно разделить на напряжение U и получить подобный треугольник проводимостей, катетами которого являются активная G = IG/U и индуктивная ВL = IL/U проводимости, а гипотенузой — величина Y = I/U, называемая полной проводимостью цепи.

Из треугольника проводимостей и с учетом ранее полученных выражений из треугольника сопротивлений получимУравнение мгновенного тока индуктивной катушки

Видео:Почему UL опережает iL на 90°│Сдвиг фаз между UL и iL│Катушка в цепи переменного токаСкачать

Почему UL опережает iL на 90°│Сдвиг фаз между UL и iL│Катушка в цепи переменного тока

Катушка индуктивности в цепях переменного тока — формулы и определение с примерами

Переменный электрический ток:

До сих пор рассматривались электрические цепи, содержащие в различных сочетаниях резисторы, конденсаторы и катушки, с источником постоянного тока либо без него. Теперь рассмотрим подключение таких цепей к источнику переменного тока.

Пусть источник тока создает переменное гармоническое напряжение (рис. 194)
Уравнение мгновенного тока индуктивной катушки

Уравнение мгновенного тока индуктивной катушки

Согласно закону Ома сила тока на участке цепи, содержащем только резистор сопротивлением R, подключенный к этому источнику, изменяется со временем также по синусоидальному закону:
Уравнение мгновенного тока индуктивной катушки
где Уравнение мгновенного тока индуктивной катушки— амплитудное значение силы тока в цепи.

Как видно, сила тока в такой цепи также меняется с течением времени по синусоидальному закону.

Величины Уравнение мгновенного тока индуктивной катушкиназываются амплитудными значениями напряжения и силы тока. Значения напряжения U(t) и силы тока I(t), зависящие от времени, называют мгновенными.

Зная мгновенные значения U(t) и I(t), можно вычислить мгновенную мощность Уравнение мгновенного тока индуктивной катушкикоторая, в отличие от цепей постоянного тока, изменяется с течением времени.

С учетом зависимости силы тока от времени в цепи перепишем выражение для мгновенной тепловой мощности на резисторе в виде
Уравнение мгновенного тока индуктивной катушки

Поскольку мгновенная мощность меняется со временем, то использовать эту величину в качестве характеристики длительно протекающих процессов на практике крайне неудобно.

Перепишем формулу для мощности по-другому:
Уравнение мгновенного тока индуктивной катушки
Первое слагаемое не зависит от времени. Второе слагаемое — переменная составляющая — функция косинуса двойного угла и ее среднее значение за период колебаний равно нулю (см. рис. 194).

Поэтому среднее значение мощности переменного электрического тока за длительный промежуток времени можно найти по формуле
Уравнение мгновенного тока индуктивной катушки
Это выражение позволяет ввести действующие (эффективные) значения силы тока и напряжения, которые используются в качестве основных характеристик переменного тока.

Действующим (эффективным) значением силы переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.
Поскольку для постоянного тока Уравнение мгновенного тока индуктивной катушкито с учетом ранее полученного выражения для среднего значения мощности переменного тока действующее значение силы тока

Уравнение мгновенного тока индуктивной катушки
Аналогично можно ввести действующее значение и для напряжения
Уравнение мгновенного тока индуктивной катушки

Таким образом, выражения для расчета мощности, потребляемой в цепях постоянного тока, остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:
Уравнение мгновенного тока индуктивной катушки

Необходимо отметить, что закон Ома для цепи переменного тока, содержащей только резистор сопротивлением R, выполняется как для амплитудных и действующих, так и для мгновенных значений напряжения и силы тока, вследствие того, что их колебания совпадают по фазе (см. рис. 194).
Таким образом, резисторы оказывают сопротивление как постоянному, так и переменному току, при этом в обоих случаях в них происходит превращение электрической энергии во внутреннюю. Вследствие этого сопротивление резисторов R получило название активного или омического сопротивления.

Катушка индуктивности в цепях переменного тока

Реальный соленоид (катушка индуктивности) обладает активным сопротивлением R и индуктивностью L. В цепях постоянного тока главную роль играет его сопротивление R, тогда как в цепях переменного тока — его индуктивность L.

Рассмотрим физические процессы, происходящие в идеальной катушке, у которой отсутствует активное сопротивление (R=0), при включении ее в цепь переменного тока.

В катушке индуктивностью L переменный ток Уравнение мгновенного тока индуктивной катушкивызывает появление ЭДС самоиндукции:
Уравнение мгновенного тока индуктивной катушкигде Уравнение мгновенного тока индуктивной катушки— амплитудное значение ЭДС самоиндукции (рис. 195).

Уравнение мгновенного тока индуктивной катушки

При возрастании силы тока ЭДС самоиндукции согласно правилу Ленца будет препятствовать его увеличению. Для идеальной катушки, активное сопротивление которой равно нулю (R=0), согласно закону Ома для полной цепи Уравнение мгновенного тока индуктивной катушкигде U(t) напряжение на концах катушки.

Следовательно, в любой момент времени внешнее напряжение на концах катушки равно по модулю и противоположно по знаку ЭДС самоиндукции в катушке:
Уравнение мгновенного тока индуктивной катушки

Сравнивая выражения для мгновенных значений силы тока I(t) и напряжения U(t), видим, что для их амплитудных значений можно записать закон Ома в виде Уравнение мгновенного тока индуктивной катушки

Величину Уравнение мгновенного тока индуктивной катушкиназывают индуктивным сопротивлением катушки. Оно пропорционально индуктивности катушки и частоте переменного тока в цепи Уравнение мгновенного тока индуктивной катушки

Обратите внимание на то, что фазы колебаний силы тока и напряжения не совпадают. Наличие сдвига фаз означает, что мгновенное значение напряжения U на катушке индуктивности опережает мгновенное значение силы I переменного тока по фазе на Уравнение мгновенного тока индуктивной катушкиТакой сдвиг фаз между колебаниями силы тока и напряжения характерен в целом для цепей переменного тока, содержащих элементы, обладающие индуктивностью.
Закон Ома для цепи переменного тока, содержащей только катушку индуктивности, выполняется и для действующих значении силы тока Уравнение мгновенного тока индуктивной катушкии напряжения Уравнение мгновенного тока индуктивной катушкитак как Уравнение мгновенного тока индуктивной катушкитогда Уравнение мгновенного тока индуктивной катушки

Таким образом, если в цепь переменного тока включена катушка индуктивности, то закон Ома выполняется для амплитудных и действующих значений силы тока и напряжения, но не выполняется для их мгновенных значений, так как мгновенные значения силы тока и напряжения не совпадают по фазе (см. рис. 195).

Мгновенная мощность, потребляемая катушкой индуктивности от источника переменного тока, определяется по формуле
Уравнение мгновенного тока индуктивной катушки

Поскольку среднее за период значение функции Уравнение мгновенного тока индуктивной катушкиравно нулю, то и средняя мощность за период также равна нулю:
Уравнение мгновенного тока индуктивной катушки

Как видно из рисунка 195, цепь с идеальной катушкой индуктивности в течение первой и третьей четвертей периода работает в режиме потребителя, запасая энергию магнитного поля Уравнение мгновенного тока индуктивной катушкив катушке, а в течение второй и четвертой — в режиме генератора, возвращая источнику запасенную энергию.

Поскольку потерь энергии в этом случае не происходит, то индуктивное сопротивление называют реактивным.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Конденсатор в цепях переменного тока
  • Электрический ток в различных средах
  • Электромагнитная индукция в физике
  • Правило Ленца для электромагнитной индукции
  • Потенциал электрического поля
  • Постоянный электрический ток
  • Законы постоянного тока
  • Переменный электрический ток

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Амплитуда, период, частота и мгновенное значение переменного токаСкачать

Амплитуда, период, частота и мгновенное значение переменного тока

Катушка индуктивности в цепи постоянного и переменного тока

Как ведет себя катушка индуктивности в цепи постоянного и переменного тока?

Видео:3 9 Индуктивно связанные катушки в цепи переменного синусоидального токаСкачать

3 9 Индуктивно связанные катушки в цепи переменного синусоидального тока

Катушка индуктивности в цепи постоянного тока

Итак, для этого опыта нам понадобится блок питания, который выдает постоянное напряжение, лампочка накаливания и собственно сама катушка индуктивности.

Чтобы сделать катушку индуктивности с хорошей индуктивностью, нам надо взять ферритовый сердечник:

Уравнение мгновенного тока индуктивной катушки

Намотать на него лакированного медного провода и зачистить выводы:

Уравнение мгновенного тока индуктивной катушки

Замеряем индуктивность нашей катушки с помощью LC метра:

Уравнение мгновенного тока индуктивной катушки

Теперь собираем все это вот по такой схеме:
Уравнение мгновенного тока индуктивной катушки

L — катушка индуктивности

La — лампочка накаливания на напряжение 12 Вольт

Bat — блок питания, с выставленным напряжением 12 Вольт

Уравнение мгновенного тока индуктивной катушки

Как вы помните из прошлой статьи, конденсатор у нас не пропускал постоянный электрический ток:

Уравнение мгновенного тока индуктивной катушки

Делаем вывод: постоянный электрический ток почти беспрепятственно течет через катушку индуктивности. Сопротивлением обладает только сам провод, из которого намотана катушка.

Видео:Индуктивное сопротивлениеСкачать

Индуктивное сопротивление

Катушка индуктивности в цепи переменного тока

Для того, чтобы узнать, как ведет себя катушка индуктивности в цепи переменного тока, нам понадобится осциллограф, генератор частоты, собственно сама катушка индуктивности и резистор на 100 Ом. Чем больше сопротивление, тем меньше будет проседать напряжение с моего генератора частоты, поэтому я взял резистор на 100 Ом.Он у меня будет в качестве шунта. Падение напряжения на этом резисторе будет зависеть от тока, протекающего через него

Собираем все это дело по такой схеме:

Уравнение мгновенного тока индуктивной катушки

Получилось как то так:

Уравнение мгновенного тока индуктивной катушки

Сразу договоримся, что у нас первый канал будет красным цветом, а второй канал — желтым. Следовательно, красная синусоида — это частота, которую нам выдает генератор частоты, а желтая синусоида — это сигнал, который снимается с резистора.

Мы с вами узнали, что при нулевой частоте (постоянный ток), катушка почти беспрепятственно пропускает через себя электрический ток. В нашем опыте мы будем подавать с генератора частоты синусоидальный сигнал с разной частотой и смотреть, меняется ли напряжение на резисторе.

Опыт N1

Для начала подаем сигнал с частотой в 1 Килогерц.

Уравнение мгновенного тока индуктивной катушки

Давайте разберемся, что есть что. В зеленой рамочке я вывел автоматические замеры, которые делает осциллограф

Уравнение мгновенного тока индуктивной катушки

Красный кружок с цифрой «1» — это замеры «красного»канала. Как мы видим, F (частота) =1 Килогерц, а Ма (амплитуда) = 1,96 Вольт. Ну грубо скажем 2 Вольта. Смотрим на кружочек с цифрой «2». F=1 Килогерц, а Ма=1,96 Вольт. То есть можно сказать, что сигнал на выходе точно такой же, как и на входе.

Увеличиваем частоту до 10 Килогерц

Уравнение мгновенного тока индуктивной катушки

Амплитуда не уменьшилась. Сигнал какой есть, такой и остался.

Увеличиваем до 100 Килогерц

Уравнение мгновенного тока индуктивной катушки

Заметили разницу? Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается вправо, то есть запаздывает, или научным языком, появляется сдвиг фаз. Красный сигнал никуда не сдвигается, запаздывает именно желтый. Это имейте ввиду.

Сдвиг фаз — это разность между начальными фазами двух измеряемых величин. В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:

Уравнение мгновенного тока индуктивной катушки

Увеличиваем частоту до 200 Килогерц

Уравнение мгновенного тока индуктивной катушки

На частоте 200 Килогерц амплитуда упала вдвое, да и разность фаз стала больше.

Увеличиваем частоту до 300 Килогерц.

Уравнение мгновенного тока индуктивной катушки

Амплитуда желтого сигнала упала уже до 720 милливольт. Разность фаз стала еще больше.

Увеличиваем частоту до 500 Килогерц

Уравнение мгновенного тока индуктивной катушки

Амплитуда уменьшилась до 480 милливольт.

Добавляем еще частоту до 1 Мегагерц

Уравнение мгновенного тока индуктивной катушки

Амплитуда желтого канала стала 280 милливольт.

Ну и добавляем частоту до предела, который позволяет выдать генератор частоты: 2 Мегагерца

Уравнение мгновенного тока индуктивной катушки

Амплитуда «желтого» сигнала стала настолько маленькой, что мне пришлось ее даже увеличить в 5 раз.

И можно сказать, что сдвиг фаз стал почти 90 градусов или π/2.

Но станет ли сдвиг фаз больше, чем 90 градусов, если подать очень-очень большую частоту? Эксперименты говорят, что нет. Если сказать просто, то при бесконечной частоте сдвиг фаз будет равняться 90 градусов. Если совместить наши графики на бесконечной частоте, то можно увидеть примерно вот такой рисунок:

Уравнение мгновенного тока индуктивной катушки

Так какой вывод можно сделать?

С увеличением частоты сопротивление катушки растет, а также увеличивается сдвиг фаз. И чем больше частота, тем больше будет сдвиг фазы, но не более, чем 90 градусов.

Опыт N2

Давайте же уменьшим индуктивность катушки. Прогоним еще раз по тем же самым частотам. Я убрал половину витков и сделал витки на край феррита, тем самым уменьшил индуктивность до 33 микрогенри.

Уравнение мгновенного тока индуктивной катушки

Итак, прогоняем все по тем же значениям частоты

Уравнение мгновенного тока индуктивной катушки

При частоте в 1 Килогерц у нас значение почти не изменилось.

Уравнение мгновенного тока индуктивной катушки

Здесь тоже ничего не изменилось.

Уравнение мгновенного тока индуктивной катушки

Тоже почти ничего не изменилось, кроме того, что желтый сигнал стал тихонько сдвигаться.

Уравнение мгновенного тока индуктивной катушки

Здесь уже видим, что амплитуда на желтом сигнале начинает проседать и сдвиг фаз наращивает обороты.

Уравнение мгновенного тока индуктивной катушки

Сдвиг фаз стал больше и амплитуда просела еще больше

Уравнение мгновенного тока индуктивной катушки

Сдвиг стал еще больше и амплитуда желтого сигнала тоже просела.

Уравнение мгновенного тока индуктивной катушки

Амплитуда желтого сигнала падает, сдвиг фаз прибавляется. 😉

2 Мегагерца, предел моего генератор частоты

Уравнение мгновенного тока индуктивной катушки

Сдвиг фаз стал почти равен 90 градусов, а амплитуда стала даже меньше, чем пол Вольта.

Обратите внимание на амплитуду в Вольтах на тех же самых частотах. В первом случае у нас индуктивность была больше, чем во втором случае, но амплитуда желтого сигнала во втором случае больше, чем в первом.

Отсюда вывод напрашивается сам собой:

При уменьшении индуктивности, сопротивление катушки индуктивности также уменьшается.

Видео:Урок 359. Конденсатор и катушка индуктивности в цепи переменного тока.Скачать

Урок 359. Конденсатор и катушка индуктивности в цепи переменного тока.

Реактивное сопротивление катушки индуктивности

С помощью нехитрых умозаключений, физиками была выведена формула:

Уравнение мгновенного тока индуктивной катушки

П — постоянная и равна приблизительно 3,14

В данном опыте мы с вами получили фильтр низких частот (ФНЧ). Как вы видели сами, на низких частотах катушка индуктивности почти не оказывает сопротивление напряжению, следовательно амплитуда и мощность на выходе такого фильтра будет почти такой же, как и на входе. Но с увеличением частоты у нас амплитуда гасится. Применив такой фильтр на динамик, можно с уверенностью сказать, что будет усиливаться только бас, то есть низкая частота звука.

Видео про катушку индуктивности:

Видео:Урок №8. Катушка индуктивностиСкачать

Урок №8. Катушка индуктивности

Заключение

Постоянный ток протекает через катушку индуктивности без каких-либо проблем. Сопротивлением обладает только сам провод, из которого намотана катушка.

Сопротивление катушки зависит от частоты протекающего через нее тока и выражается формулой:

📹 Видео

Расчёт катушки индуктивностиСкачать

Расчёт катушки индуктивности

Цепи переменного тока. Комплексные значения сопротивлений, токов и напряжений в цепи. Задача 1Скачать

Цепи переменного тока. Комплексные значения сопротивлений, токов и напряжений в цепи. Задача 1

Резистор, конденсатор, катушка индуктивности, сравнение свойств в электрических цепяхСкачать

Резистор, конденсатор, катушка индуктивности, сравнение свойств в электрических цепях

катушка и конденсатор в цепи постоянного источникаСкачать

катушка и конденсатор в цепи постоянного источника

Как Индуктивность зависит от Тока?Скачать

Как Индуктивность зависит от Тока?

Активное и реактивное сопротивление в цепи переменного тока. 11 класс.Скачать

Активное и реактивное сопротивление в цепи переменного тока. 11 класс.

Катушка индуктивности. Зачем нужна и где применяется.Скачать

Катушка индуктивности. Зачем нужна и где применяется.

Индуктивность в цепи постоянного и переменного тока. Урок № 27.Скачать

Индуктивность в цепи постоянного  и переменного  тока.  Урок № 27.

ТОЭ - Расчет цепи переменного тока. Определить активное сопротивление катушкиСкачать

ТОЭ - Расчет цепи переменного тока. Определить активное сопротивление катушки

Урок 358. Активное сопротивление в цепи переменного тока. Действующее значение тока и напряженияСкачать

Урок 358. Активное сопротивление в цепи переменного тока. Действующее значение тока и напряжения

катушка индуктивности в цепях постоянного и переменного токаСкачать

катушка индуктивности в цепях постоянного  и переменного тока
Поделиться или сохранить к себе: