Уравнение механических колебаний пружинного маятника

Содержание
  1. Формулы пружинного маятника
  2. Определение и формулы пружинного маятника
  3. Уравнения колебаний пружинного маятника
  4. Формулы периода и частоты колебаний пружинного маятника
  5. Формулы амплитуды и начальной фазы пружинного маятника
  6. Энергия колебаний пружинного маятника
  7. Примеры задач с решением
  8. Механические колебания.
  9. Гармонические колебания.
  10. Уравнение гармонических колебаний.
  11. Пружинный маятник.
  12. Математический маятник.
  13. Свободные и вынужденные колебания.
  14. Уравнение механических колебаний пружинного маятника
  15. 1.7.2. Математический маятник
  16. 1.7.3. Физический маятник
  17. 1.7.4. Энергия гармонических колебаний
  18. 1.7.5. Затухающие колебания .
  19. 1.7.6. Вынужденные колебания. Резонанс .
  20. 1.7.7. Автоколебания
  21. 1.7.8. Сложение колебаний одного направления
  22. 1.7.9. Биения
  23. 1.7.10. Сложение взаимно перпендикулярных колебаний (фигуры Лиссажу)
  24. 1.7.11. Распространение волн в упругой среде
  25. 1.7.12. Уравнение плоской волны
  26. 📸 Видео

Видео:Математические и пружинные маятники. 11 класс.Скачать

Математические и пружинные маятники. 11 класс.

Формулы пружинного маятника

Видео:Колебания математического и пружинного маятников. 9 класс.Скачать

Колебания математического и пружинного маятников. 9 класс.

Определение и формулы пружинного маятника

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать вертикальные движения груза (рис.1), то он движется под действием силы тяжести и силы упругости, если систему вывели из состояния равновесия и предоставили самой себе.

Уравнение механических колебаний пружинного маятника

Видео:Физика 9 класс. Уравнение механического движения пружинного маятникаСкачать

Физика  9 класс. Уравнение механического движения пружинного маятника

Уравнения колебаний пружинного маятника

Пружинный маятник, совершающий свободные колебания является примером гармонического осциллятора. Допустим, что маятник совершает колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза имеет вид:

где $^2_0=frac$ — циклическая частота колебаний пружинного маятника. Решением уравнения (1) является функция:

где $_0=sqrt<frac>>0$- циклическая частота колебаний маятника, $A$ — амплитуда колебаний; $_0t+varphi )$ — фаза колебаний; $varphi $ и $_1$ — начальные фазы колебаний.

В экспоненциальном виде колебания пружинного маятника можно записать как:

[Re tilde=Releft(Acdot exp left(ileft(_0t+varphi right)right)right)left(3right).]

Видео:Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Формулы периода и частоты колебаний пружинного маятника

Если в упругих колебаниях выполняется закон Гука, то период колебаний пружинного маятника вычисляют при помощи формулы:

Так как частота колебаний ($nu $) — величина обратная к периоду, то:

Видео:Урок 93 (осн). Исследование пружинного маятникаСкачать

Урок 93 (осн). Исследование пружинного маятника

Формулы амплитуды и начальной фазы пружинного маятника

Зная уравнение колебаний пружинного маятника (1 или 2) и начальные условия можно полностью описать гармонические колебания пружинного маятника. Начальные условия определяют амплитуда ($A$) и начальная фаза колебаний ($varphi $).

Амплитуду можно найти как:

начальная фаза при этом:

где $v_0$ — скорость груза при $t=0 c$, когда координата груза равна $x_0$.

Видео:МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫСкачать

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

Энергия колебаний пружинного маятника

При одномерном движении пружинного маятника между двумя точками его движения существует только один путь, следовательно, выполняется условие потенциальности силы (любую силу можно считать потенциальной, если она зависит только от координат). Так как силы, действующие на пружинный маятник потенциальны, то можно говорить о потенциальной энергии.

Пусть пружинный маятник совершает колебания в горизонтальной плоскости (рис.2). За ноль потенциальной энергии маятника примем положение его равновесия, где поместим начало координат. Силы трения не учитываем. Используя формулу, связывающую потенциальную силу и потенциальную энергию для одномерного случая:

учитывая, что для пружинного маятника $F=-kx$,

Уравнение механических колебаний пружинного маятника

тогда потенциальная энергия ($E_p$) пружинного маятника равна:

Закон сохранения энергии для пружинного маятника запишем как:

где $dot=v$ — скорость движения груза; $E_k=frac<m<dot>^2>$ — кинетическая энергия маятника.

Из формулы (10) можно сделать следующие выводы:

  • Максимальная кинетическая энергия маятника равна его максимальной потенциальной энергии.
  • Средняя кинетическая энергия по времени осциллятора равна его средней по времени потенциальной энергии.

Видео:Период колебаний пружинного маятникаСкачать

Период колебаний пружинного маятника

Примеры задач с решением

Задание. Маленький шарик, массой $m=0,36$ кг прикреплен к горизонтальной пружине, коэффициент упругости которой равен $k=1600 frac$. Каково было начальное смещение шарика от положения равновесия ($x_0$), если он при колебаниях проходит его со скоростью $v=1 frac$?

Решение. Сделаем рисунок.

Уравнение механических колебаний пружинного маятника

По закону сохранения механической энергии (так как считаем, что сил трения нет), запишем:

где $E_$ — потенциальная энергия шарика при его максимальном смещении от положения равновесия; $E_$ — кинетическая энергия шарика, в момент прохождения положения равновесия.

Потенциальная энергия равна:

В соответствии с (1.1) приравняем правые части (1.2) и (1.3), имеем:

Из (1.4) выразим искомую величину:

Вычислим начальное (максимальное) смещение груза от положения равновесия:

Ответ. $x_0=1,5$ мм

Задание. Пружинный маятник совершает колебания по закону: $x=A $где $A$ и $omega $ — постоянные величины. Когда возвращающая сила в первый раз достигает величины $F_0,$ потенциальная энергия груза равна $E_$. В какой момент времени это произойдет?

Решение. Возвращающей силой для пружинного маятника является сила упругости, равная:

Потенциальную энергию колебаний груза найдем как:

В момент времени, который следует найти $F=F_0$; $E_p=E_$, значит:

Видео:Видеоурок по физике "Математический и пружинный маятники"Скачать

Видеоурок по физике "Математический и пружинный маятники"

Механические колебания.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ : гармонические колебания; амплитуда, период, частота, фаза колебаний; свободные колебания, вынужденные колебания, резонанс.

Колебания — это повторяющиеся во времени изменения состояния системы. Понятие колебаний охватывает очень широкий круг явлений.

Колебания механических систем, или механические колебания — это механическое движение тела или системы тел, которое обладает повторяемостью во времени и происходит в окрестности положения равновесия. Положением равновесия называется такое состояние системы, в котором она может оставаться сколь угодно долго, не испытывая внешних воздействий.

Например, если маятник отклонить и отпустить, то начнутся колебания. Положение равновесия — это положение маятника при отсутствии отклонения. В этом положении маятник, если его не трогать, может пребывать сколь угодно долго. При колебаниях маятник много раз проходит положение равновесия.

Сразу после того, как отклонённый маятник отпустили, он начал двигаться, прошёл положение равновесия, достиг противоположного крайнего положения, на мгновение остановился в нём, двинулся в обратном направлении, снова прошёл положение равновесия и вернулся назад. Совершилось одно полное колебание. Дальше этот процесс будет периодически повторяться.

Амплитуда колебаний тела — это величина его наибольшего отклонения от положения равновесия.

Период колебаний — это время одного полного колебания. Можно сказать, что за период тело проходит путь в четыре амплитуды.

Частота колебаний — это величина, обратная периоду: . Частота измеряется в герцах (Гц) и показывает, сколько полных колебаний совершается за одну секунду.

Видео:Урок 92 (осн). Колебательное движение. МаятникиСкачать

Урок 92 (осн). Колебательное движение. Маятники

Гармонические колебания.

Будем считать, что положение колеблющегося тела определяется одной-единственной координатой . Положению равновесия отвечает значение . Основная задача механики в данном случае состоит в нахождении функции , дающей координату тела в любой момент времени.

Для математического описания колебаний естественно использовать периодические функции. Таких функций много, но две из них — синус и косинус — являются самыми важными. У них много хороших свойств, и они тесно связаны с широким кругом физических явлений.

Поскольку функции синус и косинус получаются друг из друга сдвигом аргумента на , можно ограничиться только одной из них. Мы для определённости будем использовать косинус.

Гармонические колебания — это колебания, при которых координата зависит от времени по гармоническому закону:

Выясним смысл входящих в эту формулу величин.

Положительная величина является наибольшим по модулю значением координаты (так как максимальное значение модуля косинуса равно единице), т. е. наибольшим отклонением от положения равновесия. Поэтому — амплитуда колебаний.

Аргумент косинуса называется фазой колебаний. Величина , равная значению фазы при , называется начальной фазой. Начальная фаза отвечает начальной координате тела: .

Величина называется циклической частотой. Найдём её связь с периодом колебаний и частотой . Одному полному колебанию отвечает приращение фазы, равное радиан: , откуда

Измеряется циклическая частота в рад/с (радиан в секунду).

В соответствии с выражениями (2) и (3) получаем ещё две формы записи гармонического закона (1) :

График функции (1) , выражающей зависимость координаты от времени при гармонических колебаниях, приведён на рис. 1 .

Уравнение механических колебаний пружинного маятника
Рис. 1. График гармонических колебаний

Гармонический закон вида (1) носит самый общий характер. Он отвечает, например, ситуации, когда с маятником совершили одновременно два начальных действия: отклонили на величину и придали ему некоторую начальную скорость. Имеются два важных частных случая, когда одно из этих действий не совершалось.

Пусть маятник отклонили, но начальной скорости не сообщали (отпустили без начальной скорости). Ясно, что в этом случае , поэтому можно положить . Мы получаем закон косинуса:

График гармонических колебаний в этом случае представлен на рис. 2 .

Уравнение механических колебаний пружинного маятника
Рис. 2. Закон косинуса

Допустим теперь, что маятник не отклоняли, но ударом сообщили ему начальную скорость из положения равновесия. В этом случае , так что можно положить . Получаем закон синуса:

График колебаний представлен на рис. 3 .

Уравнение механических колебаний пружинного маятника
Рис. 3. Закон синуса

Видео:Колебания математического и пружинного маятников. Практическая часть - решение задачи. 9 класс.Скачать

Колебания математического и пружинного маятников. Практическая часть - решение задачи. 9 класс.

Уравнение гармонических колебаний.

Вернёмся к общему гармоническому закону (1) . Дифференцируем это равенство:

Теперь дифференцируем полученное равенство (4) :

Давайте сопоставим выражение (1) для координаты и выражение (5) для проекции ускорения. Мы видим, что проекция ускорения отличается от координаты лишь множителем :

Это соотношение называется уравнением гармонических колебаний. Его можно переписать и в таком виде:

C математической точки зрения уравнение (7) является дифференциальным уравнением. Решениями дифференциальных уравнений служат функции (а не числа, как в обычной алгебре).
Так вот, можно доказать, что:

-решением уравнения (7) является всякая функция вида (1) с произвольными ;

-никакая другая функция решением данного уравнения не является.

Иными словами, соотношения (6) , (7) описывают гармонические колебания с циклической частотой и только их. Две константы определяются из начальных условий — по начальным значениям координаты и скорости.

Видео:Колебания пружинного маятникаСкачать

Колебания пружинного маятника

Пружинный маятник.

Пружинный маятник — это закреплённый на пружине груз, способный совершать колебания в горизонтальном или вертикальном направлении.

Найдём период малых горизонтальных колебаний пружинного маятника (рис. 4 ). Колебания будут малыми, если величина деформации пружины много меньше её размеров. При малых деформациях мы можем пользоваться законом Гука. Это приведёт к тому, что колебания окажутся гармоническими.

Трением пренебрегаем. Груз имеет массу , жёсткость пружины равна .

Координате отвечает положение равновесия, в котором пружина не деформирована. Следовательно, величина деформации пружины равна модулю координаты груза.

Уравнение механических колебаний пружинного маятника
Рис. 4. Пружинный маятник

В горизонтальном направлении на груз действует только сила упругости со стороны пружины. Второй закон Ньютона для груза в проекции на ось имеет вид:

Если 0′ alt=’x>0′ /> (груз смещён вправо, как на рисунке), то сила упругости направлена в противоположную сторону, и . Наоборот, если , то 0′ alt=’F_>0′ /> . Знаки и всё время противоположны, поэтому закон Гука можно записать так:

Тогда соотношение (8) принимает вид:

Мы получили уравнение гармонических колебаний вида (6) , в котором

Циклическая частота колебаний пружинного маятника, таким образом, равна:

Отсюда и из соотношения находим период горизонтальных колебаний пружинного маятника:

Если подвесить груз на пружине, то получится пружинный маятник, совершающий колебания в вертикальном направлении. Можно показать, что и в этом случае для периода колебаний справедлива формула (10) .

Видео:Физика 9 класс (Урок№9 - Механические колебания.)Скачать

Физика 9 класс (Урок№9 - Механические колебания.)

Математический маятник.

Математический маятник — это небольшое тело, подвешенное на невесомой нерастяжимой нити (рис. 5 ). Математический маятник может совершать колебания в вертикальной плоскости в поле силы тяжести.

Уравнение механических колебаний пружинного маятника
Рис. 5. Математический маятник

Найдём период малых колебаний математического маятника. Длина нити равна . Сопротивлением воздуха пренебрегаем.

Запишем для маятника второй закон Ньютона:

и спроектируем его на ось :

Если маятник занимает положение как на рисунке (т. е. 0′ alt=’x>0′ /> ), то:

Если же маятник находится по другую сторону от положения равновесия (т. е. ), то:

Итак, при любом положении маятника имеем:

Когда маятник покоится в положении равновесия, выполнено равенство . При малых колебаниях, когда отклонения маятника от положения равновесия малы (по сравнению с длиной нити), выполнено приближённое равенство . Воспользуемся им в формуле (11) :

Это — уравнение гармонических колебаний вида (6) , в котором

Следовательно, циклическая частота колебаний математического маятника равна:

Отсюда период колебаний математического маятника:

Обратите внимание, что в формулу (13) не входит масса груза. В отличие от пружинного маятника, период колебаний математического маятника не зависит от его массы.

Видео:Механика. Л 10.1. Колебания. Вывод дифференциального уравнения пружинного маятникаСкачать

Механика. Л 10.1. Колебания. Вывод дифференциального уравнения пружинного маятника

Свободные и вынужденные колебания.

Говорят, что система совершает свободные колебания, если она однократно выведена из положения равновесия и в дальнейшем предоставлена сама себе. Никаких периодических внешних
воздействий система при этом не испытывает, и никаких внутренних источников энергии, поддерживающих колебания, в системе нет.

Рассмотренные выше колебания пружинного и математического маятников являются примерами свободных колебаний.

Частота, с которой совершаются свободные колебания, называется собственной частотой колебательной системы. Так, формулы (9) и (12) дают собственные (циклические) частоты колебаний пружинного и математического маятников.

В идеализированной ситуации при отсутствии трения свободные колебания являются незатухающими, т. е. имеют постоянную амплитуду и длятся неограниченно долго. В реальных колебательных системах всегда присутствует трение, поэтому свободные колебания постепенно затухают (рис. 6 ).

Уравнение механических колебаний пружинного маятника
Рис. 6. Затухающие колебания

Вынужденные колебания — это колебания, совершаемые системой под воздействием внешней силы , периодически изменяющейся во времени (так называемой вынуждающей силы).

Предположим, что собственная частота колебаний системы равна , а вынуждающая сила зависит от времени по гармоническому закону:

В течение некоторого времени происходит установление вынужденных колебаний: система совершает сложное движение, которое является наложением выужденных и свободных колебаний. Свободные колебания постепенно затухают, и в установившемся режиме система совершает вынужденные колебания, которые также оказываются гармоническими. Частота установившихся вынужденных колебаний совпадает с частотой
вынуждающей силы (внешняя сила как бы навязывает системе свою частоту).

Амплитуда установившихся вынужденных колебаний зависит от частоты вынуждающей силы. График этой зависимости показан на рис. 7 .

Уравнение механических колебаний пружинного маятника
Рис. 7. Резонанс

Мы видим, что вблизи частоты наступает резонанс — явление возрастания амплитуды вынужденных колебаний. Резонансная частота приближённо равна собственной частоте колебаний системы: , и это равенство выполняется тем точнее, чем меньше трение в системе. При отсутствии трения резонансная частота совпадает с собственной частотой колебаний, , а амплитуда колебаний возрастает до бесконечности при .

Видео:Превращение энергии при колебаниях. Уравнение колебательного движения. 1 часть. 9 класс.Скачать

Превращение энергии при колебаниях. Уравнение колебательного движения. 1 часть. 9 класс.

Уравнение механических колебаний пружинного маятника

Простейшими из колебаний являются гармонические. Это колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса.

Рассмотрим пружинный маятник (Рис. 1.7.1).

Уравнение механических колебаний пружинного маятника
Рис. 1.7.1. Пружинный маятник

В состоянии покоя сила тяжести уравновешивается упругой силой:

Уравнение механических колебаний пружинного маятника(1.7.1)

Если сместить шарик от положения равновесия на расстояние х, то удлинение пружины станет равным Δl0 + х. Тогда результирующая сила примет значение:

Уравнение механических колебаний пружинного маятника(1.7.2)

Учитывая условие равновесия (1.7.1), получим:

Уравнение механических колебаний пружинного маятника(1.7.3)

Знак «минус» показывает, что смещение и сила имеют противоположные направления.

Упругая сила f обладает следующими свойствами:

  1. Она пропорциональна смещению шарика из положения равновесия;
  2. Она всегда направлена к положению равновесия.

Для того, чтобы сообщить системе смещение х, нужно совершить против упругой силы работу:

Уравнение механических колебаний пружинного маятника(1.7.4)

Эта работа идет на создание запаса потенциальной энергии системы:

Уравнение механических колебаний пружинного маятника(1.7.5)

Под действием упругой силы шарик будет двигаться к положению равновесия со все возрастающей скоростью Уравнение механических колебаний пружинного маятника. Поэтому потенциальная энергия системы будет убывать, зато возрастает кинетическая энергия Уравнение механических колебаний пружинного маятника(массой пружины пренебрегаем). Придя в положение равновесия, шарик будет продолжать двигаться по инерции. Это — замедленное движение и прекратится тогда, когда кинетическая энергия полностью перейдет в потенциальную. Затем такой же процесс будет протекать при движении шарика в обратном направлении. Если трение в системе отсутствует, шарик будет колебаться неограниченно долго.

Уравнение второго закона Ньютона в этом случае имеет вид:

Уравнение механических колебаний пружинного маятника(1.7.6)

Преобразуем уравнение так:

Уравнение механических колебаний пружинного маятника(1.7.7)

Вводя обозначение Уравнение механических колебаний пружинного маятника, получим линейное однородное дифференциальное уравнение второго порядка:

Уравнение механических колебаний пружинного маятника(1.7.8)

Прямой подстановкой легко убедиться, что общее решение уравнения (1.7.8) имеет вид:

Уравнение механических колебаний пружинного маятника(1.7.9)

где а — амплитуда и φ — начальная фаза колебания — постоянные величины. Следовательно, колебание пружинного маятника является гармоническим (Рис. 1.7.2).

Уравнение механических колебаний пружинного маятника
Рис. 1.7.2. Гармоническое колебание

Вследствие периодичности косинуса различные состояния колебательной системы повторяются через определенный промежуток времени (период колебаний) Т, за который фаза колебания получает приращение 2π. Рассчитать период можно с помощью равенства:

Уравнение механических колебаний пружинного маятника(1.7.10)

Уравнение механических колебаний пружинного маятника(1.7.11)

Число колебаний в единицу времени называется частотой:

Уравнение механических колебаний пружинного маятника(1.7.12)

За единицу частоты принимается частота такого колебания, период которого равен 1 с. Такую единицу называют 1 Гц.

Из (1.7.11) следует, что:

Уравнение механических колебаний пружинного маятника(1.7.13)

Следовательно, ω0 — это число колебаний, совершаемое за 2π секунд. Величину ω0 называют круговой или циклической частотой. Используя (1.7.12) и (1.7.13), запишем:

Уравнение механических колебаний пружинного маятника(1.7.14)

Дифференцируя (1.7.9) по времени, получим выражение для скорости шарика:

Уравнение механических колебаний пружинного маятника(1.7.15)

Из (1.7.15) следует, что скорость также изменяется по гармоническому закону и опережает смещение по фазе на ½π. Дифференцируя (1.7.15), получим ускорение:

Уравнение механических колебаний пружинного маятника(1.7.16)

1.7.2. Математический маятник

Математическим маятником называют идеализированную систему, состоящую из нерастяжимой невесомой нити, на которой подвешено тело, вся масса которого сосредоточена в одной точке.

Отклонение маятника от положения равновесия характеризуют углом φ, образованным нитью с вертикалью (Рис. 1.7.3).

Уравнение механических колебаний пружинного маятника
Рис. 1.7.3. Математический маятник

При отклонении маятника от положения равновесия возникает вращательный момент, который стремится вернуть маятник в положение равновесия:

Уравнение механических колебаний пружинного маятника(1.7.17)

Напишем для маятника уравнение динамики вращательного движения, учитывая, что момент его инерции равен ml 2 :

Уравнение механических колебаний пружинного маятника(1.7.18)

Это уравнение можно привести к виду:

Уравнение механических колебаний пружинного маятника(1.7.19)

Ограничиваясь случаем малых колебаний sinφ ≈ φ и вводя обозначение:

Уравнение механических колебаний пружинного маятника(1.7.20)

уравнение (1.7.19) может быть представлено так:

Уравнение механических колебаний пружинного маятника(1.7.21)

что совпадает по форме с уравнением колебаний пружинного маятника. Следовательно, его решением будет гармоническое колебание:

Уравнение механических колебаний пружинного маятника(1.7.22)

Из (1.7.20) следует, что циклическая частота колебаний математического маятника зависит от его длины и ускорения свободного падения. Используя формулу для периода колебаний (1.7.11) и (1.7.20), получим известное соотношение:

Уравнение механических колебаний пружинного маятника(1.7.23)

1.7.3. Физический маятник

Физическим маятником называется твердое тело, способное совершать колебания вокруг неподвижной точки, не совпадающей с центром инерции. В положении равновесия центр инерции маятника С находится под точкой подвеса О на одной с ней вертикали (Рис. 1.7.4).

Уравнение механических колебаний пружинного маятника
Рис. 1.7.4. Физический маятник

При отклонении маятника от положения равновесия на угол φ возникает вращательный момент, который стремится вернуть маятник в положение равновесия:

Уравнение механических колебаний пружинного маятника(1.7.24)

где m — масса маятника, l — расстояние между точкой подвеса и центром инерции маятника.

Напишем для маятника уравнение динамики вращательного движения, учитывая, что момент его инерции равен I:

Уравнение механических колебаний пружинного маятника(1.7.25)

Для малых колебаний sinφ ≈ φ. Тогда, вводя обозначение:

Уравнение механических колебаний пружинного маятника(1.7.26)

Уравнение механических колебаний пружинного маятника(1.7.27)

что также совпадает по форме с уравнением колебаний пружинного маятника. Из уравнений (1.7.27) и (1.7.26) следует, что при малых отклонениях физического маятника от положения равновесия он совершает гармоническое колебание, частота которого зависит от массы маятника, момента инерции и расстояния между осью вращения и центром инерции. С помощью (1.7.26) можно вычислить период колебаний:

Уравнение механических колебаний пружинного маятника(1.7.28)

Сравнивая формулы (1.7.28) и (1.7.23) получим, что математический маятник с длиной:

Уравнение механических колебаний пружинного маятника(1.7.29)

будет иметь такой же период колебаний, что и рассмотренный физический маятник. Величину (1.7.29) называют приведенной длиной физического маятника. Следовательно, приведенная длина физического маятника — это длина такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника.

Точка на прямой, соединяющей точку подвеса с центром инерции, лежащая на расстоянии приведенной длины от оси вращения, называется центром качания физического маятника. По теореме Штайнера момент инерции физического маятника равен:

Уравнение механических колебаний пружинного маятника(1.7.30)

где I0 — момент инерции относительно центра инерции. Подставляя (1.7.30) в (1.7.29), получим:

Уравнение механических колебаний пружинного маятника(1.7.31)

Следовательно, приведенная длина всегда больше расстояния между точкой подвеса и центром инерции маятника, так что точка подвеса и центр качания лежат по разные стороны от центра инерции.

1.7.4. Энергия гармонических колебаний

При гармоническом колебании происходит периодическое взаимное превращение кинетической энергии колеблющегося тела Ек и потенциальной энергии Еп, обусловленной действием квазиупругой силы. Из этих энергий слагается полная энергия Е колебательной системы:

Уравнение механических колебаний пружинного маятника(1.7.32)

Распишем последнее выражение

Уравнение механических колебаний пружинного маятника(1.7.33)

Но к = mω 2 , поэтому получим выражение для полной энергии колеблющегося тела

Уравнение механических колебаний пружинного маятника(1.7.34)

Таким образом полная энергия гармонического колебания постоянна и пропорциональна квадрату амплитуды и квадрату круговой частоты колебания.

1.7.5. Затухающие колебания .

При изучении гармонических колебаний не учитывались силы трения и сопротивления, которые существуют в реальных системах. Действие этих сил существенно изменяет характер движения, колебание становится затухающим .

Если в системе кроме квазиупругой силы действуют силы сопротивления среды (силы трения), то второй закон Ньютона можно записать так:

Уравнение механических колебаний пружинного маятника.(1.7.34.а)

Для решения этого дифференциального уравнения необходимо знать, от каких параметров зависит сила трения. Обычно предполагают, что при не очень больших амплитудах и частотах сила трения пропорциональна скорости движения и, естественно, направлена противоположно ей:

Уравнение механических колебаний пружинного маятника,(1.7.34.б)

где r – коэффициент трения, характеризующий свойства среды оказывать сопротивление движению. Подставим (1.7.34б) в (1.7.34а):

Уравнение механических колебаний пружинного маятника

Уравнение механических колебаний пружинного маятника,(1.7.34.в)

где Уравнение механических колебаний пружинного маятникаβ – коэффициент затухания; ω 0 – круговая частота собственных колебаний системы.

Решение уравнения(1.7.34.в) существенно зависит от знака разности: Уравнение механических колебаний пружинного маятника, где ω – круговая частота затухающих колебаний. При Уравнение механических колебаний пружинного маятникакруговая частота ω является действительной величиной и решение (1.7.34.в) будет следующим:

Уравнение механических колебаний пружинного маятника.(1.7.35)

График этой функции показан на рис.1.7.5 сплошной кривой 1, а штриховой линией 2 изображено изменение амплитуды:

Уравнение механических колебаний пружинного маятника.(1.7.35.а)

Период затухающих колебаний зависит от коэффициента трения и определяется формулой

Уравнение механических колебаний пружинного маятника.(1.7.35.б)

При очень малом трении Уравнение механических колебаний пружинного маятникапериод затухающего колебания близок к периоду незатухающего свободного колебания (1.7.35.б)

Уравнение механических колебаний пружинного маятникаУравнение механических колебаний пружинного маятника
Рис.1.7.5. Затухающее колебаниеРис.1.7.6. Апериодический процесс

Быстрота убывания амплитуды колебаний определяется коэффициентом затухания : чем больше β, тем сильнее тормозящее действие среды и тем быстрее уменьшается амплитуда. На практике, степень затухания часто характеризуют логарифмическим декрементом затухания , понимая под этим величину, равную натуральному логарифму отношения двух последовательных амплитуд колебаний, разделенных интервалом времени, равным периоду колебаний:

Уравнение механических колебаний пружинного маятника;

Следовательно, коэффициент затухания и логарифмический декремент затухания связаны достаточно простой зависимостью:

λ=βT .(1.7.37)

При сильном затухании Уравнение механических колебаний пружинного маятникаиз формулы (1.7.37) видно, что период колебания является мнимой величиной. Движение в этом случае уже называется апериодическим . График апериодического движения в виде показан на рис. 1.7.6. Незатухающие и затухающие колебания называют собственными или свободными . Они возникают вследствие начального смещения или начальной скорости и совершаются при отсутствии внешнего воздействия за счет первоначально накопленной энергии.

1.7.6. Вынужденные колебания. Резонанс .

Вынужденными колебаниями называются такие, которые возникают в системе при участии внешней силы, изменяющейся по периодическому закону.

Предположим, что на материальную точку кроме квазиупругой силы и силы трения действует внешняя вынуждающая сила

Уравнение механических колебаний пружинного маятника,

где F 0 – амплитуда; ω – круговая частота колебаний вынуждающей силы. Составим дифференциальное уравнение (второй закон Ньютона):

Уравнение механических колебаний пружинного маятника,

Уравнение механических колебаний пружинного маятника,(1.7.38)

где Уравнение механических колебаний пружинного маятника.

Решение дифференциального уравнения (3.19) является суммой двух колебаний: затухающих и незатухающих с амплитудой

Уравнение механических колебаний пружинного маятника,(1.7.39)

Амплитуда вынужденного колебания (1.7.39) прямо пропорциональна амплитуде вынуждающей силы и имеет сложную зависимость от коэффициента затухания среды и круговых частот собственного и вынужденного колебания. Если ω 0 и β для системы заданы, то амплитуда вынужденных колебаний имеет максимальное значение при некоторой определенной частоте вынуждающей силы, называемой резонансной .

Само явление – достижение максимальной амплитуды для заданных ω 0 и β – называют резонансом.

Уравнение механических колебаний пружинного маятника
Рис. 1.7.7. Резонанс

При отсутствии сопротивления Уравнение механических колебаний пружинного маятникаамплитуда вынужденных колебаний при резонансе бесконечно большая. При этом из ω рез =ω 0 , т.е. резонанс в системе без затухания наступает тогда, когда частота вынуждающей силы совпадает с частотой собственных колебаний. Графическая зависимость амплитуды вынужденных колебаний от круговой частоты вынуждающей силы при разных значениях коэффициента затухания показана на рис. 5.

Механический резонанс может быть как полезным, так и вредным явлением. Вредное действие резонанса связано главным образом с разрушением, которое он может вызвать. Так, в технике, учитывая разные вибрации, необходимо предусматривать возможные возникновения резонансных условий, в противном случае могут быть разрушения и катастрофы. Тела обычно имеют несколько собственных частот колебаний и соответственно несколько резонансных частот.

Если коэффициент затухания внутренних органов человека был бы не велик, то резонансные явления, возникшие в этих органах под воздействием внешних вибраций или звуковых волн, могли бы привести к трагическим последствиям: разрыву органов, повреждению связок и т.п. Однако такие явления при умеренных внешних воздействиях практически не наблюдаются, так как коэффициент затухания биологических систем достаточно велик. Тем не менее резонансные явления при действии внешних механических колебаний происходят во внутренних органах. В этом, видимо, одна из причин отрицательного воздействия инфразвуковых колебаний и вибраций на организм человека.

1.7.7. Автоколебания

Существуют и такие колебательные системы, которые сами регулируют периодическое восполнение растраченной энергии и поэтому могут колебаться длительное время.

Незатухающие колебания, существующие в какой-либо системе при отсутствии переменного внешнего воздействия, называются автоколебаниями , а сами системы – автоколебательными.

Амплитуда и частота автоколебаний зависят от свойств в самой автоколебательной системе, в отличие от вынужденных колебаний они не определяются внешними воздействиями.

Уравнение механических колебаний пружинного маятника
Рис. 1.7.8. Блок-схема автоколебаний

Во многих случаях автоколебательные системы можно представить тремя основными элементами (рис.1.7.8): 1) собственно колебательная система; 2) источник энергии; 3) регулятор поступления энергии в собственно колебательную систему. Колебательная система каналом обратной связи (рис. 6) воздействует на регулятор, информирую регулятор о состоянии этой системы.

Классическим примером механической автоколебательной системы являются часы, в которых маятник или баланс являются колебательной системой, пружина или поднятая гиря – источником энергии, а анкер – регулятором поступления энергии от источника в колебательную систему.

Многие биологические системы (сердце, легкие и др.) являются автоколебательными. Характерный пример электромагнитной автоколебательной системы – генераторы автоколебательных колебаний.

1.7.8. Сложение колебаний одного направления

Рассмотрим сложение двух гармонических колебаний одинакового направления и одинаковой частоты:

x 1 =a 1 cos(ω 0 t + α 1 ), x 2 =a 2 cos(ω 0 t + α 2 ).

Гармоническое колебание можно задать с помощью вектора, длина которого равна амплитуде колебаний, а направление образует с некоторой осью угол, равный начальной фазе колебаний. Если этот вектор вращается с угловой скоростью ω 0 , то его проекция на выбранную ось будет изменяться по гармоническому закону. Исходя из этого, выберем некоторую ось Х и представим колебания с помощью векторов а 1 и а 2 (рис.1.7.9).

Уравнение механических колебаний пружинного маятника
Рис.1.7.9

Вектор а является суммой векторов а 1 и а 2 . Проекция вектора а на ось Х равна сумме проекций векторов а 1 и а 2 :

Следовательно, вектор а представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью, что и векторы а 1 и а 2 . Таким образом, результирующее движение представляет собой гармоническое колебание с частотой ω 0 , амплитудой а и начальной фазой α. Используя теорему косинусов, находим значение амплитуды результирующего колебания:

Уравнение механических колебаний пружинного маятника(1.7.40)

Из рис.1.7.6 следует, что

Уравнение механических колебаний пружинного маятника.

Схемы, в которых колебания изображаются графически в виде векторов на плоскости, называются векторными диаграммами.

Из формулы 1.7.40 следует. Что если разность фаз обоих колебаний равна нулю, амплитуда результирующего колебания равна сумме амплитуд складываемых колебаний. Если разность фаз складываемых колебаний равна Уравнение механических колебаний пружинного маятника, то амплитуда результирующего колебания равна Уравнение механических колебаний пружинного маятника. Если частоты складываемых колебаний не одинаковы, то векторы, соответствующие этим колебаниям будут вращаться с разной скоростью. В этом случае результирующий вектор пульсирует по величине и вращается с непостоянной скоростью. Следовательно, в результате сложения получается не гармоническое колебание, а сложный колебательный процесс.

1.7.9. Биения

Рассмотрим сложение двух гармонических колебаний одинакового направления мало отличающихся по частоте. Пусть частота одного из них равна ω , а второго ω+∆ω, причем ∆ω 1 =a cos ωt, x 2 =a cos(ω+∆ω)t.

Сложив эти выражения и используя формулу для суммы косинусов, получаем:

Уравнение механических колебаний пружинного маятника(1.7.41)

(во втором множителе пренебрегаем членом Уравнение механических колебаний пружинного маятникапо сравнению с ω). График функции (1.7.41) изображен на рис. 1.7.10.

Уравнение механических колебаний пружинного маятника
Рис.1.7.10

Колебания (1.7.41) можно рассматривать как гармоническое колебание частотой ω, амплитуда которого изменяется по закону Уравнение механических колебаний пружинного маятника. Эта функция является периодической с частотой в два раза превышающей частоту выражения, стоящего под знаком модуля, т.е. с частотой ∆ω. Таким образом, частота пульсаций амплитуды, называемая частотой биений, равна разности частот складываемых колебаний.

1.7.10. Сложение взаимно перпендикулярных колебаний (фигуры Лиссажу)

Если материальная точка совершает колебания как вдоль оси х, так и вдоль оси у, то она будет двигаться по некоторой криволинейной траектории. Пусть частота колебаний одинакова и начальная фаза первого колебания равна нулю, тогда уравнения колебаний запишем в виде:

х=а cos ωt, y=b cos(ωt+α),(1.7.42)

где α – разность фаз обоих колебаний.

Выражение (1.7.42) представляет заданное в параметрическом виде уравнение траектории, по которой движется точка, участвующая в обоих колебаниях. Если исключить из уравнений (1.7.42) параметр t, то получим уравнение траектории в обычном виде:

Уравнение механических колебаний пружинного маятника(1.7.43)

Уравнение (1.7.43) представляет собой уравнение эллипса, оси которого ориентированы произвольно относительно координатных осей х и у. Ориентация эллипса и величина его полуосей зависят от амплитуд а и b и разности фаз α. Рассмотрим некоторые частные случаи:

α=mπ (m=0, ±1, ±2, …). В этом случае эллипс вырождается в отрезок прямой

Уравнение механических колебаний пружинного маятника,(1.7.44)

где знак плюс соответствует нулю и четным значениям m (рис 1.7.8.а), а знак минус – нечетным значениям m (рис.1.7.8.б). Результирующее колебание является гармоническим с частотой ω, амплитудой Уравнение механических колебаний пружинного маятника, совершающимся вдоль прямой (1.7.44), составляющей с осью х угол Уравнение механических колебаний пружинного маятникаУравнение механических колебаний пружинного маятника(рис.1.7.11).

Уравнение механических колебаний пружинного маятника
Рис.1.7.11.а

Уравнение механических колебаний пружинного маятника
Рис.1.7.11. б

  • α=(2m+1)Уравнение механических колебаний пружинного маятника

  • (m=0, ±1, ±2, …). В этом случае уравнение имеет вид

    Уравнение механических колебаний пружинного маятника

    Это уравнение эллипса, оси которого совпадают с осями координат, а его полуоси равны амплитудам (рис. 1.7.12). Если амплитуды равны, то эллипс становится окружностью.

    Уравнение механических колебаний пружинного маятника
    Рис.1.7.12

    Если частоты взаимно перпендикулярных колебаний отличаются на малую величину ∆ω, их можно рассматривать как колебания одинаковой частоты, но с медленно изменяющейся разностью фаз. В этом случае уравнения колебаний можно записать

    x=a cos ωt, y=b cos[ωt+(∆ωt+α)]

    и выражение ∆ωt+α рассматривать как разность фаз, медленно изменяющуюся со временем по линейному закону. Результирующее движение в этом случае происходит по медленно изменяющейся кривой, которая будет последовательно принимать форму, отвечающую всем значениям разности фаз от -π до+π.

    Если частоты взаимно перпендикулярных колебаний не одинаковы, то траектория результирующего движения имеет вид довольно сложных кривых, называемых фигурами Лиссажу . Пусть, например, частоты складываемых колебаний относятся как 1 : 2 и разность фаз π/2. Тогда уравнения колебаний имеют вид

    x=a cos ωt, y=b cos[2ωt+π/2].

    За то время, пока вдоль оси х точка успевает переместиться из одного крайнего положения в другое, вдоль оси у, выйдя из нулевого положения, она успевает достигнуть одного крайнего положения, затем другого и вернуться. Вид кривой показан на рис. 1.7.13. Кривая при таком же соотношении частот, но разности фаз равной нулю показана на рис.1.7.14. Отношение частот складываемых колебаний обратно отношению числа точек пересечения фигур Лиссажу с прямыми, параллельными осям координат. Следовательно, по виду фигур Лиссажу можно определить соотношение частот складываемых колебаний или неизвестную частоту. Если одна из частот известна.

    Уравнение механических колебаний пружинного маятника
    Рис.1.7.13

    Уравнение механических колебаний пружинного маятника
    Рис.1.7.14

    Чем ближе к единице рациональная дробь, выражающая отношение частот колебаний, тем сложнее получающиеся фигуры Лиссажу.

    1.7.11. Распространение волн в упругой среде

    Если в каком-либо месте упругой (твёрдой жидкой или газообразной) среды возбудить колебания её частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью υ. процесс распространения колебаний в пространстве называется волной .

    Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия.

    В зависимости от направлений колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль распространения волны. В поперечной волне частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волн. Упругие поперечные волны могут возникнуть лишь в среде, обладающей сопротивлением сдвигу. Поэтому в жидкой и газообразной средах возможно возникновения только продольных волн. В твёрдой среде возможно возникновение как продольных, так и поперечных волн.

    На рис. 1.7.12 показано движение частиц при распространении в среде поперечной волны. Номерами 1,2 и т. д. обозначены частицы отстающие друг от друга на расстояние, равное (¼ υT), т.е. на расстояние, проходимое волной за четверть периода колебаний, совершаемых частицами. В момент, времени принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла частицы 1, вследствие чего частица начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. Спустя четверть периода частица 1 достигает крайнего верхнего положения равновесия частица 2. По пришествие ещё четверти периода первая часть будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица достигнет крайнего верхнего положения, а третья частица начнёт смещаться вверх из положения равновесия. В момент времени равный T, первая частица закончит полный цикл колебания и будет находиться в таком же состоянии движения, как чальный момент. Волна к моменту времени T, пройдя путь (υT), достигнет частицы 5.

    На Рис. 1.7.13 показано движение частиц при распространении в среде продольной волны. Все рассуждения, касающиеся поведения частиц в поперечной волне, могут быть отнесены и к данному случаю с заменой смещений вверх и вниз смещениями вправо и влево.

    Из рисунка видно, что при распространении продольной волны в среде создаются чередующиеся сгущения и разряжения частиц (места сгущения обведены на рисунке пунктиром), перемещающиеся в направлении распространения волны со скоростью υ.

    Уравнение механических колебаний пружинного маятника
    Рис. 1.7.15

    Уравнение механических колебаний пружинного маятника
    Рис. 1.7.16

    На рис. 1.7.15 и 1.7.16 показаны колебания частиц, положения, равновесия которых лежат на оси x. В действительности колеблются не только частицы, расположенные вдоль оси x, а совокупность частиц, заключённых в некотором объёме. Распространяясь от источников колебаний, волновой процесс охватывает всё новые и новые части пространства, геометрическое место точек, до которых доходят колебания к моменту времени t, называется фронтом волны (или волновым фронтом). Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания ещё не возникли.

    Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью . Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Следовательно, волновых поверхностей существует бесконечное множество, в то время как волновой фронт каждый момент времени только один. Волновые поверхности остаются не подвижными (они проходят через положения равновесия частиц, колеблющихся в одной фазе ). Волновой фронт всё время перемещается.

    Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, в сферической волне – множество концентрических сфер.

    Уравнение механических колебаний пружинного маятника
    Рис. 1.7.17

    Пусть плоская волна распространяется вдоль оси x . Тогда все точки сферы, положения, равновесия которых имеет одинаковую координату x (но различие значения координат y и z), колеблются в одинаковой фазе.

    На Рис. 1.7.17 изображена кривая, которая даёт смещение ξ из положения равновесия точек с различными x в некоторый момент времени. Не следует воспринимать этот рисунок как зримое изображение волны. На рисунке показан график функций ξ ( x, t) для некоторого фиксированного момента времени t. Такой график можно строить как для продольной так и для поперечной волны.

    Расстояние λ, на короткое распространяется волна за время, равное периоду колебаний частиц среды, называется длиной волны . Очевидно, что

    λ=υT(1.7.45 )

    где υ – скорость волны, T – период колебаний. Длину волны можно определить также как расстояние между ближайшими точками среды, колеблющимися с разностью фаз, равной 2π (см. рис. 1.7.14)

    Заменив в соотношении(1.7.45) T через 1/ν (ν – частота колебаний), получим

    λν=υ .(1.7.46)

    К этой формуле можно придти также из следующих соображений. За одну секунду источник волн совершает ν колебаний, порождая в среде при каждом колебании один «гребень» и одну «впадину» волны. К тому моменту, когда источник будет завершать ν — е колебание, первый «гребень» успеет пройти путь υ. Следовательно, ν «гребней» и «впадин» волны должны уложиться в длине υ.

    1.7.12. Уравнение плоской волны

    Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат x, y, z и времени t :

    (имеются в виду координаты равновесного положения частицы). Эта функция должна быть периодической относительно времени t , и относительно координат x, y, z. . Периодичность по времени вытекает из того, что точки, отстоящие друг от друга на расстоянии λ , колеблются одинаковым образом.

    Найдем вид функции ξ в случае плоской волны, предполагая, что колебания носят гармонический характер. Для упрощения направим оси координат так, чтобы ось x совпадала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярными к оси x и, поскольку все точки волновой поверхности колеблются одинаково, смещение ξ будет зависеть только от x и t :

    Уравнение механических колебаний пружинного маятника
    Рис.1.7.18

    Пусть колебания точек, лежащих в плоскости x = 0 (рис. 1.7.18), имеют вид

    Уравнение механических колебаний пружинного маятника

    Найдем вид колебания точек в плоскости, соответствующей произвольному значению x . Для того, чтобы пройти путь от плоскости x =0 до этой плоскости, волне требуется время Уравнение механических колебаний пружинного маятника( υ – cкорость распространения волны). Следовательно, колебания частиц, лежащих в плоскости x , будут отставать по времени на τ от колебаний частиц в плоскости x = 0 , т.е. будут иметь вид

    Уравнение механических колебаний пружинного маятника

    Итак, уравнение плоской волны (продольной, и поперечной), распространяющейся в направлении оси x , выглядит следующим образом:

    Уравнение механических колебаний пружинного маятника(1.7.47)

    Величина а представляет собой амплитуду волны. Начальная фаза волны α определяется выбором начала отсчета x и t . При рассмотрении одной волны начало отсчета времени и координаты обычно выбирают так, чтобы α была равной нулю. При совместном рассмотрении нескольких волн сделать так, чтобы для всех них начальные фазы равнялись нулю, как правило, не удается.

    Зафиксируем какое – либо значение фазы, стоящей в уравнении (1.7.47), положив

    Уравнение механических колебаний пружинного маятника(1.7.48)

    Это выражение определяет связь между временем t и тем местом x , в котором фаза имеет зафиксированное значение. Вытекающее из него значение dx/dt дает скорость, с которой перемещается данное значение фазы. Продифференцировав выражение (1.7.48), получим

    Уравнение механических колебаний пружинного маятника

    Уравнение механических колебаний пружинного маятника.(1.7.49)

    Таким образом, скорость распространения волны υ уравнении (1.7.47) есть скорость перемещения фазы, в связи с чем, ее называют фазовой скоростью.

    Согласно (1.7.49) dx/dt> 0, следовательно, уравнение (1.7.47) описывает волну, распространяющуюся в сторону возрастания x .

    Волна, распространяющаяся в противоположном направлении, описывается уравнением

    Уравнение механических колебаний пружинного маятника(1.7.50)

    Действительно, приравняв константе фазу волны (1.7.50) и продифференцировав получившееся равенство, придем к соотношению

    Уравнение механических колебаний пружинного маятника,

    из которого следует, что волна (1.7.50) распространяется в сторону убывания x .

    Уравнению плоской волны можно придать симметричный относительно x и t вид. Для этого введем величину

    Уравнение механических колебаний пружинного маятника,(1.7.51)

    которая называется волновым числом. Умножив числитель и знаменатель последнего выражения на частоту ν, и вспомнив, что Уравнение механических колебаний пружинного маятника, можно представить волновое число в виде

    Уравнение механических колебаний пружинного маятника.(1.7.52)

    Раскрыв в уравнении волны

    Уравнение механических колебаний пружинного маятника

    круглые скобки и используя волновое число, придем к следующему уравнению плоской волны, распространяющейся вдоль оси :

    Уравнение механических колебаний пружинного маятника(1.7.53)

    Уравнение волны, распространяющейся в сторону убывания x :

    Уравнение механических колебаний пружинного маятника

    При выводе формулы (1.7.53) мы предполагали, что амплитуда колебаний не зависит от x . Для плоской волны это наблюдается в том случае, когда энергия волны не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны с удалением от источника колебаний постепенно уменьшается – наблюдается затухание волны. Опыт показывает, что в однородной среде такое затухание происходит по экспоненциальному закону:

    Уравнение механических колебаний пружинного маятника

    Соответственно уравнение плоской волны, с учетом затухания , имеет следующий вид:

    Уравнение механических колебаний пружинного маятника(1.7.54)

    (a 0 – амплитуда в точках плоскости x = 0).

    © ФГОУ ВПО Красноярский государственный аграрный университет, 2013

    📸 Видео

    МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебанийСкачать

    МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебаний

    5.2 Пружинный маятникСкачать

    5.2 Пружинный маятник

    Урок 327. Гармонические колебанияСкачать

    Урок 327. Гармонические колебания

    5.4 Уравнение гармонических колебанийСкачать

    5.4 Уравнение гармонических колебаний

    Период колебаний пружинного маятника 🧬 #shorts #умскул_физика #егэ2023 #умскул #егэфизикаСкачать

    Период колебаний пружинного маятника 🧬 #shorts #умскул_физика #егэ2023 #умскул #егэфизика

    Выполнялка 53.Гармонические колебания.Скачать

    Выполнялка 53.Гармонические колебания.
    Поделиться или сохранить к себе: