Уравнение менделеева клапейрона закон гейлюсака

Опытные газовые законы. Закон Менделеева-Клапейрона

В основе молекулярной физике лежит ряд эмпирических (опытных) законов. Данные законы основаны на многолетних наблюдениях и особого вывода для них нет. До введения самих законов, познакомимся с понятием состояния идеального газа. Так, под состоянием идеального газа понимается совокупность термодинамических параметров, характеризующих газ в данный момент:

  • — давление газа,
  • — объём газа,
  • — температура газа,
  • — масса газа.

Если данные параметры изменяются, мы будем говорить об изменении состоянии идеального газа.

  • закон Авогадро

Закон Авогадро гласит, что для любых газов, взятых при одинаковых давлениях и температурах, содержится одинаковое количество молекул. Также есть несколько следствий из этого закона: одинаковое количество молей разных газов при одинаковых условиях (давление и температура), занимают одинаковый объём (молярный объём). Для нас главный вывод данного закона состоит в том, что для любого газа, химическое количество которого равен 1 моль, количество молекул в нём равно штук — постоянная Авогадро.

  • закон Бойля — Мариотта

Закон Бойля -Мариотта гласит, что при условии постоянства массы (химического количества) и температуры газа, произведение давления газа на его объём постоянно:

Альтернативная форма записи:

  • где
    • , — давление газа в первом и втором состоянии соответственно,
    • , — объём газа в первом и втором состоянии соответственно.

Таким образом, при наших условиях, уравнение (2) связывает два любых состояния идеального газа.

  • закон Гей — Люссака

Закон Гей — Люссака гласит, что при условии постоянства массы (химического количества) и давления газа, отношение объёма газа к его температуре постоянно:

Альтернативная форма записи:

  • где
    • , — объём газа в первом и втором состоянии соответственно,
    • , — температура газа в первом и втором состоянии соответственно.

Таким образом, при наших условиях, уравнение (4) связывает два любых состояния идеального газа.

Закон Шарля гласит, что при условии постоянства массы (химического количества) и объёма газа, отношение давления газа к его температуре постоянно:

Альтернативная форма записи:

  • где
    • , — давление газа в первом и втором состоянии соответственно,
    • , — температура газа в первом и втором состоянии соответственно.

Таким образом, при наших условиях, уравнение (6) связывает два любых состояния идеального газа.

  • закон Дальтона

Закон Дальтона несколько выбивается из логики предыдущих опытных законов, т.к. он описывает не отдельный газ, а составной (так называемую смесь газов). Итак, для смеси газов: суммарное давление смеси газов равно сумме парциальных давлений каждого из его компонентов:

  • где
    • — давление смеси газов,
    • — парциальные (одиночные) давления каждого из газов в отдельности.

На основании введённых опытных законов можно получить общее соотношение, совмещающее все параметры, характеризующие газ (уравнение Менделеева-Клапейрона):

  • где
    • — давление газа,
    • — объём газа,
    • — химическое количество газа,
    • — температура газа,
    • м *кг*с *К *Моль — газовая постоянная.

Соотношение (8), оно же уравнение Менделеева-Клапейрона, одно из самых важных во всём курсе термодинамики и молекулярной физики. Исходя из этого соотношения, можно получить все газовые законы (1), (3), (5).

Вывод: для большинства задач молекулярной физики газ переводят из одного состояния во второе (может и дальше), каждое из этих состояний можно описать соотношением (8), а потом, разрешив получившуюся систему уравнений, найти ответ.

Вывод: соотношения (1) — (6) несомненно убыстряют решение задачи, однако уравнение (8) срабатывает в любом случае (предлагаю использовать только его).

Вывод: единственным общим соотношением для смеси газов является соотношение (7).

Видео:Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»Скачать

Физика. МКТ: Уравнение Менделеева-Клапейрона для идеального газа. Центр онлайн-обучения «Фоксфорд»

Уравнение состояния идеального газа — основные понятия, формулы и определение с примерами

Содержание:

Уравнение состояния идеального газа:

Уравнения Клапейрона и Менделеева — клапейрона; законы Шарля, Гей-Люссака, Бойля — Мариотта, Авогадро, Дальтона, — пожалуй, такого количества «именных» законов нет ни в одном разделе физики. за каждым из них — кропотливая работа в лабораториях, тщательные измерения, длительные аналитические размышления и точные расчеты. нам намного проще. Мы уже знаем основные положения теории, и «открыть» все вышеупомянутые законы нам не составит труда.

Видео:Физика 10 класс: Уравнение Клапейрона-МенделееваСкачать

Физика 10 класс: Уравнение Клапейрона-Менделеева

Уравнение состояния идеального газа

Давление газа полностью определяется его температурой и концентрацией молекул: p=nkT. Запишем данное уравнение в виде: pV = NkT. Если состав и масса газа известны, число молекул газа можно найти из соотношения Уравнение менделеева клапейрона закон гейлюсака

Произведение числа Авогадро Уравнение менделеева клапейрона закон гейлюсакана постоянную Больцмана k называют универсальной газовой постоянной (R): R=Уравнение менделеева клапейрона закон гейлюсакаk 8,31 Дж/ (моль⋅К). Заменив в уравнении (*) Уравнение менделеева клапейрона закон гейлюсакаk на R, получим уравнение состояния идеального газа (уравнение Менделеева — Клапейрона):

Уравнение менделеева клапейрона закон гейлюсака

Обратите внимание! Состояние данного газа некоторой массы однозначно определяется двумя его макроскопическими параметрами; третий параметр можно найти из уравнения Менделеева — Клапейрона.

Уравнение Клапейрона

С помощью уравнения Менделеева — Клапейрона можно установить связь между макроскопическими параметрами газа при его переходе из одного состояния в другое. Пусть газ, имеющий массу m и молярную массу М, переходит из состояния (Уравнение менделеева клапейрона закон гейлюсака) в состояние (Уравнение менделеева клапейрона закон гейлюсака) (рис. 30.1).

Уравнение менделеева клапейрона закон гейлюсака

Для каждого состояния запишем уравнение Менделеева — Клапейрона: Уравнение менделеева клапейрона закон гейлюсакаРазделив обе части первого уравнения на Уравнение менделеева клапейрона закон гейлюсака, а второго — на Уравнение менделеева клапейрона закон гейлюсака, получим: Уравнение менделеева клапейрона закон гейлюсакаУравнение менделеева клапейрона закон гейлюсака. Правые части этих уравнений равны; приравняв левые части, получим уравнение Клапейрона:

Уравнение менделеева клапейрона закон гейлюсака

Для данного газа некоторой массы отношение произведения давления на объем к температуре газа является неизменным.

Изопроцессы

Процесс, при котором один из макроскопических параметров данного газа некоторой массы остается неизменным, называют изопроцессом. Поскольку состояние газа характеризуется тремя макроскопическими параметрами, возможных изопроцессов тоже три: происходящий при неизменной температуре; происходящий при неизменном давлении; происходящий при неизменном объеме. Рассмотрим их.

Какой процесс называют изотермическим. Закон Бойля — Мариотта

Пузырек воздуха, поднимаясь со дна глубокого водоема, может увеличиться в объеме в несколько раз, при этом давление внутри пузырька падает, поскольку вследствие дополнительного гидростатического давления воды (Уравнение менделеева клапейрона закон гейлюсака) давление на глубине больше атмосферного. Температура же внутри пузырька практически не изменяется. В данном случае имеем дело с процессом изотермического расширения.

Уравнение менделеева клапейрона закон гейлюсака

Рис. 30.2. Изотермическое сжатие газа. Если медленно опускать поршень, температура газа под поршнем будет оставаться неизменной и равной температуре окружающей среды. Давление газа при этом будет увеличиваться

Изотермический процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменной температуре.

Пусть некий газ переходит из состояния (Уравнение менделеева клапейрона закон гейлюсака) в состояние (Уравнение менделеева клапейрона закон гейлюсакаУравнение менделеева клапейрона закон гейлюсакаT), то есть температура газа остается неизменной (рис. 30.2). Тогда согласно уравнению Клапейрона имеет место равенство pУравнение менделеева клапейрона закон гейлюсака. После сокращения на T получим: Уравнение менделеева клапейрона закон гейлюсака.

Закон Бойля — Мариотта:

Для данного газа некоторой массы произведение давления газа на его объем остается постоянным, если температура газа не изменяется:

Уравнение менделеева клапейрона закон гейлюсака

Графики изотермических процессов называют изотермами. Как следует из закона Бойля — Мариотта, при неизменной температуре давление газа данной массы обратно пропорционально его объему: Уравнение менделеева клапейрона закон гейлюсака. Эту зависимость в координатах p, V можно представить в виде гиперболы (рис. 30.3, а). Поскольку при изотермическом процессе температура газа не изменяется, в координатах p, T и V, T изотермы перпендикулярны оси температур (рис. 30.3, б, в).

Уравнение менделеева клапейрона закон гейлюсакаУравнение менделеева клапейрона закон гейлюсака

Какой процесс называют изобарным. Закон Гей-Люссака

Изобарный процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменном давлении.

Пусть некий газ переходит из состояния (Уравнение менделеева клапейрона закон гейлюсака) в состояние (Уравнение менделеева клапейрона закон гейлюсака), то есть давление газа остается неизменным (рис. 30.4). Тогда имеет место равенство Уравнение менделеева клапейрона закон гейлюсака. После сокращения на p получим: Уравнение менделеева клапейрона закон гейлюсака

Уравнение менделеева клапейрона закон гейлюсака

Рис. 30.4. Изобарное расширение газа. Если газ находится под тяжелым поршнем массой M и площадью S, который может перемещаться практически без трения, то при увеличении температуры объем газа будет увеличиваться, а давление газа будет оставаться неизменным и равным pУравнение менделеева клапейрона закон гейлюсака

Закон Гей-Люссака

Для данного газа некоторой массы отношение объема газа к температуре остается постоянным, если давление газа не изменяется:

Уравнение менделеева клапейрона закон гейлюсака

Графики изобарных процессов называют изобарами. Как следует из закона Гей-Люссака, при неизменном давлении объем газа данной массы прямо пропорционален его температуре: V = const⋅T. График данной зависимости — прямая, проходящая через начало координат (рис. 30.5, а). По графику видно, что с приближением к абсолютному нулю объем идеального газа должен уменьшиться до нуля. Понятно, что это невозможно, поскольку реальные газы при низких температурах превращаются в жидкости. В координатах p, V и p, T изобары перпендикулярны оси давления (рис. 30.5, б, в).

Уравнение менделеева клапейрона закон гейлюсакаУравнение менделеева клапейрона закон гейлюсака

Изохорный процесс. Закон Шарля

Если газовый баллон сильно нагреется на солнце, давление в нем повысится настолько, что баллон может взорваться. В данном случае имеем дело с изохорным нагреванием.

Изохорный процесс — процесс изменения состояния данного газа некоторой массы, протекающий при неизменном объеме.

Пусть некий газ переходит из состояния (Уравнение менделеева клапейрона закон гейлюсака) в состояние (Уравнение менделеева клапейрона закон гейлюсака), то есть объем газа не изменяется (рис. 30.6). В этом случае имеет место равенство Уравнение менделеева клапейрона закон гейлюсака. После сокращения на V получим: Уравнение менделеева клапейрона закон гейлюсака

Уравнение менделеева клапейрона закон гейлюсака

Рис. 30.6. Изохорное нагревание газа. Если газ находится в цилиндре под закрепленным поршнем, то с увеличением температуры давление газа тоже будет увеличиваться. Опыт показывает, что в любой момент времени отношение давления газа к его температуре неизменно: Уравнение менделеева клапейрона закон гейлюсака

Закон Шарля

Для данного газа некоторой массы отношение давления газа к его температуре остается постоянным, если объем газа не изменяется:

Уравнение менделеева клапейрона закон гейлюсака

Графики изохорных процессов называют изохорами. Из закона Шарля следует, что при неизменном объеме давление газа данной массы прямо пропорционально его температуре: p T = ⋅ const . График этой зависимости — прямая, проходящая через начало координат (рис. 30.7, а). В координатах p, V и V, T изохоры перпендикулярны оси объема (рис. 30.7, б, в).

Уравнение менделеева клапейрона закон гейлюсакаУравнение менделеева клапейрона закон гейлюсака

Пример №1

В вертикальной цилиндрической емкости под легкоподвижным поршнем находится 2 моль гелия и 1 моль молекулярного водорода. Температуру смеси увеличили в 2 раза, и весь водород распался на атомы. Во сколько раз увеличился объем смеси газов?

Уравнение менделеева клапейрона закон гейлюсака

Анализ физической проблемы. Смесь газов находится под легкоподвижным поршнем, поэтому давление смеси не изменяется:Уравнение менделеева клапейрона закон гейлюсака, но использовать закон Бойля — Мариотта нельзя, так как вследствие диссоциации (распада) молярная масса и число молей водорода увеличились в 2 раза: Уравнение менделеева клапейрона закон гейлюсака

Решение:

Воспользуемся уравнением состояния идеального газа: pV = νRT. Запишем это уравнение для состояний смеси газов до и после распада: Уравнение менделеева клапейрона закон гейлюсака Уравнение менделеева клапейрона закон гейлюсакаРазделив уравнение (2) на уравнение (1) и учитывая, что Уравнение менделеева клапейрона закон гейлюсакаполучим: Уравнение менделеева клапейрона закон гейлюсакагде Уравнение менделеева клапейрона закон гейлюсакаУравнение менделеева клапейрона закон гейлюсакаНайдем значение искомой величины: Уравнение менделеева клапейрона закон гейлюсака

Ответ: примерно в 2,7 раза.

Пример №2

На рис. 1 представлен график изменения состояния идеального газа неизменной массы в координатах V, T. Представьте график данного процесса в координатах p, V и p, T.

Решение:

1. Выясним, какой изопроцесс соответствует каждому участку графика (рис. 1).

Уравнение менделеева клапейрона закон гейлюсака

Зная законы, которым подчиняются эти изопроцессы, определим, как изменяются макроскопические параметры газа. Участок 1–2: изотермическое расширение; T = const, V ↑, следовательно, по закону Бойля — Мариотта p ↓. Участок 2–3: изохорное нагревание; V = const, T ↑, следовательно, по закону Шарля p ↑ . Участок 3–1: изобарное охлаждение; p = const , T ↓, следовательно, по закону Гей-Люссака V ↓ .

2. Учитывая, что точки 1 и 2 лежат на одной изотерме, точки 1 и 3 — на одной изобаре, а точки 2 и 3 на одной изохоре, и используя результаты анализа, построим график процесса в координатах p, V и p, T (рис. 2)

Уравнение менделеева клапейрона закон гейлюсака

  1. Из соотношения p=nkT можно получить ряд важных законов, большинство из которых установлены экспериментально.
  2. Уравнение состояния идеального газа (уравнение Менделеева — Клапейрона): Уравнение менделеева клапейрона закон гейлюсака— универсальная газовая постоянная.
  3. Уравнение Клапейрона: Уравнение менделеева клапейрона закон гейлюсака
  4. Законы, которым подчиняются изопроцессы, то есть процессы, при которых один из макроскопических параметров данного газа некоторой массы остается неизменным:

Уравнение менделеева клапейрона закон гейлюсака

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Температура в физике
  • Парообразование и конденсация
  • Тепловое равновесие в физике
  • Изопроцессы в физике
  • Абсолютно упругие и неупругие столкновения тел
  • Механизмы, работающие на основе правила моментов
  • Идеальный газ в физике
  • Уравнение МКТ идеального газа

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)Скачать

Физика 10 класс (Урок№20 - Уравнение состояния идеального газа. Газовые законы.)

Объединенный газовый закон и изопроцессы

теория по физике 🧲 молекулярная физика, МКТ, газовые законы

Объединенный газовый закон был открыт экспериментально. Он также является следствием основного уравнения состояния идеального газа. Согласно ему:

При постоянной массе газа и его неизменной молярной массе отношение произведения давления на объем к его абсолютной температуре остается величиной постоянной:

p V T . . = c o n s t и л и p 1 V 1 T 1 . . = p 2 V 2 T 2 .

Видео:Основы молекулярной физики | закон Гей - ЛюссакаСкачать

Основы молекулярной физики | закон Гей - Люссака

Объединенный газовый закон применительно к изопроцессам

Объединенный газовый закон объединяет три независимых газовых закона: Бойля — Мариотта, Шарля и Гей-Люссака. Газовые законы действуют в частных случаях — изопроцессах.

Изопроцессы — термодинамические процессы, во время которых количество вещества и один из параметров состояния: давление, объём, температура или энтропия — остаётся неизменным.

Изотермический процесс. Закон Бойля — Мариотта.

Изотермический процесс — термодинамический процесс, происходящий в системе при постоянной температуре и массе:

Для изотермического процесса действует закон Бойля — Мариотта:

Закон Бойля — Мариотта

Для газа данной массы произведение газа на его объем постоянно, если температура газа не меняется.

Изохорный процесс. Закон Шарля.

Изохорный процесс — термодинамический процесс, происходящий в системе при постоянном объеме и массе:

Для изохорного процесса действует закон Шарля:

Для газа данной массы отношение давления к температуре постоянно, если объем не меняется.

p T . . = c o n s t ( p 1 T 1 . . = p 2 T 2 . . )

Изобарный процесс. Закон Гей-Люссака.

Изобарный процесс — термодинамический процесс, происходящий в системе при постоянном давлении и массе:

Для газа данной массы отношение объема к температуре постоянно, если давление газа не меняется.

V T . . = c o n s t ( V 1 T 1 . . = V 2 T 2 . . )

Пример №1. Идеальный газ изобарно нагревают так, что его температура изменяется на ∆T = 240 К, а давление — в 1,6 раза. Масса газа постоянна. Найдите начальную температуру газа по шкале Кельвина.

Так как газ нагревают, то:

Запишем закон Шарля применительно к данному случаю:

p T 1 . . = 1 , 6 p 240 + T 1 . .

Сделаем некоторые преобразования и вычислим начальную температуру:

p T 1 . . = 1 , 6 p 240 + T 1 . .

240 + T 1 = 1 , 6 T 1

T 1 = 240 0 , 6 . . = 400 ( К )

Подсказки к задачам на газовые законы

Газ под невесомым поршнем:

p — давление газа;

pатм — давление, оказываемое на газ со стороны поршня.

На невесомый поршень действует сила:

p = p а т м + F S . .

F — сила, действующая на поршень;

S — площадь поршня.

На невесомый поршень поставили груз. В данном случае на поршень дополнительно будет действовать сила тяжести:

p = p а т м + F т я ж S . . = p а т м + M g S . .

Fтяж — сила тяжести, действующая на поршень со стороны груза;

g — ускорение свободного падения.

Газ под массивным поршнем. В данном случае на него дополнительно будет действовать сила тяжести поршня:

p = p а т м + m g S . .

m — масса поршня.

На массивный поршень поставили груз. В данном случае на поршень дополнительно будут действовать силы тяжести со стороны поршня и груза:

p = p а т м + M g S . . + m g S . .

На массивный поршень действует сила. В данном случае газ сдавливается как атмосферным давлением, так и силой тяжести поршня, а также силой, которая на него действует:

p = p а т м + m g S . . + F S . .

Газ, находящийся в цилиндре под массивным поршнем, находится в лифте, ускорение которого направлено вверх. Когда ускорение движения лифта противоположно направлено ускорению свободного падения, вес тел увеличивается. Поэтому:

p = p а т м + m g S . . + m a S . .

a — модуль ускорения, с которым движется лифт.

Газ, находящийся в цилиндре под массивным поршнем, находится в лифте, ускорение которого направлено вниз. Когда ускорение движения лифта направлено в сторону вектора ускорения свободного падения, вес тел уменьшается. Поэтому:

p = p а т м + m g S . . − m a S . .

«Пузырек у поверхности воды» — на пузырек действует только атмосферное давоение:

«Пузырек на глубине» — на пузырек действует атмосферное давление и давление столба жидкости:

ρ — плотность жидкости; h — глубина, на которой находится пузырек.

Газ, находящийся в горизонтальной пробирке, отделен от атмосферы столбиком ртути. Объем газа можно вычислить, используя параметры пробирки:

V1— объем газа; l1 — длина части пробирки, которую занимает газ; S — площадь поперечного сечения пробирки. Давление газа равно атмосферному давлению:

Пробирку поворачивают открытым концом вверх. В этом случае кроме атмосферного давления на газ давит давление со стороны ртути:

Объем газа можно вычислить, используя параметры пробирки:

Пробирку поворачивают открытым концом вниз. В этом случае сумма давлений газа и ртути в пробирке равна атмосферному давлению. Отсюда давление газа равно:

Объем газа можно вычислить, используя параметры пробирки:

Уравнение менделеева клапейрона закон гейлюсака
Уравнение менделеева клапейрона закон гейлюсака
Уравнение менделеева клапейрона закон гейлюсака
Уравнение менделеева клапейрона закон гейлюсака
Уравнение менделеева клапейрона закон гейлюсака
Уравнение менделеева клапейрона закон гейлюсака
Уравнение менделеева клапейрона закон гейлюсака
Уравнение менделеева клапейрона закон гейлюсака
Уравнение менделеева клапейрона закон гейлюсака
Уравнение менделеева клапейрона закон гейлюсака
Уравнение менделеева клапейрона закон гейлюсака
Уравнение менделеева клапейрона закон гейлюсака
Уравнение менделеева клапейрона закон гейлюсака
Шар или понтон поднимается вверх в воздухе или жидкостиАрхимедова сила больше силы тяжести:

Пример №2. Поршень площадью 10 см 2 массой 5 кг может без трения перемещаться в вертикальном цилиндрическом сосуде, обеспечивая при этом герметичность. Сосуд с поршнем, заполненный газом, покоится на полу неподвижного лифта при атмосферном давлении 100 кПа, при этом расстояние от нижнего края поршня до дна сосуда 20 см. Каким станет это расстояние, когда лифт поедет вверх с ускорением, равным 2 м/с 2 ? Изменение температуры газа не учитывать.

10 см 2 = 10 –3 м 2

100 кПа = 10 5 Па

Составим уравнения для 1 и 2 случая. Когда лифт находится в покое, давление газа равно сумме атмосферного давления и давления, оказываемое массивным поршнем:

p 1 = p а т м + m g S . .

Когда лифт начал двигаться, появилось дополнительное давление, связанное с увеличением веса поршня при ускоренном движении вверх:

p 2 = p а т м + m g S . . + m a S . .

Так как изменением температуры можно пренебречь, можно считать, что это процесс изотермический. Следовательно:

Объемы в 1 и 2 случае будут определяться формулами:

h1 — расстояние от нижнего края поршня до дна сосуда в первом случае. h2 — та же самая величина, но во втором случае (искомая величина).

Запишем закон Бойля — Мариотта для обоих случаев с учетом объемов:

p 1 V 1 = S h 1 ( p а т м + m g S . . )

p 2 V 2 = S h 2 ( p а т м + m g S . . + m a S . . )

Так как это изотермический процесс, правые части уравнений можно приравнять:

S h 1 ( p а т м + m g S . . ) = S h 2 ( p а т м + m g S . . + m a S . . )

Видео:Задачи на уравнение Менделеева-Клапейрона. Ч.1. Краткая теория + решение задачиСкачать

Задачи на уравнение Менделеева-Клапейрона. Ч.1. Краткая теория + решение задачи

Уравнение менделеева клапейрона закон гейлюсака

Видео:Уравнение Менделеева - Клапейрона за 10 минут | Физика с Никитой АрхиповымСкачать

Уравнение Менделеева - Клапейрона за 10 минут | Физика с Никитой Архиповым

Графики изопроцессов

Изопроцессы можно изобразить графически в координатах (p;V), (V;T) и (p;T). Рассмотрим все виды графиком для каждого из процессов.

ИзопроцессГрафик в координатах (p;V)График в координатах (V;T)График в координатах (p;T)
Изотермический (график — изотерма)Уравнение менделеева клапейрона закон гейлюсака

Изотерма в координатах (p;V) — гипербола. Чем ближе изотерма к началу координат и осям, тем меньшей температуре она соответствует.

Характер изменения переменных величин хорошо виден на графике.

Уравнение менделеева клапейрона закон гейлюсака

Изотерма в координатах (V;T) — прямая, перпендикулярная оси OT и параллельная оси OV. Чем ближе изотерма к оси OV, тем меньшей температуре она соответствует.

С увеличением объема давление уменьшается.

Уравнение менделеева клапейрона закон гейлюсака

Изотерма в координатах (p;T) — прямая, перпендикулярная оси OT и параллельная оси Op. Чем ближе изотерма к оси Op, тем меньшей температуре она соответствует.

С увеличением давления объем уменьшается.

Изохорный (график — изохора)Уравнение менделеева клапейрона закон гейлюсака

Изохора в координатах (p;V) — прямая, перпендикулярная оси OV и параллельная оси Op. Чем ближе изохора к оси Op, тем меньшему объему она соответствует.

С увеличением давления увеличивается температура.

Уравнение менделеева клапейрона закон гейлюсака

Изохора в координатах (V;T) — прямая, перпендикулярная оси OV и параллельная оси OT. Чем ближе изохора к оси OT, тем меньшему объему она соответствует.

С увеличением температуры увеличивается давление.

Уравнение менделеева клапейрона закон гейлюсака

Изохора в координатах (p;T) — прямая, исходящая из начала координат. Чем меньше угол наклона изохоры к оси OT, тем меньшему объему она соответствует.

Характер изменения переменных величин хорошо виден на графике.

Изобарный (график — изобара)Уравнение менделеева клапейрона закон гейлюсака

Изобара в координатах (p;V) — прямая, перпендикулярная оси Op и параллельная оси OV. Чем ближе изобара к оси OV, тем меньшему давлению она соответствует.

С увеличением объема температура растет.

Уравнение менделеева клапейрона закон гейлюсака

Изобара в координатах (V;T) — прямая, исходящая из начала координат. Чем меньше угол наклона изобары к оси OT, тем меньшему давлению она соответствует.

Характер изменения переменных величин хорошо виден на графике.

Уравнение менделеева клапейрона закон гейлюсака

Изобара в координатах (p;T) — прямая, перпендикулярная оси Op и параллельная оси OT. Чем ближе изобара к оси OT, тем меньшему давлению она соответствует.

С увеличением температуры объем растет.

Пример №3. На рисунке представлен график циклического процесса. Вычертить его в координатах (p;T).

Уравнение менделеева клапейрона закон гейлюсака

Определим характер изменения величин:

  • Процесс 1–2. Гипербола — это изотерма. Следовательно T12 = const. В координатах (p;T) изотерма будет выглядеть как прямая, перпендикулярная оси OT.
  • Процесс 2–3. Прямая линия, перпендикулярная оси Op — это изобара. Следовательно p23 = const. В координатах (p;T) изобара будет выглядеть как прямая, перпендикулярная оси Op.
  • Процесс 3–1. Прямая линия, перпендикулярная оси OV — это изохора. Следовательно V31 = const. В координатах (p;T) изохора будет выглядеть как прямая, выходящая из начала координат.

Теперь, зная, какими будут графики всех величин в координатах (p;T), можно построить сам график. Он примет следующий

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Уравнение менделеева клапейрона закон гейлюсака

Уравнение менделеева клапейрона закон гейлюсакаНа графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.

Алгоритм решения

Решение

График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

Запишем уравнение Менделеева — Клапейрона:

Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

ν R = p 1 V 1 T 1 . . = p 2 V 2 T 2 . .

Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.

Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.

pазбирался: Алиса Никитина | обсудить разбор | оценить

1 моль идеального газа изохорно охлаждают на 200 К, при этом его давление уменьшается в 2 раза. Какова первоначальная абсолютная температура газа?

📸 Видео

62. Уравнение Клапейрона-МенделееваСкачать

62. Уравнение Клапейрона-Менделеева

ЛР-10-2-02 Проверка закона Гей-ЛюссакаСкачать

ЛР-10-2-02 Проверка закона Гей-Люссака

Газовые законыСкачать

Газовые законы

Уравнение состояния идеального газа | Физика 10 класс #33 | ИнфоурокСкачать

Уравнение состояния идеального газа | Физика 10 класс #33 | Инфоурок

Газовые законы. Изопроцессы | Физика 10 класс #34 | ИнфоурокСкачать

Газовые законы. Изопроцессы | Физика 10 класс #34 | Инфоурок

Урок 2.Уравнение Менделеева-Клапейрона. Решение задач. База. ЕГЭСкачать

Урок 2.Уравнение Менделеева-Клапейрона. Решение задач. База. ЕГЭ

Урок 156. Уравнение состояния идеального газа. Квазистатические процессыСкачать

Урок 156. Уравнение состояния идеального газа. Квазистатические процессы

Уравнение состояния идеального газа. 10 класс.Скачать

Уравнение состояния идеального газа. 10 класс.

Объемные отношения газов при химических реакциях. 8 класс.Скачать

Объемные отношения газов при химических реакциях. 8 класс.

Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)Скачать

Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)

Успеть за 300 секунд, #3: Уравнение Клапейрона-МенделееваСкачать

Успеть за 300 секунд, #3: Уравнение Клапейрона-Менделеева

Физика 10 класс. Газовые законыСкачать

Физика 10 класс. Газовые законы

Закон объёмных отношений. Закон Гей Люссака. Как найти объём газа по реакции.Скачать

Закон объёмных отношений. Закон Гей Люссака. Как найти объём газа по реакции.

Основные газовые законы, Киевнаучфильм, 1981Скачать

Основные газовые законы, Киевнаучфильм, 1981
Поделиться или сохранить к себе: